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and g(·, ζ) : Rn → Rm are both continuous differentiable convex functions. ξ, η, ζ are
stochastic variables defined in probability space (Ω,F , P ), where F is sigma algebra, P is
the probability measure on Ω, and

K = Km1 ×Km2 × · · · × Kmq , (1.3)

where q ≥ 1, mi ≥ 1, i = 1, 2, . . . , q and m1 +m2 + · · ·mq = m. Kmi is a second-order cone
with mi-dimension.

2 Preliminaries

In order to better carry out the research, this chapter gives the basic definitions, properties
and conclusions required for the research.

Clarify the symbols used in this paper first. Given a mapping F : Rn → Rm, we use
JF (x) and ∇F (x) to denote the Jacobian and gradient of F , respectively, and JF (x) =
∇F (x)T , moreover, ∇2F (x) means Hessian matrix. Given a sequence {tn} ∈ R, we use
tn ↓ 0 to express {tn} is monotone decreasing and converges to 0. The distance from a point
x to a set K is defined by

dist(x,K) := inf{∥x− y∥|∀y ∈ K}. (2.1)

Besides, we use linK to denote the linear subspace generated by K.
If a subset Km of Rm satisfies

Km = {x = (x1, x2) ∈ R×Rm−1|x1 ≥ ∥x2∥}, (2.2)

then Km is called second-order cone with m-dimension.
For any two vectors x = (x1, x2) ∈ R × Rm−1 and y = (y1, y2) ∈ R × Rm−1, the

Jordan product is defined by x · y = (xT y, x1y2 + x2y1). For any x ∈ Rm, x2 = x · x,
which belongs to Km. The square root of x ∈ Km is also well defined, which is denoted
by x

1
2 or

√
x, and x = (x

1
2 )2 or x = (

√
x)2, similarly |x| =

√
x2. Besides, for any vector

x = (x1, x2) ∈ R × Rm−1, the determinant and trace are defined by det(x) = x21 − ||x2||2,
tr(x) = 2x1, generally, det(x · y) ̸= det(x)det(y), and only when x = αy, α ∈ R, the equal
sign holds. In addition, a vector x = (x1, x2) ∈ R×Rm−1 is called invertible, if det(x) ̸= 0,
and its inverse satisfies x · x−1 = e, e = (1, 0, ..., 0)T ∈ Rm. It is not difficult to deduce that

x−1 = tr(x)e−x
det(x) .

Any vector x = (x1, x2) ∈ R×Rm−1, has the spectral decomposition

x = ρ1u
(1) + ρ2u

(2), (2.3)

where ρ1, ρ2 are the spectral values, given by

ρi = x1 + (−1)i ∥x2∥ , (2.4)

and u(1), u(2) are spectral vectors corresponding to ρ1, ρ2, with formulas

ui =


1

2
(1, (−1)i

x2
∥x2∥

), if x2 ̸= 0,

1

2
(1, (−1)iw), if x2 = 0.

(2.5)

for i = 1, 2, where w is an arbitrary vector in Rm−1, and ∥w∥ = 1. Obviously, the spectral
decomposition is unique if and only if x2 ̸= 0.
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Proposition 2.1. Any a vector x = (x1, x2) ∈ R×Rm−1, the spectral values are ρ1, ρ2 and
corresponding spectral vectors are u(1), u(2), then the following properties hold.

(a) x ∈ Km, if and only if, ρ1 ≥ 0;

(b) Under the Jordan product, u(1), u(2) are orthogonal, and have the same mode length
1√
2
, i.e.,

u(1)u(2) = 0, ∥u(1)∥ = ∥u(2)∥ =
1√
2
;

(c) u(1), u(2) have idempotent property under the Jordan product, i.e., u(i)u(i) = u(i);

(d) x2 = ρ21u
(1) + ρ22u

(2) ∈ Km, and x2 ∈ Km;

(e) If x ∈ Km, then x
1
2 =

√
ρ1u

(1) +
√
ρ2u

(2), and x
1
2 ∈ Km;

(f) det(x) = ρ1ρ2, tr(x) = ρ1 + ρ2, ∥x∥2 =
ρ2
1+ρ2

2

2 .

The revelent proof see [10], [20].

Definition 2.2. A mapping ϕ : Rn × Rn → Rn is called complementary function if and
only if

x ∈ K, y ∈ K, xT y = 0 ⇐⇒ ϕ(x, y) = 0. (2.6)

Suppose x has the spectral decomposition as (3), the projection ΠKm(x) of x onto Km is

ΠKm(x) = max{0, ρ1}u(1) +max{0, ρ2}u(2).

Actually, plugging in ρi and u
(i) given in (2.4) and (2.5), yields

ΠKm(x) =


1

2
(1 +

x1
∥x2∥

)(∥x2∥, x2),

(x1, x2),

0,

if |x1| < ∥x2∥,
if ∥x2∥ ≤ x1,

if ∥x2∥ ≤ −x1.
(2.7)

Lemma 2.3 below gives the derivative of projection ΠKm(x). The boundary, interior and
closure of Km, are denoted as bdKm, intKm and clKm, respectively.

Lemma 2.3. The metric projection operator ΠKm(·) is directionally differentiable at x for
any d ∈ Rm, and

Π′
Km(x; d) =



JΠKm(x)d,

d,

d− 2[u(1)T d]−u
(1),

0,

2[u(2)T d]+u
(2),

ΠKm(d),

if x ∈ Rm\{Km ∪ −Km},
if x ∈ intKm,

if x ∈ bdKm\{0},
if x ∈ − intKm,

if x ∈ −bdKm\{0},
if x = 0.

