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function of the quaternion matrix and the l1-norm is a convex relaxation of the l0-norm, the
objective function of the robust quaternion matrix completion model is convex, but is not
differentiable. Jia et al. in [9] studied the subgradients of quaternion matrix norms for the
first time.

Motivated by the applications and theoretical analysis of QMO, we extend the relaxed
PCP model from the work of Zhou et al. in [16] to the case of quaternion matrices. From
[9], we know that an exact recovery of high probability quaternion matrix can be obtained
from a random subset of corrupted items by solving a convex programming problem under
relatively weak assumptions. The model used in this paper is composed of a low-rank
quaternion matrix, a sparse quaternion matrix and a Gaussian noise part. Due to the
existence of random noise terms, we cannot accurately recover the low-rank matrix and the
sparse matrix. We will show that we can obtain a stable estimate of the original low-rank
and sparse matrices by solving a convex optimization problem under the assumption that
the low-rank matrix satisfies the incoherence condition, the sparse elements in the sparse
matrix are uniformly distributed, and the influence of Gaussian noise term is not too great.
Because of the noncommutativity of quaternion multiplication, the proof of exact recovery
theory is quite different from that for real matrices. To this end, we derive some special
formulas to solve the noncommutativity problem.

The rest of this paper is organized as follows. Section 2 recalls some preliminaries about
quaternions and quaternion matrices, and introduces some definitions of quaternion matrix
and some important propositions. In section 3, we give the main result and provide the
proof of our quaternion matrix recovery theorem. Conclusions are given in the last section.

2 Preliminaries

In general, we denote the real field by R and the quaternion algebra by Q. The collection
of real and quaternion n1 × n2 matrices are denoted by Rn1×n2 and Qn1×n2 , respectively.

Hamilton introduced the quaternion in 1843, which consists of one real part and three
imaginary parts [7, 13, 15]. Let

a = a0 + a1i+ a2j + a3k ∈ Q, (2.1)

where a0, a1, a2, a3 ∈ R, a0 is the real part of a denoted by Re (a), and i, j, k are three
fundamental quaternion imaginary units satisfying

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j. (2.2)

The conjugate and modulus of a are respectively defined as

a∗ = a0 − a1i− a2j− a3k, |a| =
√

a02 + a12 + a22 + a32. (2.3)

Let a = a0 + a1i+ a2j+ a3k, b = b0 + b1i+ b2j+ b3k ∈ Q, then

a+ b =(a0 + b0) + (a1 + b1) i+ (a2 + b2) j+ (a3 + b3)k,

ab =(a0b0 − a1b1 − a2b2 − a3b3) + (a0b1 + a1b0 + a2b3 − a3b2) i

+ (a0b2 + a2b0 + a3b1 − a1b3) j+ (a0b3 + a3b0 + a1b2 − a2b1)k.

A = (aij) ∈ Qn1×n2 is a quaternion matrix if

A = B + Ci+Dj+ Ek, (2.4)
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where B, C, D, E ∈ Rn1×n2 are real matrices. And B is called the real part of the quaternion
matrix A, denoted by Re (A). The identity quaternion matrix I is the same as the classical
identity matrix. A∗ = (a∗ji) is the conjugate transpose of A. The quaternion matrix A is
said to be unitary if A∗A = AA∗ = I. The rank of quaternion matrix A is the maximum
number of columns of A which are right linearly independent[15], denoted by rank(A). The
trace of A is denoted by Tr(A).

Specially, a color image can be denoted by quaternion matrix A = (Ast) ∈ Qn1×n2 for
1 ≤ s ≤ n1, 1 ≤ t ≤ n2,

Ast = Rsti+Gstj+Bstk, (2.5)

where Rst, Gst, Bst are the red, green, and blue pixel values at the location (s, t) in the
image, respectively.

The inner product between two quaternion matrices A = (aij) ∈ Qn1×n2 and B = (bij) ∈
Qn1×n2 is defined by

〈A,B〉 = Tr(A∗B) =

n1∑
i=1

n2∑
j=1

a∗ijbij . (2.6)

The singular-value decomposition of quaternion matrix (QSVD) is as follows:

Theorem 2.1 ([15, Theorem 7.2]). For any quaternion matrix A ∈ Qn1×n2 with rank(A) =
r (r > 0), there exist unitary quaternion matrices U ∈ Qn1×n1 , V ∈ Qn2×n2 such that

A = UΣV ∗, (2.7)

where Σ = diag {σ1, σ2, . . . , σr, 0, . . . , 0} ∈ Rn1×n2 , and σ1, σ2, . . . , σr are the positive singu-
lar values of A.

Thus, the rank of A is equal to the numbers of positive singular values of A.
Let A = (aij) ∈ Qn1×n2 . Several classes of norms of quaternion matrix are defined as

follows [9]: the Frobenius norm (F -norm) ‖A‖F :=
√
Tr (A∗A) =

√∑n1

i=1

∑n2

j=1 |aij |
2
=(∑r

i=1 σ
2
i

) 1
2 , the l1-norm ‖A‖1 :=

∑n1

i=1

∑n2

j=1 |aij |; the ∞-norm ‖A‖∞ := maxi,j |aij |, the
spectral norm ‖A‖ := max {σ1, σ2, . . . , σr}, and the nuclear norm ‖A‖∗ :=

∑r
i=1 σi, where

σ1, σ2, . . . , σr are nonzero singular values of A and r is the rank of A.
For any linear operator A: Qn1×n2 → Qn1×n2 , ‖A‖ = sup∥X∥F=1‖AX‖F denotes the

operator norm of A.
Let a real function f : Qn1×n2 → R. Let a quaternion matrix variable Y = Y0 + Y1i +

Y2j + Y3k ∈ Qn1×n2 . Chen, Qi, Zhang, and Xu in [3] defined the differentiable real-valued
functions of quaternion matrix variables: f is differentiable at Y if ∂f

∂Yi
exists at Yi for

i = 0, 1, 2, 3 and denote

∇f(Y ) =
∂f

∂Y0
+

∂f

∂Y1
i+

∂f

∂Y2
j+

∂f

∂Y3
k. (2.8)

If f have more variables, then we change ∇f(Y ) in (2.8) to ∂f
∂Y .

