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can be obtained with one PCF. However, the target class may have a non-convex structure.
So, the O-PCF algorithm divides the target class into k clusters and obtains a PCF for each
cluster. Compared to other one-class classifier in the literature, the test results tell us that
the O-PCF algorithm outperforms the other methods in many cases [10].

Noted that, most one-class classifier such as one-class support vector machines(SVM)
are encoded in vector and matrix spaces. The main idea is to construct a decision boundary
around positive data in order to distinguish it from outliers data [20, 26, 27, 10]. However,
in many real world applications data are represented more naturally as higher order tensors.
For example, sensor data are often organised into the three modes of location, type, and
time, while videos are represented as 3D objects corresponding to concatenated frames over
time. Thus, with the development of tensor theory, more and more classifiers have been
proposed to extend SVM to tensor space, i.e., so-called support tensor machines(STM) that
take a tensor as input [3, 13, 21, 28, 34, 35]. In [8], Chen et al. presented a linear support
higher order tensor domain description(LSTDD) for one-class classification problem. It aims
to find a closed hypersphere with the minimal volume in the tensor space which can contain
almost entirely of the target samples. The superiority is that the LSTDD algorithm can keep
data topology and make the parameters need to be estimated less, and it is more suitable
for learning the high dimensional and small sample size problem. Furthermore, there are
many other algorithms based on tensor data, such as, the hyperplane-based one-class STMs
[7, 9, 6] and Transductive STM [33, 18] are extended to high-order tensor case.

In this paper, based on the efficient O-PCF algorithm in [10], we give a new updated
version named OT-PCF for tensor datasets as input. We first recall the O-PCF algorithm
in detail for one-class classification with vectors. Then, it’s extended to OT-PCF algorithm
for the high-order tensor case. Finally, we test the OT-PCF algorithm by experiments on
both the matrices datasets and the higher order tensor datasets, and compare it with the
LSTDD algorithm.

The rest of this paper is organized as follows. In Section 2, we first recall several useful
definitions and symbols. Then, we give an introduction for the existed O-PCF algorithm. In
Section 3, we extend the O-PCF algorithm to the high-order case, and a new OT-PCF algo-
rithm is established. Several numerical results are given in Section 4. Finally, a conclusion
is given in Section 5.

2 Notation and Preliminaries

In this section, we first recall some preliminaries and some useful symbols. To continue,
it should be noted that vectors (scalars) are denoted by boldface lowercase letters like
x(lowercase letters like x). Matrices are represented by capital letters like A and tensors
are represented by calligraphic capitals like T . Furthermore, the l1-norm of vector x is
denoted by ∥x∥1. Similarly, the l1-norm of matrix M ∈ Rm×n and tensor Z ∈ Rn1×n2×···nm

are defined such that

∥M∥1 =

m∑
i=1

n∑
j=1

|aij |, ∥Z∥1 =

n∑
i1,i2,··· ,im=1

|ai1i2···im |.

The tensor product of vectors u ∈ Rn1 and v ∈ Rn2 is denoted by W = u ⊗ v ∈ Rn1×n2 .
The Euclidean inner product of u and v is denoted by ⟨u,v⟩. An m-th order tensor Z is
called a rank-1 tensor if there are vectors zi ∈ Rni(1 ≤ i ≤ m) such that

Z = z1 ⊗ z2 · · · ⊗ zm =

m∏
i=1

⊗zi.
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2.1 Polyhedral conic functions(PCF)

We now recall the concept of polyhedral conic function(PCF) defined in [12]. The function
g : Rn → R is a called PCF if it satisfies the following equation:

g(w,ξ,γ,c)(x) = ⟨w, (x− c)⟩+ ξ∥x− c∥1 − γ, (2.1)

where w, c ∈ Rn are given vectors and ξ, γ ∈ R. It has been showed in [12] that the graph
of (2.1) is a cone with vertex at (c,−γ) ∈ Rn × R and each sublevel set is a polyhedron.
Such a function can separate two sets by dividing the entire space into two parts, an inside
region and an outside region. Here x is the object to be classified, c is the centre of the
PCF, and w, ξ , γ are additional parameters of the PCF. Let A and B be two given sets in
Rn:

A = {a1,a2, ..., am}, ai ∈ Rn, i ∈ I = {1, 2, ...,m},

B = {b1,b2, ...,bq}, bj ∈ Rn, j ∈ J = {1, 2, ..., q}.

