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while the lower semi-continuity can not imply the convexity. Currently, people are most
interested in the infinite-dimensional spaces for application of machine learning such that
the learning algorithm can be chosen from the enough large amounts of suitable solutions.
In this paper, we consider Optimization (1.1) in an infinite-dimensional RKHS with lower
semi-continuous loss function.

First we show that Optimization (1.1) has a minimizer in a finite-dimensional subspace
spanned by the reproducing kernel basis related to the training data. Thus, Optimization
(1.1) can be equivalently transferred to a finite-dimensional Optimization. From this equiv-
alent Optimization, we discuss the splitting method based on alternating direction method
of multipliers (ADMM) for Optimization (1.1). By this splitting method, we obtain two
subproblems which are computable easily. Moreover, the convergence of ADMM is already
guaranteed well for convex Optimizations (see [6]) and some special nonconvex Optimiza-
tions by the Kurdyka-Lojasiewicz (KL) property (see [11, 14]). To complete the proof, we
reexchange the convergence theorems in [11, 14] and verify the convergence of this splitting
method for Optimization (1.1) if loss function is lower semi-continuous and subanalytic for
the global convergence to a stationary point and the error bound. Finally, we use the mini-
mizer of Optimization (1.1) to build the SVM in RKHS to make prediction on some testing
data.

This paper is organized as follows. We introduce the notations and preliminary materials
of the SVM in RKHS in Section 2. Next, we discuss how to solve Optimization (1.1) by the
splitting method based on ADMM in Section 3. Moreover, we discuss the global convergence
and convergent rate of this splitting method for lower semi-continuous and subanalytic loss
function in Section 4. Finally, we give some numerical examples of different loss functions
and RKHSs for the synthetic data and the real data to show that the SVM in RKHS with
lower semi-continuous and nonconvex loss function is better than the SVM in RKHS with
convex loss function in some cases in Section 5.

2 Notations and Preliminaries

In this section, we review some notations and preliminaries of the SVM in RKHS. We denote
the set of positive integers as N and the set of real numbers as R, respectively. Also, we
denote the d-dimensional Euclidean space as Rd. For the sample space X ⊆ Rd and the
label space Y = {+1,−1}, the training data

D := {(xi, yi) : i = 1, 2, ..., N} ⊆ X × Y

is composed of distinct input data x1,x2, ...,xN ∈ X and output data y1, y2, ..., yN ∈ Y .
We will find a mapping R : X → Y related to D such that R(x) is a good approximation
of the response y to an arbitrary x. For the rest of this paper, without specification, every
vector is supposed to be a column vector.

SVM is an important class of mapping R : X → Y . The traditional SVM is to find a
hyperplane in Rd that classifies all the training data in D correctly and creates the biggest
margin. Then we construct R : X → Y by this hyperplane and sign function. However,
the hyperplane to separate D may not exist and we can only accept the hyperplane that
misclassifies some training data. To help us define what we mean by “good”, we introduce
the loss function to find a hyperplane that achieves the smallest regularized empirical risk
and its equivalent Optimization is considered in an RKHS consisting of all linear functions
on X with an offset term (see [24, Section 1.3]). This RKHS is finite-dimensional which is
isometrically isomorphic to Rd.
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Since the RKHS mentioned above is only a finite-dimensional space, in the rest of this
paper, we shall discuss the SVM in an infinite-dimensional RKHS. Generally speaking, a
Hilbert space H of functions f : X → R equipped with the complete inner product 〈·, ·〉H
and the reproducing kernel K : X ×X → R is called an RKHS if it satisfies the following
two conditions (see [26, Definition 10.1])

(i) K(x, ·) ∈ H for all x ∈ X,
(ii) f(x) = 〈f,K(x, ·)〉H for all f ∈ H and all x ∈ X.