From the definitions above, we can get some properties:

Proposition 2.2. For A = (aij)n1×n2
, B = (bij)n1×n2

, C = (cij)n1×n2
∈ Qn1×n2 , the

following four properties hold:

1. Commutative law: 〈A,B〉 = 〈B,A〉∗, and further Re 〈A,B〉 = Re 〈B,A〉.
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2. Homogeneity: 〈kA,B〉 = k 〈A,B〉, k ∈ R.

3. Distributive law: 〈A+B,C〉 = 〈A,C〉+ 〈B,C〉, 〈A,B + C〉 = 〈A,B〉+ 〈A,C〉.

4. Non-negativity: 〈A,A〉 ≥ 0, 〈A,A〉 = 0 if and only if A = 0.

Proof. The proofs of several results are easy, and hence, we omit them here.

Proposition 2.3. Let A,B ∈ Qn1×n2 , then ‖A+B‖2F = ‖A‖2F + ‖B‖2F + 2Re 〈A,B〉.

Proof. Using the F -norm of quaternion matrix and the distributive law of inner product of
quaternion matrix in Proposition 2.2,

‖A+B‖2F = 〈A+B,A+B〉 = 〈A+B,A〉+ 〈A+B,B〉
= 〈A,A〉+ 〈B,A〉+ 〈A,B〉+ 〈B,B〉
= 〈A,A〉+ 〈B,B〉+ 〈B,A〉+ 〈A,B〉

= ‖A‖2F + ‖B‖2F +

 n1∑
i=1

n2∑
j=1

b∗ijaij +

n1∑
i=1

n2∑
j=1

a∗ijbij


= ‖A‖2F + ‖B‖2F + 2

 n1∑
i=1

n2∑
j=1

Re(a∗ijbij)


= ‖A‖2F + ‖B‖2F + 2Re 〈A,B〉 .

The desired result holds.

Proposition 2.4. For any quaternion matrix A ∈ Qn1×n2 with rank(A) = r (r > 0) and
n1 ≥ n2, we have

‖A‖F ≤ ‖A‖∗ ≤
√
r‖A‖F , ‖A‖F ≤ ‖A‖1 ≤ n1‖A‖F .

Proof. Suppose that σ1, σ2, . . . , σr are positive singular values of A, it is obvious that the
following inequalities are true by using the definitions of norms of quaternion matrix:(

r∑
i=1

σ2
i

) 1
2

≤
r∑

i=1

σi ≤
√
r

(
r∑

i=1

σ2
i

) 1
2

, (2.9)

and hence, ‖A‖F ≤ ‖A‖∗ ≤
√
r‖A‖F . Moreover, since

‖A‖F =

√√√√ n1∑
i=1

n2∑
j=1

|aij |2 ≤
n1∑
i=1

n2∑
j=1

|aij | = ‖A‖1 (2.10)

and

‖A‖1
n1n2

=

∑n1

i=1

∑n2

j=1 |aij |
n1n2

≤

√∑n1

i=1

∑n2

j=1 |aij |
2

n1n2
≤

√∑n1

i=1

∑n2

j=1 |aij |
2

n2
=

‖A‖F
n2

,

it follows that ‖A‖F ≤ ‖A‖1 ≤ n1‖A‖F .
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Proposition 2.5 ([9, Proposition 4 in Appendix]). For any A,B ∈ Qn1×n2 ,

Re (〈A,B〉) ≤ ‖A‖ · ‖B‖∗.

In addition, for any quaternion matrix B, there is a matrix A obeying ‖A‖ = 1, which
achieves the above equality.

Proposition 2.6. For any A = (aij) ∈ Qn1×n2 , B = (bij) ∈ Qn1×n2 ,

Re (〈A,B〉) ≤ ‖A‖F · ‖B‖F , Re (〈A,B〉) ≤ ‖A‖∞ · ‖B‖1.

Proof. Arrange the elements of quaternion matrix A and B into sequences of quaternions,
denoted by

vecA = (a11, a12, ..., a1n2
, a21, ..., a2n2

, ..., an11, an12, ..., an1n2
), (2.11)

vecB = (b11, b12, ..., b1n2
, b21, ..., b2n2

, ..., bn11, bn12, ..., bn1n2
). (2.12)

Using the variant of Cauchy-Schwarz’s inequality for quaternions[12], we know that∣∣∣∣∣∣
n1∑
i=1

n2∑
j=1

a∗ijbij

∣∣∣∣∣∣
2

≤

 n1∑
i=1

n2∑
j=1

|aij |2
 n1∑

i=1

n2∑
j=1

|bij |2
 , (2.13)

In fact, the right-hand of (2.13) is equal to ‖A‖2F · ‖B‖2F , and it is obvious that

(Re (〈A,B〉))2 =

Re

 n1∑
i=1

n2∑
j=1

a∗ijbij

2

≤

∣∣∣∣∣∣
n1∑
i=1

n2∑
j=1

a∗ijbij

∣∣∣∣∣∣
2

.

Thus, Re (〈A,B〉) ≤ ‖A‖F · ‖B‖F .
Using the Cauchy-Schwarz’s inequality for real numbers, we can get

|Re (〈A,B〉)|2 =

∣∣∣∣∣∣Re
 n1∑

i=1

n2∑
j=1

a∗ijbij

∣∣∣∣∣∣
2

≤
n1∑
i=1

n2∑
j=1

|aij |2|bij |2

≤ max |aij |2 ·
n1∑
i=1

n2∑
j=1

|bij |2 ≤ max |aij |2 ·

 n1∑
i=1

n2∑
j=1

|bij |

2

= ‖A‖2∞ · ‖B‖21 .

Thus, Re (〈A,B〉) ≤ ‖A‖∞ · ‖B‖1.

Proposition 2.7 ([3, Theorem 4.3]). Suppose that f : Qn1×r → R be defined by f(Y ) =
1
2 ‖Y B + C‖2F , where B ∈ Qr×n2 and C ∈ Qn1×n2 . Then

∇f(Y ) = (Y B + C)B∗. (2.14)

Proposition 2.8 ([3, Theorem 4.4]). Suppose that f : Qr×n2 → R be defined by f(Y ) =
1
2 ‖AY + C‖2F , where A ∈ Qn1×r and C ∈ Qn1×n2 . Then

∇f(Y ) = A∗ (AY + C) . (2.15)
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3 Main Model and Result

3.1 Stable Quaternion PCP

The relaxed quaternion PCP problem aims to give stable estimates of the low-rank and the
sparse quaternion matrix. Mathematically, suppose the measurement model we observe in
the paper is

M=L0 + S0 + Z0 ∈ Qn1×n2 , (3.1)

where L0 is low-rank, S0 is sparse which acts as the some corruption data, and Z0 is a noise
term - say independent identically distributed (i.i.d) noise on each entry of the quaternion
matrix M .