To separate two sets A and B by a PCF, the parameter c is defined in advance, and the
parameters w, ξ,γ are then optimized by minimizing the classification errors, where A is the
target class and B is the outlier class. These parameters are used to define the piecewise
setting of a polyhedral conic function that divides the entire space into two parts, so that all
points of B remain outside, and as many points of A as possible remain within the piecewise
set. The test points x can be categorized, if g(x) ≤ 0, then x ∈ A; if g(x) > 0, then x ∈ B.

2.2 One-class polyhedral conic functions algorithm(O-PCF algorithm)

Now, we recall the O-PCF algorithm for one-class classification problem. In one-class classifi-
cation, there are no available data information from the outlier class. Therefore, one can only
get the data information from the target class. When a classifier is proposed, only the target
class can be used for training. Very recently, the one-class polyhedral conic functions(O-
PCF) algorithm was proposed in [10], where the O-PCF algorithm can successfully separates
the target class A from the outliers. The corresponding linear programming(LP) model is
as follows:

min
w,ξ,γ

∑
i∈I

−(⟨w, (ai − c)⟩+ ξ∥ai − c∥1 − γ) + λ
∑
i∈I

zi

s.t. ⟨w, (ai − c)⟩+ ξ∥ai − c∥1 − γ ≤ zi, ∀i ∈ I

ξ, γ ≥ 1, zi ≥ 0, ∀i ∈ I,

where w,a, c ∈ Rn and ξ, γ, λ, z ∈ R. Here, c is the centroid of the target set A and is
calculated in advance before the solution of the LP problem. While that w, ξ, γ are obtained
from the solution of the LP problem. The lower bounds on ξ and γ are defined to be 1 to
ensure closed convex polyhedral level sets. The bigger λ is, the less tolerance it has for
mistakes. Let g(ai) = ⟨w, (ai − c)⟩ + ξ∥ai − c∥1 − γ. Then it aims to minimize the size
of the decision boundaries. The parameter λ controls the tradeoff between the size of the
decision boundaries and the size of the classification error. The variable zi represents the
classification error of data object ai ∈ A. When g(ai) ≤ 0, that means the classification
is correct, and zi = 0; When g(ai) > 0, that means there is a misclassification, and zi is
positive i.e.

zi =

{
g(ai), if g(ai) > 0, ∀i ∈ I,

0, if g(ai) ≤ 0, ∀i ∈ I.
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Since the level set of PCF is convex [29], the O-PCF algorithm can only be used for convex
decision boundaries. However, in many cases, the target class is non-convex. For this reason,
the k-means algorithm can be used to divide target class A into k clusters in advance. Then,
one can obtain the clusters Ar and their centers cr, r = 1, 2, · · · , k, where

Ar = {a1, · · · , alr}, ai ∈ Rn, i ∈ Ir = {1, · · · , lr}.

By the results above, the following model is presented for each cluster to obtain parameters
wr, ξr, γr:

min
wr,ξr,γr

∑
i∈Ir

−(⟨wr, (a
i − cr)⟩+ ξr∥ai − cr∥1 − γr) + λ

∑
i∈Ir

zi

s.t. ⟨wr, (a
i − cr)⟩+ ξr∥ai − cr∥1 − γr ≤ zi, ∀i ∈ Ir

ξ, γ ≥ 1, zi ≥ 0, ∀i ∈ Ir.

(2.1)

Eventually, the final classifier is obtained as the point-wise minimum of these PCFs, as
shown in Equation (2.2).

G(x) = min
r=1,··· ,k

⟨wr, (x− cr)⟩+ ξr∥x− cr∥1 − γr. (2.2)

Equation (2.2) provides to label any test data point x as target class if the value of the x
is negative in at least one PCF among k PCFs. In other words, in order to label the x as
outlier, the value of the x should be positive in all k PCFs.