(2.8)

where

JΠKm(x) =
1

2


1
x2
∥x2∥

x2
T

∥x2∥

I +
x1

∥x2∥
I − x1

∥x2∥
· x2x2

T

∥x2∥2

 . (2.9)

Indeed, [u(1)dT ]− := min{0, u(1)T d}, [u(2)dT ]+ := max{0, u(2)T d}.
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Definition 2.4. For a closed set K ⊆ Rn and a point x ∈ K, the relevant cones, which can
be found in [11], are defined by

(1) The tangent cone

TK(x) := lim
t↓0

sup
K − x

t
, (2.10)

(2) The regular normal cone

N̂K(x) := {v ∈ Rn| ⟨v, y − x⟩ ≤ o(∥y − x∥), ∀y ∈ K}, (2.11)

(3) The normal cone

NK(x) := lim
y

K−→x

sup N̂K(x) . (2.12)

Notice that : if K is a closed convex set, then TK(x) = cl(K +Rx), N̂K(x) = NK(x) =
TK(x)◦ = {v ∈ K◦|⟨v, x⟩ ≤ 0}, where K◦ represents the polar cone of K.

Lemma 2.5. The tangent cone and second-order tangent cones of Km at x ∈ Km are
expressed, respectively, by

TKm(x) =


Rm,

Km,

{d = (d1, d2) ∈ R×Rm−1|⟨d2, x2⟩ − x1d1 ≤ 0},

if x ∈ intKm,

if x = 0,

if x ∈ bdKm\{0}.
(2.13)

and

T 2
Km(x, d) =


Rm,

TKm(d),

{w = (w1, w2) ∈ R×Rm−1|⟨w2, x2⟩ − w1x1 ≤ d21 − ∥d2∥2},

if x ∈ intTKm(x),

if x = 0,

otherwise.

(2.14)

Lemma 2.6 ([22]). Let X1, X2, . . . , Xn be a sequence of independent and identically dis-
tributed samples taken from random variable X, with mean µ. Suppose that the moment
generating function M(t) = E[etXi ] <∞, then for any z > µ, the equation holds

lim
n→∞

1

n
logP{ 1

n

n∑
i=1

Xi ≥ z} = −I(z), (2.15)

and the rate function is I(z) = supt∈R{tz − logM(t)}. The lemma is called the Cramér’s
Large Deviation Theorem.

3 Sample Average Approximation

There are three methods to solve stochastic variational inequality problem (SVIP): sample
path optimization (SPO), sample average approximation (SAA) and stochastic approxima-
tion (SA). In this paper, we adopt SAA method to solve SSOCCVI problem. Some basic
assumptions used in the process of applying the method can be found in [2], the main idea
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is to generate N independent and identically distributed random samples ξ1, ξ2, ..., ξN , and
use their sample mean function

FN (x) =
1

N

N∑
i=1

f(x, ξi),

to approximate expected value function E[f(x, ξ)].

Definition 3.1. The moment generating function of random variable f(x, ξ) is defined as

M(t) = E[etf(x,ξ)], (3.1)

thus, the moment generating function of f(x, ξ)− E[f(x, ξ)] is denoted by

Mx(t) = E[et(f(x,ξ)−E[f(x,ξ)])]. (3.2)

Assumption 3.1. (a) For any x ∈ C, the moment generating function Mx(t) is finite
w.r.t. t in a certain neighborhood of zero;

(b) There is a metric function k : Ω → R+, such that, for any ξ ∈ Ω, x
′
, x ∈ X, there is

|f(x
′
, ξ)− f(x, ξ)| ≤ k(ξ)∥x

′
− x∥; (3.3)

(c) The moment generating function Mk(t) = E[etk(ξ)] is finite w.r.t. t in a certain
neighborhood of zero.

Proposition 3.2. Let K ⊂ Rn and X is a compact subset of K. If Assumption 3.1 holds,
then for any ε > 0, there are c(ε) > 0, β(ε) > 0 (independent of N), such that

Prob{sup
x∈X

|FN (x)− E[f(x, ξ)]| ≥ ε} ≤ c(ε)e−Nβ(ε). (3.4)

Proof. By Cramér’s Large Deviation Theorem, we can obtain that for any x ∈ X, ε > 0,

Prob{FN (x)− E[f(x, ξ)] ≥ ε} ≤ exp{−NIx(ε)}, (3.5)

again, by Cramér’s Large Deviation Theorem, we have

Prob{FN (x)− E[f(x, ξ)] ≤ −ε} ≤ exp{−NIx(−ε)}, (3.6)

thus

Prob{|FN (x)− E[f(x, ξ)]| ≥ ε} ≤ exp{−NIx(ε)}+ exp{−NIx(−ε)}. (3.7)

The Assumption 3.1(a) satisfies the condition of Cramer’s Large Deviation Theorem, and

Ix(z) := sup
t∈R

{zt− logMx(t)}, (3.8)

denotes the rate function of random variable f(x, ξ) − E[f(x, ξ)], then by the definition of
rate function, Ix(ε), Ix(−ε) are positive for any x ∈ X. The Assumption 3.2(b) illustrates

|E[f(x
′
, ξ)]− E[f(x, ξ)]| ≤ L∥x

′
− x∥, (3.9)
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where L := E[k(ξ)] is finite by the (c), and the inequality holds based on the points below:
by law of large numbers, the mean of random variables converges to the expectation with
probability one, hence, when N → ∞, the inequality can be converted into

| 1
N

N∑
i=1

f(x
′
, ξi)−

1

N

N∑
i=1

f(x, ξi)| ≤
1

N

N∑
i=1

k(ξi)∥x
′
− x∥,

equivalently

|
N∑
i=1

f(x
′
, ξi)−

N∑
i=1

f(x, ξi)| ≤
N∑
i=1

k(ξi)∥x
′
− x∥.