Suppose that quaternion matrix L0 ∈ Qn1×n2 with rank(L0) = r has the following QSVD
form:

L0=UΣrV
∗ =

r∑
i=1

σiuiv
∗
i , (3.2)

where U=(u1, . . . , ur) ∈ Qn1×r, V=(v1, . . . , vr) ∈ Qn2×r, Σr is a real positive r × r diag-
onal matrix, and σ1, σ2, . . . , σr are singular values of L0. The matrix L0 is said to obey
incoherence condition means [9]:

max
i

‖U∗ei‖2 ≤ µr

n1
, max

i
‖V ∗ei‖2 ≤ µr

n2
, and ‖UV ∗‖∞ ≤

√
µr

n1n2
, (3.3)

where ei ∈ Rn (i = 1, 2, . . . , n) are the canonical basis vectors and µ is a positive constant.
Suppose that L0 and S0 satisfy the following two basic assumptions.

Assumption 3.1. The low-rank matrix L0 obeys incoherence condition.

Assumption 3.2. The support set of sparse matrix S0 (all the nonzero entries of S0) is
uniformly distributed among all subsets of size m.

Based on Assumptions 3.1 and 3.2, we hope to obtain stable estimates of L0 and S0 by
solving the following convex minimization problem:

min ‖L‖∗ + λ‖S‖1
s.t. ‖M − L− S‖F ≤ δ.

(3.4)

The problem (3.4) is a generalization of relaxed PCP model in the case of real matrix[16]
to the quaternion matrix. Denote n(1) = max {n1, n2} and n(2) = min {n1, n2}, respectively.
We will show that the following result holds.

Theorem 3.1. Suppose that L0 ∈ Qn1×n2 obeys incoherence condition (3.3), the support
set of S0 ∈ Qn1×n2 is uniformly distributed, and Z0 ∈ Qn1×n2 satisfies ‖Z0‖F ≤ δ. If L0

and S0 satisfy

rank(L0) ≤ ρrn(2)µ
−1(log n(1))

−2 and m ≤ ρsn1n2,

where ρr, ρs > 0 are sufficiently small numerical constants, then there exists a positive

constant C such that the solution
(
L̂, Ŝ

)
to the convex program (3.4) satisfies

∥∥∥L̂− L0

∥∥∥2
F
+
∥∥∥Ŝ − S0

∥∥∥2
F
≤ Cn2

(1)δ
2.
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This is the main result in this paper. It shows that the stable estimates of L0 and S0

can be given by the convex optimization problem (3.4) based on Assumptions 3.1 and 3.2.
We will prove it in detail later.

In order to simplify the analysis and proof of Theorem 3.1, similar to the real matrix case
in [1, 16, 2] and the quaternion matrix case in [9], Bernoulli model is considered to replace
uniform sampling for the support set Ω of sparse matrix S0. We suppose Ω = { (i, j)| δij = 1}
sampled according to the Bernoulli model, where {δij}1≤i≤n1,1≤j≤n2

is the sequence of

independent identically distributed (0 or 1) Bernoulli random variables with parameter

ρ = P (δij = 1) =
m

n1n2
. (3.5)

Let T denote the subspace generated by quaternion matrices with the same row space
or column space as L0, which is given by

T= {UY ∗ + ZV ∗|Y ∈ Qn2×r, Z ∈ Qn1×r} ⊂ Qn1×n2 ,

where U , V are defined in (3.2). Let PT be the unitary projection operator onto the quater-
nion matrix space T , then

PT (A) = min
E∈T

‖E −A‖2F , (3.6)

where A is an arbitrary quaternion matrix.
Let PΩ be the unitary projection onto the quaternion matrix space supported on Ω ⊆

[n1]× [n2], defined as

(PΩ(S))ij =

{
Sij , (i, j) ∈ Ω,
0, (i, j) /∈ Ω.

(3.7)

For any quaternion matrix pair X = (L, S) ∈ Qn1×n2 , we denote

‖X‖F
.
=
(
‖L‖2F + ‖S‖2F

)1/2
and ‖X‖† = ‖L‖∗ + λ‖S‖1. (3.8)

Define the projection operator PT × PΩ : (L, S) 7→ (PT (L), PΩ(S)), and (PT⊥ × PΩ⊥)
is the complement of PT × PΩ. Define the subspace Γ

.
= {(Q,Q) |Q ∈ Qn1×n2}, Γ⊥ is the

orthogonal complement to Γ, and PΓ and PΓ⊥ are their respective projection operators.

3.2 Subgradients of quaternion matrix norm

Let A = (aij) ∈ Qn1×n2 , the subgradient of any quaternion matrix norm of A in [9] is defined
by:

∂|||A||| =
{
D ∈ Qn1×n2 : |||B||| ≥ |||A|||+Re (〈D,B −A〉) , ∀B ∈ Qn1×n2

}
, (3.9)

where |||A||| denote any quaternion matrix norm of A.
For the definition of subgradient of quaternion matrix norm, Jia, Ng, and Song defined

it in [9] by using the real part of the inner product of D and B − A. While Qi, Luo, Wang
and Zhang defined it by R-product in [14]. Moreover, Qi, Luo, Wang and Zhang proved that
these two definitions are consistent, and also revealed that the subgradient of the quaternion
matrix norm could be considered as the subgradient of the norm of the real matrix variables.
We use the definition in [9] here because Jia, Ng, and Song further gave the concrete form
of the quaternion matrix l1-norm and the nuclear norm subgradients, which is necessary for
us to prove the main result.
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Proposition 3.2 ([9, Lemma 2]). Let A ∈ Qn1×n2 , then the subgradient of the l1-norm ‖·‖1
at A supported on Ω is given by

∂‖A‖1 =
{
D ∈ Qn1×n2 : D = direct (A) + F, PΩ(F ) = 0, ‖F‖∞ ≤ 1

}
, (3.10)

where direct(A) is an n1 × n2 matrix with its entries being given by
[

aij

|aij |

]
n1×n2

.