3 OT-PCF Algorithm for One-Class Classification with Tensors

In this section, we extend O-PCF to the tensor based model, and present an OT-PCF algo-
rithm to find a minimal volume hypersphere in the tensor space to contain target samples.
We firstly present OT-PCF algorithm with matrices, then extend it to the higher order
tensor space.

3.1 OT-PCF algorithm with matrices

Suppose the training set A is defined as follows:

A = {A1, ..., Al}, Ai ∈ Rn×m, i ∈ I = {1, ..., l}.

Then, we divide the set A into several clusters using the k-means algorithm. Obtain the
clusters Ar and the cluster centres are obtained as a result of this step as Cr, r = 1, · · · , k,
where:

Ar = {Ar1 , ..., Artr }, Ari ∈ Rn×m, ri ∈ Ir = {r1, ..., rtr}, tr ∈ I,

and t1 + t2 + · · · + tk = l. Once the clusters Ar and the centres Cr are obtained. Then,
OT-PCF algorithm aims to solve the following LP problem:

min
Wr,ξr,γr

∑
i∈Ir

−(⟨Wr, (A
i − Cr)⟩+ ξr∥Ai − Cr∥1 − γr) + λ

∑
i∈Ir

zi

s.t. ⟨Wr, (A
i − Cr)⟩+ ξr∥Ai − Cr∥1 − γr ≤ zi, ∀i ∈ Ir,

ξr, γr ≥ 1, zi ≥ 0, ∀i ∈ Ir,
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where parameters Wr, Cr ∈ Rn×m, ξr, γr, λ, z ∈ R. What’s more, parameter Wr can be
expressed as a rank-1 tensor µr ⊗ υr, µr ∈ Rn and υr ∈ Rm. Then the LP model can be
written as follows:

min
µr,υr,ξr,γr

∑
i∈Ir

−(⟨µr ⊗ υr, (A
i − Cr)⟩+ ξr∥Ai − Cr∥1 − γr) + λ

∑
i∈Ir

zi

s.t. ⟨µr ⊗ υr, (A
i − Cr)⟩+ ξr∥Ai − Cr∥1 − γr ≤ zi, ∀i ∈ Ir

ξr, γr ≥ 1, zi ≥ 0, ∀i ∈ Ir.

(3.1)

Next, we use an alternative minimization method to solve (3.1). Firstly, fix υr and solve µr.
In other words, we solve the problem (3.2) and obtain µr, ξr and γr :

min
µr,ξr,γr

∑
i∈Ir

−(⟨µr, (A
i − Cr)υr⟩+ ξr∥Ai − Cr∥1 − γr) + λ

∑
i∈Ir

zi

s.t. ⟨µr, (A
i − Cr)υr⟩+ ξr∥Ai − Cr∥1 − γr ≤ zi, ∀i ∈ Ir

ξr, γr ≥ 1, zi ≥ 0, ∀i ∈ Ir.

(3.2)

Then, fix µr to solve υr, it follows that

min
υr,ξr,γr

∑
i∈Ir

−(⟨υr, (Ai − Cr)µr⟩+ ξr∥Ai − Cr∥1 − γr) + λ
∑
i∈Ir

zi

s.t. ⟨υr, (Ai − Cr)µr⟩+ ξr∥Ai − Cr∥1 − γr ≤ zi, ∀i ∈ Ir

ξr, γr ≥ 1, zi ≥ 0, ∀i ∈ Ir.

(3.3)

For any r ∈ {1, · · · , k}, similar way can be used to solve the corresponding optimization
problems. And then, we can get some PCFs and the number of PCFs obtained is equal to
the number of clusters. Eventually, the final classifier is obtained as the point-wise minimum
of these PCFs, and the corresponding decision function is given as follows:

G(X) = min
r=1,··· ,k

⟨Wr, (X − Cr)⟩+ ξr∥X − Cr∥1 − γr, (3.4)

where Wr = µr ⊗ υr.