On the other hand, |
∑N

i=1 f(x
′
, ξi) −

∑N
i=1 f(x, ξi)| ≤

∑N
i=1 |f(x

′
, ξi) − f(x, ξi)|. Thus, we

need only to proof the inequality below

N∑
i=1

|f(x
′
, ξi)− f(x, ξi)| ≤

N∑
i=1

k(ξi)∥x
′
− x∥, (3.10)

the condition for the inequality to hold is that Assumption 3.1(b) holds, and the explanation
is complete. Moreover,

|FN (x
′
)− FN (x)| ≤ kN (ξ)∥x

′
− x∥, (3.11)

where kN (ξ) = 1
NΣN

i=1k(ξi). Assumption 3.1(c) indicates that Mk(t) = E[etk(ξ)] is finite in
a neighborhood of zero, which satisfies the condition of Cramér’s Large Deviation Theorem,
thus, for any L

′
> L, ∃λ > 0, such that

Prob{kN (ξ) > L
′
} ≤ exp{−Nλ}. (3.12)

In order to proceed further, we define a sequence {x̄1, x̄2, ..., x̄M} ∈ X, which satisfies
for any x ∈ X, there is x̄j (j = 1, 2, ...,M) such that ∥x− x̄j∥ ≤ ν(ν > 0).

Consider Zj := FN (x̄j , ξ) − E[f(x̄j , ξ)], j = 1, 2, ...,M . It is clear that the event
{max1≤j≤M |Zj | ≥ ε} is equal to the union of the events {|Zj | ≥ ε}, hence

Prob{ max
1≤j≤M

|Zj | ≥ ε} ≤
M∑
j=1

Prob(|Zj | ≥ ε), (3.13)

combining with (3.7), we achieve

Prob{ max
1≤j≤M

|Zj | ≥ ε} ≤
M∑
j=1

Prob(|Zj | ≥ ε) ≤ 2

M∑
j=1

exp{−N [Ix̄j
(ε) ∧ Ix̄j

(−ε)]}. (3.14)

Remark j(x) ∈ argmin1≤j≤M∥x−x̄j∥. From the definition of the sequence {x̄1, x̄2, ..., x̄M} ∈
X, we get ∥x− x̄j(x)∥ ≤ ν, for any x ∈ X, then

|FN (x)− E[f(x, ξ)]| ≤ |FN (x)− FN (x̄j(x))|+ |FN (x̄j(x))− E[f(x̄j(x), ξ)]|
+ |E[f(x̄j(x), ξ)]− E[f(x, ξ)]|
≤ kN (ξ)ν + |FN (x̄j(x))− E[f(x̄j(x), ξ)]|+ Lν.



RESEARCH ON OPTIMALITY CONDITIONS FOR SSOCCVI PROBLEM 631

Now, let ν such that Lν = ε
4 , i.e., ν = ε

4L , then

Prob{sup
x∈X

|FN (x)− E[f(x, ξ)]| ≥ ε} ≤ Prob{kNν + max
1≤j≤M

|FN (x̄j)− E[f(x̄j , ξ)]| ≥
3ε

4
},

(3.15)
moreover, by (3.12), we get

Prob{kN (ξ) >
ε

2
} ≤ exp{−Nλ}, (3.16)

for some λ > 0, therefore, combined with (3.14),(3.15),(3.16), we obtain

Prob{sup
x∈X

|FN (x)− E[f(x, ξ)] ≥ ε|} ≤ exp{−Nλ}+ Prob{ max
1≤j≤M

|FN (x̄j)− E[f(x̄j , ξ)]| ≥
ε

4
}

≤ exp{−Nλ}+ 2

M∑
j=1

exp{−N [Ix̄j
(
ε

4
) ∧ Ix̄j

(−ε
4
)]}.

(3.17)
Since the above choice of the sequence dose not rely on the sample, and both Ix̄j

( ε4 ), Ix̄j
(− ε

4 )
are positive, the proof is complete.

4 Second-order sufficient condition and non-singularity theorem

In this section, we use SAA method to transform the SSOCCVI problem into SAA problem
and give the KKT system of the SAA problem. Using the natural residual (NR) function,
we transform the KKT system into an equation system. Based on first-order necessary
condition, we define the second-order sufficient condition of the SAA problem. Finally, the
non-singularity of the Jacobian matrix of the equation system’s operator is proved.

It is known that SSOCCVI problem (1.1)-(1.2) is equivalent to the generalized equation

−E[f(x, ξ)] ∈ NC(x), (4.1)

where NC(x) denotes the normal cone of the set C at x, and

NC(x) = {JxE[h(x, η)]Tµ+ JxE[g(x, ζ)]Tλ|µ ∈ Rl, λ ∈ K, ⟨λ,E[g(x, ζ)]⟩ = 0}. (4.2)

Thus, the KKT system of (1.1)-(1.2) is
L(x, µ, λ) = 0,

E[h(x, η)] = 0,

E[g(x, ζ)]Tλ = 0,−E[g(x, ζ)] ∈ K, λ ∈ K.
(4.3)

where L(x, µ, λ) is the Lagrangian function of (1.1)-(1.2), and

L(x, µ, λ) = E[f(x, ξ)] + JxE[h(x, η)]Tµ+ JxE[g(x, ζ)]Tλ. (4.4)

By SAA method, problem (1.1)-(1.2) can be converted into the problem: find x ∈ CN ,
such that

(y − x)TFN (x) ≥ 0, ∀y ∈ CN , (4.5)

and
CN = {x ∈ Rn|hN (x) = 0,−gN (x) ∈ K}, (4.6)
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where FN (x) = 1
NΣN

i=1f(x, ξi), h
N (x) = 1

NΣN
i=1h(x, ηi), g

N (x) = 1
NΣN

i=1g(x, ζi). ξi, ηi,
ζi, i = 1, 2, . . . N , are independent and identically distributed samples of ξ, η, ζ. We call
(1.1)-(1.2) the original problem and (4.5)-(4.6) the SAA problem.