Proposition 3.3 ([9, Lemma 3]). Let A ∈ Qn1×n2 have QSVD as in (2.7), then D is a
subgradient of the nuclear norm ‖·‖∗ at A if

D =
∑

1≤k≤r

ukv
∗
k +W, (3.11)

where uk and vk (1 ≤ k ≤ r) are the column vectors of U and V , respectively, and W obeys:
(1) the right column space of W is unitary to U , and the left row space of W is unitary to
V ; (2) ‖W‖ ≤ 1.

3.3 Main result

First of all, we can obtain the specific expression of PT (A) in the following Lemma by solving
optimization problem (3.6):

Lemma 3.4. For an arbitrary quaternion matrix A ∈ Qn1×n2 ,

PT (A) = PUA+APV − PUAPV ,

where PU = UU∗ and PV = V V ∗ are unitary projections onto U and V , respectively.

Proof. From (3.6), we know that

PT (A) = min
E∈T

‖E −A‖2F = min
Y,Z

‖UY ∗ + ZV ∗ −A‖2F = min
Y,Z

‖Y U∗ + V Z∗ −A∗‖2F .

Let

f(Y, Z) = ‖UY ∗ + ZV ∗ −A‖2F = ‖Y U∗ + V Z∗ −A∗‖2F ,

Based on the first-order optimality condition of QMO problem in [14, Theorem 4.3], suppose
that E♢ = UY ∗ + ZV ∗ ∈ Qn1×n2 is an optimal solution of (3.6), then we can obtain

∂f

∂Y
= 0 and

∂f

∂Z
= 0.

By Proposition 2.7 and 2.8, we have

∂f

∂Y
= 2 (Y U∗ + V Z∗ −A∗)U = 0

and
∂f

∂Z
= 2 (UY ∗ + ZV ∗ −A)V = 0,

Then we can derive

Y = A∗U − V Z∗U and Z = AV − UY ∗V.
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Therefore,

E♢ = UY ∗ + ZV ∗

= U(A∗U − V Z∗U)
∗
+ (AV − UY ∗V )V ∗

= UU∗A− UU∗ZV ∗ +AV V ∗ − UY ∗V V ∗

= UU∗A+AV V ∗ − UU∗ZV ∗ − U(A∗U − V Z∗U)∗V V ∗

= UU∗A+AV V ∗ − UU∗ZV ∗ − (UU∗AV V ∗ − UU∗ZV ∗)

= UU∗A+AV V ∗ − UU∗AV V ∗

= PUA+APV − PUAPV ,

where PU = UU∗ and PV = V V ∗ are unitary projections onto U and V .
In other words, PT (A) = PUA+APV − PUAPV .

The following lemma comes from [9, Lemma 4], and we give its proof for completeness.

Lemma 3.5. Let A,B ∈ Qn1×n2 . Then, Re (〈A,PT (B)〉) = Re (〈PT (A), B〉).

Proof. By using the definition of the inner product between two quaternion matrices and
Lemma 3.4, we have

Re (〈A,PT (B)〉) = Re [Tr (A∗ (PUB +BPV − PUBPV ))]

= Re [Tr (A∗PUB +A∗BPV −A∗PUBPV )]

= Re [Tr (A∗PUB)] + Re [Tr (A∗BPV )]− Re [Tr (A∗PUBPV )] ,

Re (〈PT (A), B〉) = Re
[
Tr
(
(PUA+APV − PUAPV )

∗
B
)]

= Re [Tr (A∗PUB + PV A
∗B − PV A

∗PUB)]

= Re [Tr (A∗PUB)] + Re [Tr (PV A
∗B)]− Re [Tr (PV A

∗PUB)] ,

and

Re [Tr (A∗BPV )] = Re [Tr (PV A
∗B)] , Re [Tr (A∗PUBPV )] = Re [Tr (PV A

∗PUB)] .

Thus, we can get Re (〈A,PT (B)〉) = Re (〈PT (A), B〉).

Generalizing [1, Lemma 2.5] to the quaternion matrix, we can get the following result.

Lemma 3.6. Suppose that ‖PΩPT ‖ ≤ 1/2 and λ ≤ 1. If there is a matrix triple (W,F,D)
satisfying

UV ∗ +W = λ (direct(S0) + F + PΩ(D)) , (3.12)

where U, V as in (3.2), PT (W ) = 0, ‖W‖ ≤ 1/2, PΩF = 0, ‖F‖∞ ≤ 1/2, ‖PΩ(D)‖F ≤ 1/4.
Then (L0, S0) is the unique solution to the minimization problem

min ‖L‖∗ + λ‖S‖1
s.t. M ′ = L+ S.

(3.13)

Proof. We consider a feasible perturbation (L0 +H,S0 −H) with H 6= 0, and prove (L0, S0)
is the optimal solution of problem (3.13). Let UV ∗ + W0 be an arbitrary subgradient of
L0, and direct(S0) + F0 be an arbitary subgradient of l1-norm of S0. From Proposition 3.3,
we know that W0 obeys ‖W0‖ ≤ 1, U∗W0 = 0, and W0V = 0 which equal to PT (W0) = 0.
Similarly, from Proposition 3.2, it follows that F0 obeys PΩ(F0) = 0 and ‖F0‖∞ ≤ 1. Using
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the definition of subgradients of quarternion matrix in (3.9) and concrete expressions of the
nuclear norm and l1-norm of quaternion matrix, we have

‖L0 +H‖∗ + λ‖S0 −H‖1
≥‖L0‖∗ + ‖S0‖1 +Re 〈UV ∗ +W0,H〉 − λRe 〈direct(S0) + F0,H〉
=‖L0‖∗ + ‖S0‖1 +Re 〈UV ∗ − λdirect(S0),H〉+Re 〈W0,H〉 − λRe 〈F0,H〉 .