In particular, for any f, g ∈ H, the corresponding norm ‖f‖H =
√
〈f, f〉H and the corre-

sponding metric ‖f − g‖H are complete. Also, the reproducing kernel K of an RKHS H is
uniquely determined. Conversely, for any kernel K on X, [24, Theorem 4.21] shows that
there exists a unique RKHS H induced from K. Usually, we use some RKHSs induced from
some common kernels, such as polynomial kernel, Gaussian kernel, Matérn kernel, and so
on. For more flexible kernels such as those of Gaussian kernels, which belong to the most
important kernels in practice, the offset term has neither a known theoretical nor an em-
pirical advantage. In addition, the theoretical analysis is often substantially complicated by
offset term. Thus, we decide to consider the SVM in RKHS without an offset term. Let us
fix such an RKHS H and a real number λ > 0, we obtain Optimization (1.1)

inf
f∈H

1

N

N∑
i=1

L(xi, yi, f(xi)) + λ‖f‖2H,

where L : X × Y ×R→ [0,∞) is a loss function and λ‖f‖2H is the regularization term used
to penalize f with the large RKHS norm. In the following, we will interpret L(x, y, f(x)) as
the loss of predicting y by f(x) if x is observed, that is, the smaller the value L(x, y, f(x))
is, the better f(x) predicts y in the sense of L. It is easy to check that Optimization (1.1)
is infinite-dimensional and nonnegative. We denote the minimizer of Optimization (1.1) as
fD. Next we use fD to construct the SVM in RKHS as follows

R(x) =

{
+1, fD(x) ≥ 0,

−1, fD(x) < 0.

Moreover, the classification rules constructed by different minimizers of Optimization (1.1)
have no difference in performance. In conclusion, we just need to find a minimizer of
Optimization (1.1). Next we discuss the splitting method for Optimization (1.1) in Section
3.

3 Splitting Method

In this section, we discuss the splitting method for Optimization (1.1). First we discuss
the minimizer of Optimization (1.1). For binary classification, the most straightforward
loss function is 0-1 loss function, which is an “ideal” loss function (see [8]). However, 0-1
loss function is bounded, nonconvex, and lower semi-continuous but discontinuous. Trying
to optimize 0-1 loss function directly leads to a lower semi-continuous and nonconvex Op-
timization which is unable to be deal with by traditional optimization algorithms. Thus,
some surrogate loss functions are proposed in the literature, such as convex loss function,
that is, t 7→ L(x, y, t) is a convex function on R for all x ∈ X and all y ∈ Y (see [24,
Definition 2.12]). Besides convexity, we can define other loss functions similarly, such as
continuity, smoothness, lower semi-continuity, etc (see [24, Section 2.2]). Specially, if L is
a convex loss function, then t 7→ L(x, y, t) is continuous and thus lower semi-continuous on
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R for all x ∈ X and all y ∈ Y . Hence, L is a lower semi-continuous loss function. But the
lower semi-continuity can not imply the convexity.

Generally speaking, loss functions can be divided into two categories: convex loss func-
tions and nonconvex loss functions. Convex loss functions including Hinge loss and square
loss are the most commonly used. If L is a convex loss function, then the classical representer
theorem [24, Theorem 5.5] assures that Optimization (1.1) has a unique minimizer fD con-
tained in a known finite-dimensional subspace spanned by the reproducing kernel basis and
the training data, even if the space H itself is substantially larger. Thus, convex loss function
is viewed as highly preferable in many publications because of its computational advantages
(unique minimizer, ease-of-use, ability to be efficiently optimized by convex optimization
tools, etc.).

However, the convexity also offers poor approximation to 0-1 loss function. Hence,
different nonconvex loss functions, such as ramp loss, truncated logistic loss, truncated
least square loss, truncated pinball loss, bi-truncated pinball loss, generalized exponential
loss, generalized logistic loss and Sigmoid loss are proposed and used in SVM (see [7, 9,
15, 18, 19, 22, 29]). These loss functions mentioned above and 0-1 loss function are lower
semi-continuous and nonconvex. Recently, [12, Proposition 3.3] generalizes the classical
representer theorem [24, Theorem 5.5] to lower semi-continuous loss function. Moreover,
by some preliminary numerical experiments, we find that the SVM in RKHS with lower
semi-continuous and nonconvex loss function is better than convex loss function in some
cases (see Section 5). Thus, we discuss the SVM in RKHS with lower semi-continuous loss
function. Before we show our main result, we need some concepts of RKHS.

First an RKHS H can be seen as a Banach space. For any x ∈ X, we denote δx : H → R,

δx(f) := f(x)

as the point evaluation functional. [26, Theorem 10.2] shows that δx is a linear continuous
mapping from H to R, that is, δx ∈ H∗, where H∗ denotes the dual space of H. Moreover,
the Riesz Representation Theorem shows that H∗ is isometrically isomorphic to H which
ensures that H is reflexive. For a function ψ : H → R, ψ is Fréchet differentiable at f ∈ H
if there exists a linear continuous functional ∇ψ(f) : H → R such that

lim
h→f

ψ(h)− ψ(f)−∇ψ(f)(h− f)
‖h− f‖H

= 0.