Similarly, (4.5)-(4.6) is equivalent to the generalized equation

−FN (x) ∈ NCN (x), (4.7)

and NCN (x) = {JxhN (x)Tµ + Jxg
N (x)Tλ|µ ∈ Rl, λ ∈ K, ⟨λ, gN (x)⟩ = 0}, hence, the KKT

system of (4.5)-(4.6) is 
FN (x) + Jxh

N (x)Tµ+ Jxg
N (x)Tλ = 0,

hN (x) = 0,

gN (x)Tλ = 0, λ ∈ K,−gN (x) ∈ K.
(4.8)

To facilitate our research, for each Kmi , we define

Kmi = {(xi1, xi2, . . . , ximi
)T ∈ Rmi |xi1 ≥ ∥(xi2, . . . , ximi

)∥}, (4.9)

then gN (x)Tλ = 0, can be denoted as

gNmi
(x)Tλmi

= 0, λmi
∈ Kmi ,−gNmi

(x) ∈ Kmi , i = 1, 2, . . . , q, (4.10)

where {λmi = (λ̃mi , λ̄mi) ∈ R × Rmi−1|λ̃mi ≥ ∥λ̄mi∥} and {gNmi
= (g̃Nmi

, ḡNmi
) ∈ R ×

Rmi−1|g̃Nmi
≥ ∥ḡNmi

∥}.
Based on the definition of complementary function given in (2.6), the KKT system of

(4.5)-(4.6) can be converted to

ΦN
NR(x, µ, λ) =


LN (x, µ, λ)
−hN (x)

ϕNNR(−gNm1
, λm1

)
...

ϕNNR(−gNmq
, λmq

)

 = 0. (4.11)

Further, we choose a semi-smooth natural residual (NR) function in [10], i.e.,

ϕNR(x, y) = x−ΠKm(x− y), (4.12)

hence, (4.11) is equivalent to

ΦN
NR(x, µ, λ) =

 LN (x, µ, λ)
−hN (x)

−gN (x)−ΠK(−gN (x)− λ)

 = 0, (4.13)

where ΠK(−gN (x) − λ) =
(
ΠKm1 (−gNm1

(x)− λm1)
T , . . . ,ΠKmq (−gNmq

(x)− λmq )
T
)T

, and

for d ∈ Rm, Π
′

K(−gN (x)− λ; d) = diag{Π′

Kmi (−gNmi
(x)− λmi

; dmi
)}qi=1.

In conclusion, we convert the KKT condition of (4.5)-(4.6) into the equation
ΦN

NR(x, µ, λ) = 0. Next, we are devoted to exploring the second-order sufficient condition of
(4.5)-(4.6).

Assume that x∗ is a local optimal solution of (4.5)-(4.6), the Robinson’s constraint qual-
ification (

∇hN (x∗)T

−∇gN (x∗)T

)
Rn + T{0l}×K(h

N (x∗),−gN (x∗)) = Rl ×Rm, (4.14)
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holds at x∗. The first-order necessary condition is

⟨FN (x∗), d⟩ ≥ 0, ∀d ∈ TCN (x∗), (4.15)

where
TCN (x∗) =

{
d|∇hN (x∗)T d = 0,−∇gN (x∗)T d ∈ TK(−gN (x∗))

}
. (4.16)

NCN (x∗) = ∇hN (x∗)Rl +
{
∇gN (x∗)λ| − λ ∈ NK(−gN (x∗))

}
. For convenience, for z =

(zm1
, . . . , zmq

) ∈ Rm, we can write NK(z) := NKm1 (zm1
) ×NKm2 (zm2

) × · · · × NKmq (zmq
)

and NKmi (zmi
) := {umi

∈ Rmi |⟨umi
, v − zmi

⟩ ≤ 0}, ∀v ∈ Kmi .

Definition 4.1 ([12]). The critical cone of set CN at x∗ is

C(x∗) = {d|d ∈ TCN (x∗), d⊥FN (x∗)}. (4.17)

Definition 4.2. Let x∗ be a local optimal solution of SAA problem (4.5)-(4.6) and lagrange
multiplier set Λ(x∗) = {(µ, λ)} is nonempty and compact . If JFN (x∗) is positive semi-
definite and Robinson’s constraint qualification holds at x∗, then the second-order sufficient
condition of (4.5)-(4.6) is

sup
(µ,λ)∈Λ(x∗)

{
〈
JxL

N (x∗, µ, λ)d, d
〉
− δ∗(λ|T 2

K(−gN (x∗),−∇gN (x∗)T d))} > 0, ∀d ∈ C(x∗)\{0}.

(4.18)
where

δ∗
(
λ|T 2

K(−gN (x∗),−∇gN (x∗)T d)
)
=

{
0, if λ ∈ NK(−gN (x∗)),

+∞, otherwise.
(4.19)

Remark 4.3. Since x∗ is a local optimal solution of (4.5)-(4.6), which implies for any ε > 0,〈
FN (x∗), x− x∗

〉
≥ 0, ∀x ∈ Bε(x

∗) ∩ CN , (4.20)

equivalently,
x∗ ∈ argmin

{〈
FN (x∗), x− x∗

〉
| x ∈ Bε(x

∗) ∩ CN
}
. (4.21)

Moreover, when JFN (x∗) is positive semi-definite, it’s known that (4.21) holds if and only
if

x∗ ∈ argmin
{〈
FN (x∗), x− x∗

〉
+
〈
JFN (x∗)(x− x∗), x− x∗

〉
| x ∈ Bε(x

∗) ∩ CN
}
. (4.22)

Hence, problem (4.20) is equivalent to

min
〈
FN (x∗), x− x∗

〉
+

1

2

〈
JFN (x∗)(x− x∗), x− x∗

〉
s.t. x ∈ Bε(x

∗) ∩ CN
(4.23)

where CN = {x ∈ Rn|hN (x) = 0,−gN (x) ∈ K}. The knowledge needed to prove the
second-order sufficient condition of (4.23) refer to [12].