(3.14)

Now let’s narrow down the last three terms in (3.14). Because of the properties of W0

and F0, we can choose W0 = PT⊥(W0), where ‖W0‖ = 1 and F0 = −direct(PΩ⊥(H)). Then,
using Lemma 3.5, Proposition 2.5 and Proposition 2.6, we have

Re 〈W0,H〉 = Re 〈PT⊥(W0),H〉 = Re 〈W0, PT⊥(H)〉 = ‖PT⊥(H)‖∗ (3.15)

and
Re 〈F0,H〉 = Re 〈−direct(PΩ⊥(H)),H〉 = −‖PΩ⊥(H)‖1 . (3.16)

Also, we have

|Re 〈UV ∗ − λdirect(S0),H〉|
= |Re 〈λF −W + λPΩ(D),H〉|
≤λ |Re 〈F,H〉|+ |Re 〈W,H〉|+ λ |Re 〈PΩ(D),H〉|
=λ |Re 〈PΩ⊥(F ),H〉|+ |Re 〈PT⊥(W ),H〉|+ λ |Re 〈PΩPΩ(D),H〉|
=λ |Re 〈F, PΩ⊥(H)〉|+ |Re 〈W,PT⊥(H)〉|+ λ |Re 〈PΩ(D), PΩ(H)〉|
≤λ‖F‖∞ · ‖PΩ⊥(H)‖1 + ‖W‖ · ‖PT⊥(H)‖∗ + λ‖PΩ(D)‖F · ‖PΩ(H)‖F

≤λ

2
‖PΩ⊥(H)‖1 +

1

2
‖PT⊥(H)‖∗ +

λ

4
‖PΩ(H)‖F ,

where the second inequality follows from distributive law of inner product of quaternion
matrix, the fourth equality follows from Lemma 3.5, and the fifth inequality follows from
Proposition 2.5 and Proposition 2.6. From the above inequality, it is obvious that

Re 〈UV ∗ − λdirect(S0),H〉 ≥ −λ

2
‖PΩ⊥(H)‖1 −

1

2
‖PT⊥(H)‖∗ −

λ

4
‖PΩ(H)‖F . (3.17)

Now, substituting (3.15), (3.16) and (3.17) into (3.14), we obtain that

‖L0 +H‖∗ + λ‖S0 −H‖1

≥‖L0‖∗ + ‖S0‖1 +
1

2
(‖PT⊥(H)‖∗ + λ‖PΩ⊥(H)‖1)−

λ

4
‖PΩ(H)‖F .

(3.18)

Furthermore, since

‖PΩ(H)‖F = ‖PΩ (PT + PT⊥) (H)‖F ≤ ‖PΩPT (H)‖F + ‖PΩPT⊥(H)‖F

≤ 1

2
‖H‖F + ‖PT⊥(H)‖F ≤ 1

2
(‖PΩ(H)‖F + ‖PΩ⊥(H)‖F ) + ‖PT⊥(H)‖F ,

we have

‖PΩ(H)‖F ≤ ‖PΩ⊥(H)‖F + 2‖PT⊥(H)‖F ≤ ‖PΩ⊥(H)‖1 + 2‖PT⊥(H)‖∗, (3.19)

where the second inequality follows from Proposition 2.4.
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Finally, substituting (3.19) into (3.18), we have

‖L0 +H‖∗ + λ‖S0 −H‖1 ≥ ‖L0‖∗ + ‖S0‖1 +
1

2

(
(1− λ)‖PT⊥(H)‖∗ +

λ

2
‖PΩ⊥(H)‖1

)
.

Since (1− λ)‖PT⊥(H)‖∗ +
λ
2 ‖PΩ⊥(H)‖1 > 0 if H 6= 0, the above inequality implies the

desired result.

Next, we discuss the conditions used in Lemma 3.6.
If there is a matrix triple (W,F,D) obeying

UV ∗ +W = λ (direct(S0) + F + PΩ(D)) , (3.20)

where PT (W ) = 0, ‖W‖ ≤ 1/2, PΩ(F ) = 0, ‖F‖∞ ≤ 1/2, and ‖PΩ(D)‖F ≤ 1/4, then, by
noting that PΩ⊥(direct(S0)) = 0 (since Ω is the support set of S0), we have

‖PΩ(UV ∗ − λdirect(S0) +W )‖F = λ‖PΩ(F + PΩ(D))‖F ≤ λ‖PΩ(D)‖F ≤ λ/4,

‖PΩ⊥(UV ∗ +W )‖∞ = λ‖PΩ⊥(direct(S0) + F + PΩ(D))‖∞ = λ‖F‖∞ ≤ λ/2,

and hence, W satisfies  W ∈ T⊥, ‖W‖ ≤ 1/2,
‖PΩ(UV ∗ − λdirect(S0) +W )‖F ≤ λ/4,
‖PΩ⊥(UV ∗ +W )‖∞ ≤ λ/2.

(3.21)

Conversely, suppose that W satisfies (3.21), we show that the conditions used in Lemma
3.6 hold. For this purpose, we need to show that there is a matrix pair (F,D) which satisfies
(3.12), i.e.,

UV ∗ +W = λ (direct(S0) + F + PΩ(D)) ,

and PΩ(F ) = 0, ‖F‖∞ ≤ 1/2, and ‖PΩ(D)‖F ≤ 1/4. Firstly, we choose a matrix F
supported on Ω⊥, then PΩ(F ) = 0. Secondly, from the second inequality of (3.21), we have

λ/4 ≥ ‖PΩ(UV ∗ − λdirect(S0) +W )‖F = λ‖PΩ(F + PΩ(D))‖F = λ ‖PΩ(D)‖F , (3.22)

which yields ‖PΩ(D)‖F ≤ 1/4. Thirdly, from the third inequality of (3.21), we have

λ/2 ≥ ‖PΩ⊥(UV ∗ +W )‖∞
= λ‖PΩ⊥(direct(S0) + F + PΩ(D))‖∞
= λ‖PΩ⊥(F )‖∞ = λ ‖F‖∞ ,

and hence, ‖F‖∞ ≤ 1/2. Therefore, the desired result holds.
Therefore, as a corollary of Lemma 3.6, if W satisfies (3.21), (L0, S0) is the unique

solution to the minimization problem (3.13).
Suppose the observed quaternion matrix M is decomposed without the i.i.d noise term

Z0 in (3.1). If there exists matrix triple (W,F,D) such that (3.12) holds (or there exists a
matrix W such that (3.21) holds), then (L0, S0) is the unique solution to the problem (3.13).
In this paper, however, we discuss that M can be decomposed into a form like (3.1), which
contains the i.i.d. noise term Z0 with ‖Z0‖F ≤ δ for some δ > 0. In this case, it is difficult

to directly recover (L0, S0) exactly from problem (3.4). Suppose that
(
L̂, Ŝ

)
is the optimal

solution to (3.4), however, it is expected that the difference between (L̂, Ŝ) and (L0, S0) is
very small when δ is very small. This is exactly what Theorem 3.1 proves.