We call ∇ψ(f) the Fréchet derivative of ψ at f (see [17, Page 19]). It is clear that Fréchet
derivative is a generalization of gradient. Since H is also strictly convex and smooth, we
obtain the following formula of the Fréchet derivative (see [27, Remark 2.24])

∇(‖ · ‖H)(f) =

〈
·, f

‖f‖H

〉
H
∈ H∗, ∀f 6= 0. (3.1)

Lemma 3.1. If L is a lower semi-continuous loss function, then Optimization (1.1) has a
minimizer fD such that

fD ∈ span{K(x1, ·), ...,K(xN , ·)},

where span{K(x1, ·), ...,K(xN , ·)} denotes the set of all finite linear combinations of
{K(x1, ·), ...,K(xN , ·)}.

Proof. Let a generalized loss function L̄ : H∗ × Y × R→ [0,∞),

L̄(δx, y, t) := L(x, y, t).
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Therefore, [12, Proposition 3.3] ensures that Optimization (1.1) has a minimizer fD. If
fD 6= 0, then [12, Proposition 3.3] and (3.1) show that

∇(‖ · ‖H)(fD) =

〈
·, fD
‖fD‖H

〉
H
∈ span{δx1

, ..., δxN
}. (3.2)

From the reproducing property of the kernel K, for any f ∈ H, we have that

δxi
(f) = f(xi) = 〈f,K(xi, ·)〉H, i = 1, 2, ..., N.

Thus, δxi
= 〈·,K(xi, ·)〉H, i = 1, 2, ..., N . Moreover, from the linear property of 〈·, ·〉H, we

see that
span{δx1 , ..., δxN

} = {〈·, f〉H : f ∈ span{K(x1, ·), ...,K(xN , ·)}. (3.3)

Since ‖fD‖H > 0, by (3.2) and (3.3), it follows that

fD ∈ span{K(x1, ·), ...,K(xN , ·)}.

If fD = 0, then 0 ∈ span{K(x1, ·), ...,K(xN , ·)}. In conclusion,

fD ∈ span{K(x1, ·), ...,K(xN , ·)}.

This proof is completed.

Remark 3.2. If L is a lower semi-continuous and nonconvex loss function, then Optimiza-
tion (1.1) may have more than one minimizer. Moreover, Lemma 3.1 guarantees that at
least one of minimizers of Optimization (1.1) is contained in span{K(x1, ·), ...,K(xN , ·)}.
Thus, in this paper, we focus on finding the minimizer in span{K(x1, ·), ...,K(xN , ·)}.

Next we show that Optimization (1.1) in span{K(x1, ·), ...,K(xN , ·)} also can be equiv-
alently transferred to a finite-dimensional Optimization in RN . We denote the Gram matrix
of kernel K for training data D as

A :=


K(x1,x1) K(x1,x2) ... K(x1,xN )
K(x2,x1) K(x2,x2) ... K(x2,xN )

...
...

. . .
...

K(xN ,x1) K(xN ,x2) ... K(xN ,xN )

 .

By [24, Theorem 4.16], A is a symmetric and positive definite matrix, that is,

K(xi,xj) = K(xj ,xi), i, j = 1, 2, ..., N,

and for any c ∈ RN , cTAc ≥ 0. For each f ∈ span{K(x1, ·), ...,K(xN , ·)}, there exists a
vector c = (c1, ..., cN )T ∈ RN such that f has the finite representation

f =

N∑
j=1

cjK(xj , ·),

which ensures that

f(xi) =

N∑
j=1

cjK(xj ,xi) =

N∑
j=1

K(xi,xj)cj = (Ac)i, i = 1, 2, ..., N.
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On the other hand, combining the linear property of inner product 〈·, ·〉H with the repro-
ducing property in the RKHS, it holds that

‖f‖2H = 〈f,
N∑
i=1

ciK(xi, ·)〉H =

N∑
i=1

ci〈f,K(xi, ·)〉H =

N∑
i=1

cif(xi) = cTAc. (3.4)

So Optimization (1.1) can be equivalently transferred to the following Optimization in RN

min
c∈RN

1

N

N∑
i=1

L(xi, yi, (Ac)i) + λcTAc. (3.5)

We denote the minimizer of Optimization (3.5) as cD ∈ RN , it follows that

fD =

N∑
i=1

(cD)iK(xi, ·).