3.2 OT-PCF algorithm with high order tensors

Suppose the training set T is given as follows:

T = {T 1, . . . , T l}, T i ∈ Rn1×···×nm , i ∈ I = {1, . . . , l},

and we divide the set T into clusters using the k-means algorithm. Then, the clusters Tr
and the cluster centres are obtained as a result of this step as Cr, r = 1, · · · , k, where:

Tr = {T r1 , . . . , T rtr }, T ri ∈ Rn1×···×nm , ri ∈ Ir = {r1, . . . , rtr}.

Then, the corresponding optimization problem is as follows:

min
Wr,ξr,γr

∑
i∈Ir

−(⟨Wr, (T i − Cr)⟩+ ξr∥T i − Cr∥1 − γr) + λ
∑
i∈Ir

zi

s.t. ⟨Wr, (T i − Cr)⟩+ ξr∥T i − Cr∥1 − γr ≤ zi, ∀i ∈ Ir

ξr, γr ≥ 1, zi ≥ 0, ∀i ∈ Ir,

(3.5)
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where parameters Wr, Cr ∈ Rn1×···×nm ; ξr, γr, λr, z ∈ R. Noted that the parameter Wr can
be expressed as a rank-1 tensor µ1r ⊗µ2r ⊗ · · ·⊗µmr

. The problem (3.5) can be formulated
as follows:

min
µjr ,ξr,γr

∑
i∈Ir

−(⟨µ1r ⊗ µ2r ⊗ · · · ⊗ µmr
, (T i − Cr)⟩+ ξr∥T i − Cr∥1 − γr) + λr

∑
i∈Ir

zi

s.t. ⟨µ1r ⊗ · · · ⊗ µmr
, (T i − Cr)⟩+ ξr∥T i − Cr∥1 − γr ≤ zi, ∀i ∈ Ir

ξr, γr ≥ 1, zi ≥ 0, ∀i ∈ Ir.

(3.6)

To solve (3.6) , we also use alternative minimization method to do that. First of all, fix
µ2r , · · · , µmr to solve µ1r , then the optimization model (3.6) becomes the following model:

min
µjr ,ξr,γr

∑
i∈Ir

−(⟨µ1r , (T i − Cr)µ2r ⊗ · · · ⊗ µmr
⟩+ ξr∥T i − Cr∥1 − γr) + λ

∑
i∈Ir

zi

s.t. ⟨µ1r , (T i − Cr)µ2r ⊗ · · · ⊗ µmr
⟩+ ξr∥T i − Cr∥1 − γr ≤ zi, ∀i ∈ Ir

ξr, γr ≥ 1, zi ≥ 0, ∀i ∈ Ir.

Then, fix µ1r , µ3r , · · · , µmr
to solve µ2r , it follows that:

min
µjr ,ξr,γr

∑
i∈Ir

−(⟨µ2r , (T i − Cr)µ1r ⊗ µ3r ⊗ · · · ⊗ µmr
⟩+ ξr∥T i − Cr∥1 − γr) + λ

∑
i∈Ir

zi

s.t. ⟨µ2r , (T i − Cr)µ1r ⊗ µ3r ⊗ · · · ⊗ µmr
⟩+ ξr∥T i − Cr∥1 − γ ≤ zi, ∀i ∈ Ir

ξr, γr ≥ 1, zi ≥ 0, ∀i ∈ Ir.

Repeat the procedure step by step, until we obtain all the µjr , ξr and γr, j = 1, 2, . . . ,m.
Then, we get some PCFs and the number of PCFs obtained is equal to the number of
clusters. Finally, the final classifier is obtained as the point-wise minimum of these PCFs.
And the corresponding decision function is given in (3.7) :

G(X ) = min
r=1,··· ,k

⟨Wr, (X − Cr)⟩+ ξr∥X − Cr∥1 − γr, (3.7)

with Wr = µ1r ⊗ µ2r ⊗ · · · ⊗ µmr .

To end this section, we present the computing detail of the OT-PCF algorithm.
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Algorithm 3.1: OT-PCF Algorithm

Input: Data points T i ∈ T , λ ∈ [0,∞), k ∈ [1,∞).