Next, we use dual certificate in (3.21) to give the following theorem.
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Theorem 3.7. Suppose that ‖PΩPT ‖ ≤ 1/2, λ ≤ 1/2, and there is a matrix W satisfying
(3.21). Let X̂ = (L̂, Ŝ) be the solution to minimization problem (3.4) with λ = 1√

n(1)
. Then,

X̂ satisfies ∥∥∥X0 − X̂
∥∥∥
F
≤
(
8
√
5n(1) + 1

)
δ, (3.23)

where X0 = (L0, S0).

Proof. Since X0 = (L0, S0) is a feasible solution of (3.4), we have that ‖X̂‖† ≤ ‖X0‖† and∥∥∥L̂+ Ŝ − L0 − S0

∥∥∥
F
=
∥∥∥(L̂+ Ŝ −M)− (L0 + S0 −M)

∥∥∥
F

≤
∥∥∥L̂+ Ŝ −M

∥∥∥
F
+ ‖L0 + S0 −M‖F ≤ 2δ.

(3.24)

Let X̂ = X0+H, where H := (HL,HS). Denote HΓ := PΓ(H) and HΓ⊥
:= PΓ⊥(H). Then,

we need to estimate the upper bound of ‖H‖F . It is easy to see that

‖H‖2F = ‖(PΓ + PΓ⊥)(H)‖2F
= ‖PΓ(H)‖2F + ‖PΓ⊥(H)‖2F + 2Re (〈PΓ(H), PΓ⊥(H)〉)

=
∥∥HΓ

∥∥2
F
+
∥∥∥HΓ⊥

∥∥∥2
F

=
∥∥HΓ

∥∥2
F
+
∥∥∥(PT⊥ × PΩ⊥)

(
HΓ⊥

)∥∥∥2
F
+
∥∥∥(PT × PΩ)

(
HΓ⊥

)∥∥∥2
F
,

(3.25)

where the second equality follows from Proposition 2.3. Next, we estimate the upper bounds
of three terms lies in the right-hand of (3.25), which are discussed respectively in 1), 2) and
3) below.

1) The upper bound of ‖HΓ‖2F (the first term in the right-hand of (3.25)).
For the matrix pair H = (HL,HS), we have

HΓ = PΓ (H) =

(
HL +HS

2
,
HL +HS

2

)
,

from the definition of Γ. Then, by using (3.8) and (3.24), we can get

∥∥HΓ
∥∥2
F
=

∥∥∥∥HL +HS

2

∥∥∥∥2
F

+

∥∥∥∥HL +HS

2

∥∥∥∥2
F

=
1

2
‖HL +HS‖2F ≤ 1

2
· (2δ)2 = 2δ2. (3.26)

2) The upper bound of ‖(PT⊥ × PΩ⊥)(HΓ⊥
)‖2F (the second term in the right-hand of

(3.25)).

Write Λ = UV ∗ + W , where W satisfies (3.21). For any perturbation (HΓ⊥

L ,HΓ⊥

S )

satisfying HΓ⊥

L + HΓ⊥

S = 0, and any Z = (ZL, ZS) ∈ ∂‖X0‖† (that is, ZL ∈ ∂‖L0‖∗ and
ZS ∈ ∂(λ‖S0‖1)), it follows from the definition of the subgradient of any matrix norm of
quaternion matrix that ∥∥∥L0 +HΓ⊥

L

∥∥∥
∗
≥ ‖L0‖∗ +Re

(〈
ZL,H

Γ⊥

L

〉)
,

λ
∥∥∥S0 +HΓ⊥

S

∥∥∥
1
≥ λ‖S0‖1 +Re

(〈
ZS ,H

Γ⊥

S

〉)
.

(3.27)

From Proposition 3.3, we have ZL = UV ∗ +W0 where W0 ∈ T⊥, and hence,

ZL = UV ∗ +W0 = UV ∗ +W +W0 −W = Λ+ PT⊥ (ZL − Λ) .
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From Lemma 3.6 and Proposition 3.2, we have

ZS = λ (direct(S0) + F ) = UV ∗ +W − λPΩ(D) = Λ− λPΩ(D)

= Λ− λPΩ(D) + PΩ⊥PΩ(D) = Λ− λPΩ(D) + PΩ⊥ (ZS − Λ) .

Thus, we have

Re
(〈

ZL,H
Γ⊥

L

〉)
+Re

(〈
ZS ,H

Γ⊥

S

〉)
=Re

(〈
Λ,HΓ⊥

L +HΓ⊥

S

〉)
− λRe

(〈
PΩ(D), PΩ(H

Γ⊥

S )
〉)

+Re
(〈

ZL − Λ, PT⊥(HΓ⊥

L )
〉)

+Re
(〈

ZS − Λ, PΩ⊥(HΓ⊥

S )
〉)

≥0− λ‖PΩ(D)‖F ·
∥∥∥PΩ(H

Γ⊥

S )
∥∥∥
F
+Re

(〈
ZL − Λ, PT⊥(HΓ⊥

L )
〉)

+Re
(〈

ZS − Λ, PΩ⊥(HΓ⊥

S )
〉)

≥− λ/4
∥∥∥PΩ(H

Γ⊥

S )
∥∥∥
F
+Re

(〈
ZL − Λ, PT⊥(HΓ⊥

L )
〉)

+Re
(〈

ZS − Λ, PΩ⊥(HΓ⊥

S )
〉)

,

(3.28)

where the second inequality holds by Proposition 2.5.
Next, we give the estimate of three terms in the right-hand of (3.28).
Firstly, by using the triangle inequality of quaternion matrix norm, we have∥∥∥PΩ(H