Theorem 4.4. Assume that (x∗, µ∗, λ∗) is a KKT point of (4.5)-(4.6), then JΦN
NR(x

∗, µ∗, λ∗)
is non-singular if and only if

(i) Λ(x∗) ̸= ϕ;

(ii) The second-order sufficient condition (4.18) holds;
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(iii) −λ∗ ∈ intNK(−gN (x∗)) holds;

(iv) The constraint non-degeneracy condition holds, i.e.,(
∇hN (x∗)T

−∇gN (x∗)T

)
Rn + linT{0l}×K(h

N (x∗),−gN (x∗)) = Rl ×Rm. (4.24)

Proof. It is clear that

JΦN
NR(x, µ, λ) =

 JxL
N (x, µ, λ) Jxh

N (x)T Jxg
N (x)T

Jxh
N (x) 0 0
Φ1 0 Φ2

 , (4.25)

where

Φ1 = −∇gNmi
(x)
(
I − diag{Π

′

Kmi (−gNmi
(x)− λmi

; dmi
)}qi=1

)
, (4.26)

Φ2 = diag{Π
′

Kmi (−gNmi
(x)− λmi

; dmi
)}qi=1. (4.27)

To simplify the proof of the theorem, in the following process, we let JΦN
NR :=

JΦN
NR(x

∗, µ∗, λ∗), JhN := JhN (x∗), JgN := JgN (x∗), JxL
N := JxL

N (x∗, µ∗, λ∗), thus,
we get

JΦN
NR

dxdµ
dλ

 =

 JxL
Ndx+ (JhN )T dµ+ (JgN )T dλ

JhNdx
M

 , (4.28)

where

M =
(
I − diag{Π

′

Kmi (−gNmi
− λ∗mi

; dmi
)}qi=1

)T
(−JgNmi

)dx

+
(
diag{Π

′

Kmi (−gNmi
− λ∗mi

; dmi)}
q
i=1

)T
dλ

= −JgNmi
dx−

(
diag{Π

′

Kmi (−gNmi
− λ∗mi

; dmi
)}qi=1

)T
(−JgNmi

dx− dλ)

= −JgNdx−Π
′

K(−gN − λ∗;−JgNdx− dλ).
(4.29)

Hence, we gain

JΦN
NR

dxdµ
dλ

 =

 JxL
Ndx+ (JhN )T dµ+ (JgN )T dλ

JhNdx
−JgNdx−Π′

K(−gN − λ∗;−JgNdx− dλ)

 . (4.30)

Notice that JΦN
NR(x, µ, λ) is non-singular means that JΦN

NR(x, µ λ)

dxdµ
dλ

 = 0, is equiv-

alent to dx = 0, dµ = 0, dλ = 0, for any (dx, dµ, dλ)T ∈ Rn ×Rl ×Rm. Firstly, from 2nd
and 3nd of (4.30), we have{

JhNdx = 0,

−JgNdx = Π′
K(−gN − λ∗;−JgNdx− dλ).

(4.31)
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which means dx ∈ C(x∗). On the other side, the first and second formulas of (4.30) mean〈
JxL

Ndx, dx
〉
+
〈
JgNdx, dλ

〉
= 0. (4.32)

To continue, we cite the index sets:

I∗ =
{
i| − gNmi

(x∗) ∈ intKmi , i = 1, . . . , q
}
;

B∗ =
{
i| − gNmi

(x∗) ∈ bdKmi , gNmi
(x∗) ̸= 0

}
;

Z∗ =
{
i|gNmi

(x∗) = 0
}
.

(4.33)

Notice that
CK(−gN ) =

{
d ∈ Rn| − JgNd ∈ TK(−gN )

}
, (4.34)

and

TK(−gN ) =

{
d

∣∣∣∣∣ −Jg̃Nmi
d− JḡN

mi
d

g̃N
mi

≥ 0, i ∈ B∗

−(Jg̃Nmi
)T d+ JḡNmi

d ≥ 0, i ∈ Z∗

}
. (4.35)

Due to λ⊥− gN , then

λ =

λ
∣∣∣∣∣∣∣
λmi

= 0, i ∈ I∗

λmi
= σ(−g̃Nmi

(x∗), ḡNmi
(x∗)), σ > 0, i ∈ B∗

λmi
∈ intKmi , i ∈ Z∗

 . (4.36)

In conclusion

[
−gN − λ∗

]
i
=


−gNmi

(x∗) ∈ intKmi , i ∈ I∗(
(1− σ)(−g̃Nmi

(x∗)), (1 + σ)(−ḡNmi
(x∗))

)
, i ∈ B∗

λmi
∈ intKmi , i ∈ Z∗

(4.37)

Indeed condition (iii) means

C(x∗) =

{
d

∣∣∣∣∣Jh
Nd = 0,−JgNmi

d = 0, i ∈ Z∗

−JgNmi
d ∈ TK(−gNmi

),
〈
λmi

,−JgNmi
d
〉
= 0, i ∈ B∗

}
, (4.38)

since C(x∗) is a linear space, we get

δ∗
(
λ
∣∣T 2

K (−gN ,−JgNd)
)
=
∑
i∈B∗

λ̃mi

−g̃Nmi

[∥∥Jg̃Nmi
dx
∥∥2 − ∥∥JḡNmi

dx
∥∥2] . (4.39)