Output:The set of PCFs separating the set T from the outliers.
Step 1: (Clustering). Divide the set T into clusters using the k-means algorithm.
Obtain the clusters Tr and their centres Cr, r = 1, · · · , k, where:

T r = {T 1, ..., T lr}, T i ∈ Rn1×···×nm , i ∈ I = {1, ..., lr}
Step 2:(Computation of the PCFs).
for r = 1 to k do:
Solve the following LP model to find gr for cluster Tr:

min
Wr,ξr,γr

∑
i∈Ir

−(⟨Wr, (T i − Cr)⟩+ ξr∥T i − Cr∥1 − γr) + λr

∑
i∈Ir

zi

s.t. ⟨Wr, (T i − C)⟩+ ξr∥T i − Cr∥1 − γr ≤ zi, ∀i ∈ Ir

ξr, γr ≥ 1, zi ≥ 0, ∀i ∈ Ir,
where Wr = µ1r ⊗ µ2r ⊗ · · · ⊗ µmr

.
end for
Step 3:(Obtaining the final classifier).

G(X ) = min
r=1,··· ,k

⟨Wr, (X − Cr)⟩+ ξr∥X − Cr∥1 − γr.

Step 4: end.

4 Numerical Experiments

In this section, we evaluate the performance of the OT-PCF algorithm in comparison with
LSTDD method in the literature. All experiments are finished in Matlab2014b on a Lenovo
computer with Intel(R) Core(TM)i5-3230M CPU @ 2.60GHz 2.20 GHz and 4 GB of RAM.

4.1 Experiments on vector datasets

The experiments are performed on 7 publicly available datasets from UCI repository [17].
Table 1 gives the description of these datasets. The approach of transforming a vector
x ∈ Rn to a matrix Z ∈ Rn1×n2 is that the first column of Z is filled by the first n1 elements
of x, and the second column of Z is filled by the next n1 elements of x and so on. If n < n1n2,
then the rest is filled with 0. Following the idea in [7, 4], the proper values of n1 and n2 are
also listed in Table 1. What’s more, the Abalone dataset is reorganized into three one-class
classification problems. In each problem, one class is considered as the target class and the
two others are treated as outliers.

Table 1: Description of the datasets

Dataset Sample Dimensions n1 × n2 Targ.Class Targ.Sample
AbaloneF 4177 8 2× 4 1 1307
AbaloneI 4177 8 2× 4 2 1342
AbaloneM 4177 8 2× 4 3 1528

Breast-cancer 683 9 3× 3 2 443
Hepatitis 155 19 4× 5 2 123

Iris 150 4 2× 2 1 50
Spect 267 44 4× 11 2 212
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In one class classification problem, the training set is formed by target samples, the
true positive rate(tpr) is used as the performance evaluation criterion. We employ 5-
fold cross validation to optimize the parameter. Here, the parameter λ is chosen from
{1, 10, 100, 1000, 10000} and the parameter k is chosen from {1, 3, 5, 10}. Tpr is defined in
Equation (4.1).

tpr =
tp

tp+ fn
, (4.1)

where tp, fp and fn correspond to the true positive, false positive and false negative respec-
tively. Noted that larger tpr achieves better classification in the tests.

Table 2: Averaged tprs on various datasets

Dataset Targ.class OT-PCF LSTDD
AbaloneF 1 0.9288 0.5989
AbaloneI 2 0.9106 0.4363
AbaloneM 3 0.9771 0.6137

Breast-cancer 2 0.9521 0.6892
Hepatitis 2 0.9036 0.6187

Iris 1 0.9400 0.7771
Spect 2 0.7228 0.6935

The testing results on the 7 datasets are concluded in Table 2. As we can see, the
tpr of OT-PCF algorithm is significantly promoted in comparison with LSTDD algorithm.
By a direct computing, the average value of tpr through 7 datasets are 0.9050 of OT-PCF
algorithm and 0.6312 of LSTDD algorithm.

What’s more, the effects on tpr with different k and λ are shown in Table 3 and Table
4 respectively. From Table 3, it shows that the tpr will increase with the increasing of λ for
any fixed k, and it is extremely clear when λ is from 1 to 100. However, Table 4 that, if λ
is fixed, the value k has almost no impact on tpr.