Γ⊥

S )
∥∥∥
F
≤
∥∥∥PΩPT (H

Γ⊥

S )
∥∥∥
F
+
∥∥∥PΩPT⊥(HΓ⊥

S )
∥∥∥
F

≤‖PΩPT ‖
∥∥∥HΓ⊥

S

∥∥∥
F
+
∥∥∥PT⊥(HΓ⊥

S )
∥∥∥
F
≤ 1

2

∥∥∥HΓ⊥

S

∥∥∥
F
+
∥∥∥PT⊥(HΓ⊥

S )
∥∥∥
F

≤1

2

∥∥∥PΩ(H
Γ⊥

S )
∥∥∥
F
+

1

2

∥∥∥PΩ⊥(HΓ⊥

S )
∥∥∥
F
+
∥∥∥PT⊥(HΓ⊥

S )
∥∥∥
F
,

which yields ∥∥∥PΩ(H
Γ⊥

S )
∥∥∥
F
≤
∥∥∥PΩ⊥(HΓ⊥

S )
∥∥∥
F
+ 2
∥∥∥PT⊥(HΓ⊥

S )
∥∥∥
F

≤
∥∥∥PΩ⊥(HΓ⊥

S )
∥∥∥
1
+ 2
∥∥∥PT⊥(HΓ⊥

S )
∥∥∥
∗
,

(3.29)

where the last inequality holds by Proposition 2.4.
Secondly, there exists ZL ∈ ∂‖L0‖∗ with ‖ZL‖ = 1 such that

Re
(〈

ZL, PT⊥(HΓ⊥

L )
〉)

=
∥∥∥PT⊥(HΓ⊥

L )
∥∥∥
∗

and∣∣∣Re(〈Λ, PT⊥(HΓ⊥

L )
〉)∣∣∣ = ∣∣∣Re(〈PT⊥(Λ), PT⊥(HΓ⊥

L )
〉)∣∣∣ ≤ ‖PT⊥(Λ)‖

∥∥∥PT⊥(HΓ⊥

L )
∥∥∥
∗
.

So,

Re
(〈

ZL − Λ, PT⊥(HΓ⊥

L )
〉)

≥ (1− ‖PT⊥(Λ)‖) ·
∥∥∥PT⊥(HΓ⊥

L )
∥∥∥
∗
. (3.30)
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Similarly, the third term in the right-hand of (3.28) satisfies

Re
(〈

ZS − Λ, PΩ⊥(HΓ⊥

S )
〉)

≥ (λ− ‖PΩ⊥(Λ)‖∞) ·
∥∥∥PΩ⊥(HΓ⊥

S )
∥∥∥
1
. (3.31)

Now, by using (3.29), (3.30) and (3.31), it follows from (3.28) that

Re
(〈

ZL,H
Γ⊥

L

〉)
+Re

(〈
ZS ,H

Γ⊥

S

〉)
≥− λ/4

∥∥∥PΩ(H
Γ⊥

S )
∥∥∥
F
+ (1− ‖PT⊥(Λ)‖) ·

∥∥∥PT⊥(HΓ⊥

L )
∥∥∥
∗

+ (λ− ‖PΩ⊥(Λ)‖∞) ·
∥∥∥PΩ⊥(HΓ⊥

S )
∥∥∥
1

≥− λ/4
(∥∥∥PΩ⊥(HΓ⊥

S )
∥∥∥
1
+2
∥∥∥PT⊥(HΓ⊥

S )
∥∥∥
∗

)
+ (1− ‖PT⊥(Λ)‖) ·

∥∥∥PT⊥(HΓ⊥

L )
∥∥∥
∗

+ (λ− ‖PΩ⊥(Λ)‖∞) ·
∥∥∥PΩ⊥(HΓ⊥

S )
∥∥∥
1

=(1− λ/2− ‖PT⊥(Λ)‖)
∥∥∥PT⊥(HΓ⊥

L )
∥∥∥
∗
+ (3λ/4− ‖PΩ⊥(Λ)‖∞)

∥∥∥PΩ⊥(HΓ⊥

S )
∥∥∥
1

≥(3/4− ‖PT⊥(Λ)‖)
∥∥∥PT⊥(HΓ⊥

L )
∥∥∥
∗
+ (3λ/4− ‖PΩ⊥(Λ)‖∞)

∥∥∥PΩ⊥(HΓ⊥

S )
∥∥∥
1
.

(3.32)

Furthermore, by using ‖PT⊥(Λ)‖ ≤ 1
2 , ‖PΩ⊥(Λ)‖∞ ≤ λ

2 , (3.27) and (3.32), we can get

∥∥∥X0 +HΓ⊥
∥∥∥
†
≥‖X0‖†+Re

(〈
ZL,H

Γ⊥

L

〉)
+Re

(〈
ZS ,H

Γ⊥

S

〉)
≥‖X0‖† + (3/4− ‖PT⊥(Λ)‖)

∥∥∥PT⊥(HΓ⊥

L )
∥∥∥
∗

+ (3λ/4− ‖PΩ⊥(Λ)‖∞)
∥∥∥PΩ⊥(HΓ⊥

S )
∥∥∥
1

≥‖X0‖† + 1/4
(∥∥∥PT⊥(HΓ⊥

L )
∥∥∥
∗
+ λ

∥∥∥PΩ⊥(HΓ⊥

S )
∥∥∥
1

)
.

(3.33)

Moreover, by using the triangle inequality of quaternion matrix norm, we have

∥∥∥X0 +HΓ⊥
∥∥∥
†
=
∥∥X0 +H −HΓ

∥∥
† ≤ ‖X0 +H‖† +

∥∥HΓ
∥∥
†, (3.34)

Thus, combining (3.33) with (3.34), we have

∥∥∥PT⊥(HΓ⊥

L )
∥∥∥
∗
+ λ

∥∥∥PΩ⊥(HΓ⊥

S )
∥∥∥
1
≤ 4

(∥∥∥X0 +HΓ⊥
∥∥∥
†
− ‖X0‖†

)
≤4

(∥∥∥X0 +HΓ⊥
∥∥∥
†
− ‖X0 +H‖†

)
≤ 4
∥∥HΓ

∥∥
† .