Case (1). If i ∈ B∗, by (4.30) and Lemma 2.3, we have

Π′
Km

(
−gNmi

− λ∗mi
;−JgNmi

dx− dλmi

)
=

1

2

(
1 wT

i

wi
2

1+σ I −
1−σ
1+σwiw

T
i

)(
−JgNmi

dx− dλmi

)
= Ai(−JgNmi

dx− dλmi
) = −JgNmi

dx,

(4.40)

where ωi =
−ḡN

mi

∥ḡN
mi

∥ . Now we need to prove dx ∈ C(x∗) and

−Jg̃Nmi
dx ≥

(ḡNmi
)TJḡNmi

dx

∥ḡNmi
∥

. (4.41)
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From −g̃Nmi
= ∥ḡNmi

∥, we gain

λ∗mi
=

(
−σg̃Nmi

+σḡNmi

)
= −σg̃Nmi

(
1

−ωi

)
, (4.42)

where ∥ωi∥ = 1, ωi =
ḡN
mi

g̃N
mi

=
−ḡN

mi

∥ḡN
mi

∥ . In summary, we gain

λ∗mi

TAi = (1− ∥wi∥2, wi
T − 2

1 + σ
wi

T +
1− σ

1 + σ
wi

T ∥wi∥2) = (0, 0). (4.43)

By (4.43) and (4.40), we derive 〈
λ∗mi

,−JgNmi
dx
〉
= 0, (4.44)

which implies dx ∈ C(x∗). On the other hand, by (4.40)

Ai(−JgNmi
dx− dλmi

) = −JgNmi
dx

⇔ (Ai − I)(−JgNmi
dx) = Aidλmi

⇔ (1,−wi
T )

(
− 1

2
1
2wi

T

1
2wi

−σ
1+σ I −

1
2
1−σ
1+σwiwi

T

)(
−Jg̃Nmi

dx
−∇ḡNmi

dx

)
= (1,−wi

T )

(
1
2

1
2wi

T

1
2wi

1
1+σ I −

1
2
1−σ
1+σwiwi

T

)(
dλ̃mi

dλ̄mi

)
,

(4.45)

hence, we deduce

(−1,
1

2
ωT
i +

σ

1 + σ
ωT
i +

1

2

1− σ

1 + σ
ωT
i )

(
−Jg̃Nmi

dx

−JḡNmi
dx

)
= 0, (4.46)

equivalently

(−1, ωT
i )

(
−Jg̃Nmi

dx

−JḡNmi
dx

)
= 0, (4.47)

thus

−Jg̃Nmi
dx =

(ḡNmi
)TJḡNmi

dx

∥ḡNmi
∥

. (4.48)

which implies (4.41) holds.

Case (2). If i ∈ Z∗, i.e., gNmi
(x∗) = 0, λmi

∈ intKmi . It is easy to obtain that

Π′
Kmi (0− λmi ;−JgNmi

dx− dλmi) = −JgNmi
dx, (4.49)

which indicates −JgNmi
dx = 0.

Case (3). If i ∈ I∗, i.e., gNmi
(x∗) ∈ intKmi , λmi = 0, which indicates

Π′
Kmi (−gNmi

;−JgNmi
dx− dλmi

) = −JgNmi
dx− dλmi

= −JgNmi
dx, (4.50)

thus dλmi = 0.
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Combining the above discussion, we acquire dx ∈ C(x∗) means{
JgNmi

dx = 0, i ∈ Z∗

g̃Nmi
Jg̃Nmi

dx = (ḡNmi
)TJḡNmi

dx, i ∈ B∗ (4.51)

Further, (4.30) is equivalent to

0 =
〈
dx, JxL

Ndx+ (JhN )T dµ+ (JgN )T dλ
〉

=
〈
dx, JxL

Ndx⟩ − Σi∈B∗⟨−JgNmi
dx, dλmi

〉
,

(4.52)

hence, for i ∈ B∗ 〈
−JgNmi

dx, dλmi

〉
= −Jg̃Nmi

dxdλ̃mi
+
〈
−∇ḡNmi

dx, dλ̄mi

〉
= Jg̃Nmi

dx · (ḡN
mi

)T

∥ḡN
mi
∥ dλ̄mi

−
〈
∇ḡNmi

dx, dλ̄mi

〉
=

(ḡN
mi

)T JḡN
mi

dx

∥ḡN
mi
∥2 (ḡNmi

)T dλ̄mi
−
〈
∇ḡNmi

dx, dλ̄mi

〉
=

〈
(−JḡNmi

dx)T
[
I − ḡN

mi
(ḡN

mi
)T

∥ḡN
mi
∥2

]
, dλ̄mi

〉
.

(4.53)

By (4.45), we get 1
2Jg̃

N
mi
dx+ 1

2

(ḡN
mi

)T

∥ḡN
mi
∥ Jḡ

N
mi
dx

1
2wi

(
−Jg̃Nmi

dx− wi
TJḡNmi

dx · 1−σ
1+σ

)
− σ

1+σ (−Jḡ
N
mi
dx)


=

(
1
2dλ̃mi

+ 1
2wi

T dλ̄mi

1
2wi(dλ̃mi

− 1−σ
1+σwi

T dλ̄mi
) + 1

1+σdλ̄mi

)
,

(4.54)

from (4.48) and (4.54), we gain

1
2wi

(
−Jg̃Nmi

dx− wi
TJḡNmi

dx · 1−σ
1+σ

)
+ σ

1+σJḡ
N
mi
dx

= 1
2wi

(
−Jg̃Nmi

dx+ 1−σ
1+σJg̃

N
mi
dx
)
+ σ

1+σJḡ
N
mi
dx

= σ
1+σ

(
wi(−Jg̃Nmi

dx) + JḡNmi
dx
)
,

(4.55)

and
1
2wi(d ˜λmi − 1−σ

1+σwi
T dλ̄mi) +

1
1+σdλ̄mi

= 1
2wi(dλ̃mi

+ 1−σ
1+σd

˜λmi
) + 1

1+σdλ̄mi

= 1
1+σ (widλ̃mi

+ dλ̄mi
).