Table 3: Averaged tprs with different values of λ on some datasets when k=3

λ Breast-cancer AbaloneF Iris
1 0.1667 0.0285 0.0040
10 0.5473 0.8873 0.8860
100 0.9049 0.9338 0.8880
1000 0.9245 0.9419 0.9000
10000 0.9352 0.9426 0.9160

Table 4: Averaged tprs with different values of k on some datasets when λ = 1000

k Breast-cancer AbaloneF Iris
1 0.9887 0.9992 0.9400
3 0.9775 0.8871 0.8800
5 0.9910 0.8279 0.8600
10 0.9977 0.9623 0.8800
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4.2 Experiments on matrix datasets

In this section, we focus on testing the proposed algorithm based on human face datasets that
are included in ORL [1] and the FERET [14]. The ORL dataset includes 40 individuals face
images, and each face has 10 different images. Each image is 112 × 92 with 256 grayscale
levels per pixel. The FERET dataset includes 200 persons images, and each one has 7
different images. Each image is 80 × 80 with 256 grayscale levels per pixel. The 5-fold
cross validation is still adopted for optimizing parameters, and report the averaged results
in Table 5 and Table 6.

Table 5: Averaged tprs on 40 target classes in ORL dataset

Targ.cls OT-PCF LSTDD Targ.cls OT-PCF LSTDD Targ.cls OT-PCF LSTDD
Face01 0.6 0.5 Face15 0.6 0.7 Face29 0.9 0.8
Face02 0.7 0.7 Face16 0.5 0.4 Face30 0.6 0.8
Face03 0.8 0.7 Face17 0.7 0.6 Face31 0.9 0.8
Face04 0.6 0.5 Face18 0.9 0.6 Face32 0.7 0.6
Face05 0.7 0.8 Face19 0.8 0.7 Face33 0.9 0.8
Face06 0.6 0.6 Face20 0.7 0.6 Face34 0.7 0.8
Face07 0.6 0.5 Face21 0.9 0.7 Face35 0.9 0.5
Face08 0.6 0.8 Face22 0.7 0.8 Face36 0.9 0.6
Face09 0.7 0.6 Face23 0.7 0.6 Face37 0.8 0.6
Face10 0.6 0.8 Face24 0.7 0.8 Face38 0.5 0.6
Face11 0.7 0.7 Face25 0.7 0.6 Face39 0.6 0.5
Face12 0.8 0.8 Face26 0.6 0.7 Face40 0.6 0.5
Face13 0.8 0.6 Face27 0.8 0.8
Face14 0.5 0.5 Face28 0.7 0.6

In Table 5, the averaged tpr for OT-PCF algorithm and LSTDD algorithm are 0.6900
and 0.655 respectively. Specifically, the tprs of OT-PCF algorithm are better than LSTDD
algorithm in 24 out of 40 comparisons, and equal in the other 6 comparisons.

For the test on FERET datasets, the first 100 samples are selected for the experiment.
For each sample, the target contains 7 sample points, and the outliers are 693 sample points.
So it is clear that each experiment is an unbalanced classification problem. Therefore, we
introduce two commonly used evaluation indicators for unbalanced classification problems:
tnr and Gmeans [5]. The Gmeans represents the geometric mean of tpr and tnr. Larger
tnr and Gmeans achieve better classification in the tests. To continue, we list the definition
of tnr and Gmeans below:

tnr =
tn

fp+ tn
, Gmeans =

√
tpr × tnr.

As can be seen in Table 6, the test results of OT-PCF algorithm is quite good, and
the averaged value of tprs, tnrs and Gmeans of all 100 datasets are 0.6860, 0.8763, 0.7667
respectively.