(3.35)
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Therefore, ∥∥∥(PT⊥ × PΩ⊥)
(
HΓ⊥

)∥∥∥
F

≤
(∥∥∥PT⊥(HΓ⊥

L )
∥∥∥2
F
+
∥∥∥PΩ⊥(HΓ⊥

S )
∥∥∥2
F

)1/2

≤
∥∥∥PT⊥(HΓ⊥

L )
∥∥∥
F
+
∥∥∥PΩ⊥(HΓ⊥

S )
∥∥∥
F
≤
∥∥∥PT⊥(HΓ⊥

L )
∥∥∥
∗
+
∥∥∥PΩ⊥(HΓ⊥

S )
∥∥∥
1

≤√
n(1)

(∥∥∥PT⊥(HΓ⊥

L )
∥∥∥
∗
+ λ

∥∥∥PΩ⊥(HΓ⊥

S )
∥∥∥
1

)
≤4

√
n(1)

∥∥HΓ
∥∥
† = 4

√
n(1)(

∥∥HΓ
L

∥∥
∗ + λ

∥∥HΓ
S

∥∥
1
)

≤4n(1)(
∥∥HΓ

L

∥∥
F
+ λ

∥∥HΓ
S

∥∥
F
) ≤ 4n(1)(

∥∥HΓ
L

∥∥
F
+
∥∥HΓ

S

∥∥
F
)

=4n(1)

√
2
(∥∥HΓ

L

∥∥2
F
+
∥∥HΓ

S

∥∥2
F

)
= 4

√
2n(1)

∥∥HΓ
∥∥
F
≤ 8n(1)δ,

where the third and seventh inequalities hold by Proposition 2.4, the fifth inequality holds by
(3.35), the ninth equality holds from the fact that

∥∥HΓ
L

∥∥
F
=
∥∥HΓ

S

∥∥
F
, and the last equality

holds by (3.8).

3) The upper bound of ‖(PT ×PΩ)(H
Γ⊥

)‖2F (the third term in the right-hand of (3.25)).

Firstly, since PΓ(PT × PΩ)(H
Γ⊥

) + PΓ(PT⊥ × PΩ⊥)(HΓ⊥
) = PΓ(H

Γ⊥
) = 0, we have∥∥∥PΓ(PT × PΩ)(H

Γ⊥
)
∥∥∥
F
=
∥∥∥PΓ(PT⊥ × PΩ⊥)(HΓ⊥

)
∥∥∥
F
≤
∥∥∥(PT⊥ × PΩ⊥)(HΓ⊥

)
∥∥∥
F
. (3.36)

Secondly, for quaternion matrix pair HΓ⊥
= (HΓ⊥

L ,HΓ⊥

S ), we have∥∥∥PΓ (PT × PΩ) (H
Γ⊥

)
∥∥∥2
F

=
∥∥∥PΓ

(
PT (H

Γ⊥

L ), PΩ(H
Γ⊥

S )
)∥∥∥2

F
=

1

2

∥∥∥PT (H
Γ⊥

L ) + PΩ(H
Γ⊥

S )
∥∥∥2
F

=
1

2

(∥∥∥PT (H
Γ⊥

L )
∥∥∥2
F
+
∥∥∥PΩ(H

Γ⊥

S )
∥∥∥2
F
+ 2Re

(〈
PT (H

Γ⊥

L ), PΩ(H
Γ⊥

S )
〉))

,

(3.37)

where the last equality holds by Proposition 2.3, while

Re
(〈

PT (H
Γ⊥

L ), PΩ(H
Γ⊥

S )
〉)

= Re
(〈

PTPT (H
Γ⊥

L ), PΩPΩ(H
Γ⊥

S )
〉)

= Re
(〈

PT (H
Γ⊥

L ), (PTPΩ)PΩ(H
Γ⊥

S )
〉)

≥ −‖PTPΩ‖ ·
∥∥∥PT (H

Γ⊥

L )
∥∥∥
F
·
∥∥∥PΩ(H

Γ⊥

S )
∥∥∥
F
,

(3.38)

where the inequality holds because of Proposition 2.5 and compatibility of matrix norm,
hence, ∥∥∥PΓ (PT × PΩ)

(
HΓ⊥

)∥∥∥2
F

≥1

2

(∥∥∥PT (H
Γ⊥

L )
∥∥∥2
F
+
∥∥∥PΩ(H

Γ⊥

S )
∥∥∥2
F
−
∥∥∥PT (H

Γ⊥

L )
∥∥∥
F
·
∥∥∥PΩ(H

Γ⊥

S )
∥∥∥
F

)
≥1

4

(∥∥∥PT (H
Γ⊥

L )
∥∥∥2
F
+
∥∥∥PΩ(H

Γ⊥

S )
∥∥∥2
F

)
=

1

4

∥∥∥(PT × PΩ)
(
HΓ⊥

)∥∥∥2
F
,

(3.39)
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where the first inequality follows from (3.38), (3.37) and the condition ‖PTPΩ‖ ≤ 1
2 , and

the second inequality follows from the fact that a2 + b2 − ab ≥ a2+b2

2 for any a and b.
Thus, by combining (3.36) with (3.39), we obtain that∥∥∥(PT × PΩ)(H

Γ⊥
)
∥∥∥2
F
≤ 4
∥∥∥(PT⊥ × PΩ⊥)(HΓ⊥

)
∥∥∥
F
. (3.40)

Now, with the help of 1), 2) and 3), it follows from (3.25) that

‖H‖2F =
∥∥HΓ

∥∥2
F
+
∥∥∥(PT × PΩ)(H

Γ⊥
)
∥∥∥2
F
+
∥∥∥(PT⊥ × PΩ⊥)(HΓ⊥

)
∥∥∥2
F

≤
∥∥HΓ

∥∥2
F
+ 5

∥∥∥(PT⊥ × PΩ⊥)(HΓ⊥
)
∥∥∥2
F

≤2δ2 + 5×
(
8n(1)δ

)2
,

and hence,

‖H‖F =
∥∥∥X0 − X̂

∥∥∥
F
≤
(
8
√
5n(1) + 1

)
δ. (3.41)

That is, the desired result holds.

Up to now, we can complete the proof of Theorem 3.1. On the one hand, under the
conditions of Theorem 3.1 (Assumptions 3.1 and 3.2), it follows from [9, Lemma 7] that
‖PΩPT ‖ ≤ 1/2. On the other hand, similar to Section 2.4 in [1], by using the golfing scheme
introduced in [5] and the method of least squares, it is easy to show that there exists a matrix
W such that (3.21) holds. These demonstrate that we can obtain the result of Theorem 3.1
by using Theorem 3.7.

4 Conclusion

In this paper, we studied the relaxed quaternion PCP model. In the quaternion frame-
work, we obtained stable estimates of the original low-rank and sparse terms by solving the
weighted minimization problem of the nuclear norm and the l1-norm of quaternion matrices.
This provides a theoretical basis for solving the quaternion PCP problem.

A further issue is to design effective algorithms for the quaternion optimization problem
to solve the quaternion PCP problem and apply the proposed algorithms to solve some
related practical problems. Moreover, it is possible to apply the analysis method in this
paper to extend some models of real matrix completion to the case of quaternion matrices.
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