(4.56)

By (4.54), (4.55) and (4.56), we get

1

1 + σ
(widλ̃mi

+ dλ̄mi
) =

σ

1 + σ
(wi(−Jg̃Nmi

dx) + JḡNmi
dx), (4.57)

which means
widλ̃mi

+ dλ̄mi
= −σ

(
wiJg̃

N
mi
dx− JḡNmi

dx
)
. (4.58)

Notice that
widλ̃mi + dλ̄mi = (I − wiwi

T )dλ̄mi

=

(
I − ḡN

mi
(ḡN

mi
)T

∥ḡN
mi
∥2

)
dλ̄mi

,
(4.59)
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thus, from (4.53), (4.58) and (4.59), we have

〈
−JgNmi

dx, dλmi

〉
=

〈
−JḡNmi

dx,

(
I − ḡN

mi
(ḡN

mi
)T

∥ḡN
mi
∥2

)
dλ̃mi

〉
= σ

(〈
−JḡNmi

dx,wi(−Jg̃Nmi
dx)
〉
−
∥∥JḡNmi

dx
∥∥2)

=
∑

i∈B∗

λ̃mi

−g̃N
mi

(∥∥Jg̃Nmi
dx
∥∥2 − ∥∥JḡNmi

dx
∥∥2)

= δ∗
(
λ
∣∣TK2(−gN ;−JgNdx)

)
,

(4.60)

besides, by (4.60) and (4.32), we have〈
JxL

Ndx, dx
〉
− δ∗

(
λ
∣∣TK2(−gN ;−JgNdx)

)
= 0. (4.61)

Since the second-order sufficient condition holds, we deduce dx = 0, further, from (4.30) we
reach

∇hNdµ+∇gNdλ = 0, (4.62)

the third expression of (4.30) and condition (iv) guarantee dµ = 0, dλ = 0, therefore,
JΦN

NR (x∗, µ∗, λ∗) is nonsingular.

5 The algorithm and numerical experiments

In Chapter 4, we have proved the non-singularity of the matrix JΦN
NR(x, µ, λ). Based on

this, this Chapter will construct Newton’s algorithm and give two numerical examples to
test the effectiveness of the algorithm.

In order to solve ΦN
NR(x, µ, λ) = 0, define function

ψN (z) =
1

2
∥ΦN

NR(x, µ, λ)∥2. (5.1)

By a simple proof, it can be obtained that under the condition that f(x, ξ), h(x, η), g(x, ζ)
are continuously differentiable with respect to x, and JΦN

NR(x, µ, λ) is non-singular, then
every stationary point of ψN (z) is a KKT point of SAA problem.
Algorithm 5.1

Step 0 Given z0 = (x0, µ0, λ0) ∈ Rn×Rl×Rm, let σ > 0, s > 1, and γ ∈ (0, 1). Set k := 0;

Step 1 If zk = (xk, µk, λk) is a stable point of ψN , stop; otherwise, go to Step 2.

Step 2 Choose an element Hk ∈ JΦN
NR(z

k), and find a direction dk satisfying

ΦN
NR(z

k) +Hkdk = 0. (5.2)

If (5.2) is unsolvable, or does not satisfy the following condition

∇ψN (zk)T dk ≤ −σ∥dk∥s, (5.3)

let dk := −∇ψN (zk);

Step 3 Find the smallest non-negative integer ιk, let ι = ιk such that

ψN (zk + 2−ιdk) ≤ ψN (zk) + γ2−ι∇ψN (zk)T dk. (5.4)

Let ϱk = 2−ι;
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Step 4 Let zk+1 = zk + ϱkd
k, k = k + 1, return to Step 2.

Based on Algorithm 5.1, two examples are gave and the experimental environment is
Matlab2018a, Intel Core i5, CPU 2.2GHz. In example 5.1, ξ follows a normal distribution
with mean 1 and variance 2. In example 5.2, ξ follows an exponential distribution with
λ = 1. ζ is a random distribution on the interval [0,1], and sample size N = 1000.

Example 5.1. Consider the optimization problem

minF (x, ξ) =

(
1

2
ξ(x21 − 8x1),

3

2
x22 − 2x2, ξ(−cosx3 − x3), ξ(e

x4 − 2x4), x
2
5 + 3x5

)
s.t. C = {x ∈ R5| − g(x, ζ) = ζx ∈ K5}

(5.5)

Let f(x, ξ) = ∇F (x, ξ) = (ξx1 − 4ξ, 3x2 − 2, ξsinx3 − ξ, ξex4 − 2ξ, 2x5 + 3)T , then the
SSOCCVI problem: find x ∈ C, such that

⟨E[f(x, ξ)], y − x⟩ ≥ 0, ∀y ∈ C,

C = {x ∈ R5| − E[g(x, ζ)] ∈ K5}.
(5.6)

The SAA problem: find x ∈ CN , such that

⟨ 1
N

N∑
i=1

f(x, ξi), y − x⟩ ≥ 0, ∀y ∈ CN ,

CN = {x ∈ R5| − 1

N

N∑
i=1

g(x, ζi) ∈ K5}.