4.3 Experiments on higer-order tensor datasets

In this section, we focus on testing the proposed algorithm based on color human face
datasets that are included in ABERDEEN and the Caltech Color Face datasets. The AB-
ERDEEN dataset includes 629 images, and each person has 4-15 different images. Each
image is 32×32×3. In the experiments, face images of one person are considered as a target
class, we randomly choose 15 target classes, and each target class has 10 samples.
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Table 6: Averaged results on 100 target classes in FERET dataset

Targ.cls tprs tnrs Gmeans Targ.cls tprs tnrs Gmeans
Face01 0.7143 0.9606 0.8283 Face51 0.5714 0.9971 0.7548
Face02 0.5714 0.9409 0.7332 Face52 0.5714 0.9913 0.7526
Face03 0.7143 0.6552 0.6844 Face53 0.7143 0.9942 0.8427
Face04 0.5714 0.8768 0.7079 Face54 1.0000 0.8455 0.9195
Face05 1.0000 0.6995 0.8364 Face55 1.0000 0.9242 0.9614
Face06 0.6000 0.8050 0.6950 Face56 0.5714 0.9592 0.7403
Face07 0.7143 0.6650 0.6892 Face57 0.7143 1.0000 0.8452
Face08 0.7143 0.9901 0.8410 Face58 0.5714 1.0000 0.7559
Face09 0.5714 0.7734 0.6684 Face59 0.5714 0.9883 0.7515
Face10 0.7143 0.6897 0.7019 Face60 1.0000 0.9359 0.9674
Face11 0.5714 0.9015 0.7177 Face61 0.5714 0.9913 0.7526
Face12 0.7143 0.5419 0.6221 Face62 0.8571 0.5862 0.7052
Face13 0.8571 0.5271 0.6722 Face63 0.5714 0.9942 0.7537
Face14 1.0000 0.9163 0.9572 Face64 0.7143 0.8805 0.7930
Face15 0.4286 0.9901 0.6514 Face65 0.5714 0.8688 0.7046
Face16 0.8571 0.9901 0.9212 Face66 0.5714 0.9446 0.7343
Face17 0.7143 0.9360 0.8176 Face67 0.7143 0.9592 0.8277
Face18 1.0000 0.9754 0.9876 Face68 0.5714 0.6647 0.6163
Face19 0.4286 0.8818 0.6147 Face69 0.7143 0.9767 0.8352
Face20 0.8571 1.0000 0.9258 Face70 0.5714 0.9883 0.7515
Face21 0.8571 0.8325 0.8447 Face71 0.5714 0.9971 0.7548
Face22 0.5714 0.9261 0.7275 Face72 0.5714 0.9300 0.7290
Face23 0.5714 0.7241 0.6433 Face73 0.5714 0.8630 0.7022
Face24 0.4286 0.8325 0.5973 Face74 0.5714 0.9184 0.7244
Face25 0.7143 0.9951 0.8431 Face75 0.5714 0.9125 0.7221
Face26 0.4286 0.8473 0.6026 Face76 0.7143 0.8717 0.7891
Face27 1.0000 0.9360 0.9675 Face77 0.5714 0.9038 0.7186
Face28 0.8571 0.8473 0.8522 Face78 0.5714 0.7026 0.6336
Face29 0.7143 0.8719 0.7892 Face79 0.5714 0.9446 0.7347
Face30 1.0000 0.7635 0.8738 Face80 0.5714 0.9883 0.7515
Face31 0.5714 0.7594 0.6587 Face81 0.5714 0.9621 0.7415
Face32 0.7143 0.9850 0.8388 Face82 0.4286 0.9125 0.6254
Face33 0.7143 0.8195 0.7651 Face83 0.5714 0.7744 0.6652
Face34 1.0000 0.7293 0.8540 Face84 0.5714 0.6536 0.6738
Face35 0.8571 0.8271 0.8420 Face85 0.5714 0.8047 0.6781
Face36 0.7143 0.9248 0.8128 Face86 0.5714 0.9213 0.7526
Face37 0.8571 0.8647 0.8609 Face87 0.7143 0.9323 0.8161
Face38 0.7143 0.8346 0.7721 Face88 0.5714 0.8271 0.6875
Face39 0.8571 1.0000 0.9258 Face89 0.5714 0.8947 0.7150
Face40 0.7143 0.9925 0.8420 Face90 0.8571 0.8872 0.8721
Face41 1.0000 0.7669 0.8757 Face91 0.7143 0.8496 0.6968
Face42 1.0000 0.9774 0.9887 Face92 0.5714 0.7068 0.6355
Face43 0.5714 0.9173 0.7240 Face93 0.7143 0.8947 0.7994
Face44 0.8571 0.5714 0.6999 Face94 0.7143 0.8947 0.7150
Face45 0.8571 0.9774 0.9153 Face95 0.7143 0.6767 0.6952
Face46 0.5714 0.9624 0.7416 Face96 0.4286 0.9398 0.6347
Face47 0.5714 0.9323 0.7299 Face97 0.4286 1.0000 0.6547
Face48 0.8571 0.9248 0.8903 Face98 0.5714 0.7970 0.6749
Face49 0.7143 0.9173 0.8095 Face99 0.5714 0.9398 0.7328
Face50 0.8571 0.9023 0.8794 Face100 0.5714 0.9624 0.7416