(5.7)

According to the analysis in Chapter 4, The KKT system of (5.7) is equal to ΦN
NR(x, µ, λ) =

0, expressed by

ΦN
NR(x, µ, λ) =

(
1
N

∑N
i=1 f(x, ξi)−

1
N

∑N
i=1 ζix

− 1
N

∑N
i=1 ζix−ΠK(− 1

N

∑N
i=1 ζix− λ)

)
= 0. (5.8)

Select initial point x0 = (1, 0, 0, 0, 0)T , λ0 = (1, 0, 0, 0, 0)T , let parameters σ = 0.01,
γ = 0.45. The solution result is shown in Figure 1, and it can be acquired that with the
increase of the number of iterations, the curve trajectory gradually become stable, after the
39th iteration, the optimal solution x∗ = (4.0000, 0.6667, 1.5634, 0.6931,−1.5000)T is found,

obviously, x∗ ∈ K5. Further, denote B := 1
N

∑N
i=1 ξi,

JxL
N (x, µ, λ) =

1

N

N∑
i=1

f(x, ξi) + (Jx
1

N

N∑
i=1

ζix)
Tλ

=
1

N

N∑
i=1

f(x, ξi) +
1

N

N∑
i=1

ζi(Jxx)
Tλ

=


B 0 0 0 0
0 3 0 0 0
0 0 Bcosx3 0 0
0 0 0 Bex4 0
0 0 0 0 2


(5.9)
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By ξ ∼ N(1, 2), and B ∼ N(1, 4
N ), which means eigenvalues of JxL

N (x, µ, λ) are greater
than zero at x∗, thus, JxL

N (x, µ, λ) is positive definite, which indicates the second-order
sufficient condition holds at x∗.

Figure 1: Example 5.1 Figure 2: Example 5.2

Example 5.2. Consider the SSOCCVI problem: find x ∈ C, such that

⟨E[f(x, ξ)], y − x⟩ ≥ 0, ∀y ∈ C,

C = {x ∈ R5| − g(x, ζ) = ζx ∈ K5},
(5.10)

where f(x, ξ) = (x1 − 5, ξ2x2 − 2ξ, 2ξx3 − ξ, 2x4 − 3, ξex5 − 2ξ)T .

The SAA problem: find x ∈ CN , such that

⟨ 1
N

N∑
i=1

f(x, ξi), y − x⟩ ≥ 0, ∀y ∈ CN ,

CN = {x ∈ R5| − 1

N

N∑
i=1

g(x, ζi) ∈ K5}.

(5.11)

Similarly, the KKT system of (5.11) is equal to the following equation

ΦN
NR(x, µ, λ) =

(
1
N

∑N
i=1 f(x, ξi)−

1
N

∑N
i=1 ζix

− 1
N

∑N
i=1 ζix−ΠK(− 1

N

∑N
i=1 ζix− λ)

)
= 0. (5.12)

Select initial point x0 = (1, 0, 0, 0, 0)T , λ0 = (1, 0, 0, 0, 0)T , let parameters σ = 0.01,
γ = 0.45. The result is shown in Figure 2, we can get: as the number of iterations in-
creases, the feasible solution keeps going up until it flattens out, at last, the optimal solu-
tion x∗ = (5.0000, 1.0000, 0.5000, 1.5000, 0.6931)T is obtained, obviously, x∗ ∈ K5. Denote

Y := 1
N

∑N
i=1 ξi,

JxL
N (x, µ, λ) =

1

N

N∑
i=1

f(x, ξi) + (Jx
1

N

N∑
i=1

ζix)
Tλ

=


1 0 0 0 0
0 Y (2x2 ln2) 0 0 0
0 0 2Y 0 0
0 0 0 2 0
0 0 0 0 Y ex5


(5.13)
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Due to ξ ∼ Exp(1), then Y ∼ N(1, 1
N ), obviously, JxL

N (x, µ, λ) is positive definite. Hence,
the second-order sufficient condition is satisfied at x∗.

6 Conclusion

The main goal of this paper is to explore second-order sufficient condition for stochastic
second-order cone constrained variational inequality problem. To this end, the following
work has been done. In order to solve the difficulty that the expected value is not easy to
obtain in practice, we first use the SAA method to approximate the original problem as the
SAA problem, and give the rationality. In addition, the Karush-Kuhn-Tucker condition is
derived for the SAA problem and it is transformed into a system of equations ΦN

NR(x, µ, λ) =
0. Further, the second-order sufficient condition for the SAA problem is explored, and the
non-singularity of JΦN

NR(x, µ, λ) is proved. In the end, based on the second-order sufficient
condition, we design Newton’s algorithm and apply it to numerical examples, the numerical
results show that the algorithm is effective.
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[20] U. Faraut and A. Koráanyi, Analysis on Symmetric Cones, Oxford University Press,
Oxford, UK, 1994.

[21] A. Shapiro and H.F. Xu, Stochastic mathematical programs with equilibrium con-
straints, modeling and sample average approximation, Optimization 57 (2008) 395–418.

[22] P. Mörters, Large deviation theory and applications, Lecture Notes on Large Deviation
Theory, University of Bath, Math. Sciences Dept, 2008.

Manuscript received 7 November 2021
revised 24 April 2022

accepted for publication 14 June 2022



RESEARCH ON OPTIMALITY CONDITIONS FOR SSOCCVI PROBLEM 643

Li Wang
School of Science
Shenyang Aerospace University Shenyang 11036, China
E-mail address: liwang211@gmail.com

Mengdi Zheng

School of Science
Shenyang Aerospace University Shenyang 11036, China
E-mail address: ipurple1997@163.com

Juhe Sun

School of Science
Shenyang Aerospace University Shenyang 11036, China
E-mail address: juhesun@163.com

Hao Liu

School of Science
Shenyang Aerospace University Shenyang 11036, China
E-mail address: 1722993580@qq.com