For the Caltech Color Face dataset, it has 18 target classes, and each target class has
20 samples. Each image is 50×50×3. We adopt the 5-fold cross validation for optimizing
parameters, and report the averaged results. Table 7 and Table 8 have summarized the
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averaged results of tprs, tnrs and Gmeans on target classes of these two datasets, respectively.
As we can see, in ABERDEEN dataset, the average value of tprs; tnrs; and Gmeans through
15 datasets are 0.8200; 0.7677 and 0.7871. What’s more, in Caltech Color Face dataset, the
average value of tprs; tnrs; and Gmeans through 18 datasets are 0.7222; 0.8186 and 0.7591.

Table 7: Averaged results on 15 target classes in ABERDEEN dataset

Targ.cls tprs tnrs Gmeans Targ.cls tprs tnrs Gmeans
Face01 0.7000 0.8071 0.7517 Face09 0.7000 0.7214 0.7106
Face02 0.7000 0.7643 0.7314 Face10 0.9000 0.8000 0.8485
Face03 0.7000 0.8143 0.7550 Face11 0.8000 0.6214 0.7051
Face04 0.8000 0.5000 0.6325 Face12 1.0000 0.8429 0.9181
Face05 0.7000 0.8286 0.7616 Face13 1.0000 0.7143 0.8452
Face06 0.6000 0.9214 0.7435 Face14 1.0000 0.9786 0.9892
Face07 1.0000 0.7857 0.8864 Face15 0.7000 0.7929 0.7450
Face08 1.0000 0.6143 0.7838

Table 8: Averaged results on 18 target classes in Caltech Color Face dataset

Targ.cls tprs tnrs Gmeans Targ.cls tprs tnrs Gmeans
Face01 1.0000 0.7912 0.8894 Face10 0.5000 0.9353 0.6838
Face02 0.7500 0.6941 0.7215 Face11 0.5500 0.8235 0.6730
Face03 0.7000 0.9882 0.8317 Face12 0.6000 0.8824 0.7276
Face04 0.6500 0.9324 0.7785 Face13 0.7000 0.8735 0.7820
Face05 0.6000 0.8500 0.7141 Face14 1.0000 0.5676 0.7534
Face06 0.6000 0.8088 0.6966 Face15 0.6500 0.8441 0.7407
Face07 0.9500 0.7941 0.8686 Face16 0.7500 0.8706 0.8080
Face08 0.6000 0.8676 0.7215 Face17 0.7500 0.8882 0.8162
Face09 0.9000 0.5029 0.6728 Face18 0.7500 0.8206 0.7845

5 Conclusion

In this paper, a new one-class classification algorithm with the tensor input was proposed.
The classifier was trained by the target class only. We first divided the target class into
clusters by the k-means algorithm in order to change the non-convex decision boundary into
a convex set. Next, a PCF was found for each cluster by solving an LP model and the
minimum of these PCFs yielded the final classifier. Finally, to show the performance of the
proposed algorithm, several numerical experiments were given based on different datasets.
The test results lead us to conclude that the OT-PCF algorithm outperforms the LSTDD
algorithm in many cases.
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