This ensures that we can employ the finite suitable parameters to reconstruct the SVM in
RKHS.

By this idea, we consider finding an algorithm based on Optimization (3.5) to solve
Optimization (1.1) easily. At present, we mainly use subgradient method, Lagrangian mul-
tipliers method, and sequential minimal optimization (SMO) for SVM. These classical nu-
merical algorithms are suitable for solving convex and smooth Optimizations. For notational
convenience, let

F (α) :=
1

N

N∑
i=1

L(xi, yi, αi), G(c) := λcTAc.

Then Optimization (3.5) can be rewritten as

min
c∈RN

F (Ac) +G(c). (3.5’)

Since L is a lower semi-continuous loss function, [2, Propositions 1.1.2 and 1.1.5] show
that F is lower semi-continuous on RN . Moreover, [2, Propositions 1.1.2 and 1.1.4] assure
that c 7→ F (Ac) is lower semi-continuous on RN . On the other hand, G is continuously
differentiable on RN and for any c ∈ RN ,

∇G(c) = 2λAc, ∇2G(c) = 2λA, (3.6)

where ∇ denotes the gradient and ∇2 denotes the Hessian matrix, respectively. Since A is
symmetric and positive definite, [2, Propositions 1.1.7 (a) and 1.1.10 (i)] assure that G is
convex on RN and

G(d) ≥ G(c) + (∇G(c))T (d− c), ∀c,d ∈ RN . (3.7)

In conclusion, Optimization (3.5) is lower semi-continuous which may be nonsmooth or
nonconvex. Many classical algorithms are not suitable for Optimization (3.5) when L is a
lower semi-continuous loss function.

The ADMM algorithm, as one of splitting techniques, has been successfully exploited in
a wide range of structured regularization Optimizations in machine learning. ADMM can
even be used to minimize nonsmooth or nonconvex function, which solves Optimization by
breaking them into smaller pieces. Moreover, paper [25] discusses how to use ADMM for
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traditional SVM with 0-1 loss function. For the general SVM with lower semi-continuous
loss function, we observe that the subproblems in ADMM for Optimization (3.5) can be
transferred into some Optimizations in R and a well-posed linear system, each of them is
easier to handle. Moreover, if the sample size N is small to moderate, then some preliminary
numerical experiments show that the splitting method based on ADMM is a fast algorithm
for Optimization (1.1) (see Section 5). Hence, we will study how to solve Optimization (1.1)
by the splitting method based on ADMM.

To describe the algorithm, we first reformulate Optimization (3.5) as

min
a,c

F (α) +G(c),

s.t. α = Ac.
(3.8)

Recall that the augmented Lagrangian function of Optimization (3.8) is defined as:

Lρ(α, c,γ) := F (α) +G(c) + γT (α−Ac) + ρ

2
‖α−Ac‖2,

where the Lagrangian multiplier ρ > 0 and ‖·‖ denotes 2-norm in Euclidean space. The split-
ting method is presented as follows. Suppose that the algorithm is initialized at (α0, c0,γ0),
its iterative scheme is

αk+1 ∈ argmin
α∈RN

Lρ(α, c
k,γk), (S-1)

ck+1 ∈ argmin
c∈RN

Lρ(α
k+1, c,γk), (S-2)

γk+1 := γk + ρ(αk+1 −Ack+1), (S-3)

sk+1 :=

N∑
i=1

(ck+1)iK(xi, ·), (S-4)

where k is an iteration counter. Since (S-1) only depends on α and (S-2) only depends on c,
by combining the linear and quadratic terms in Lρ, we equivalently transfer (S-1) and (S-2)
to

αk+1 ∈ argmin
α∈RN

F (α) +
ρ

2
‖α−Ack +

1

ρ
γk‖2, (S-1’)

ck+1 ∈ argmin
c∈RN

G(c) +
ρ

2
‖αk+1 −Ac+ 1

ρ
γk‖2. (S-2’)

By definition, it is easy to check that (S-1’) is lower semi-continuous on RN and (S-2’) is
continuous on RN . Moreover, (S-1’) and (S-2’) are coercive (see [1, Definition 2.13]), that
is,

lim
∥α∥→∞

F (α) +
ρ

2
‖α−Ack +

1

ρ
γk‖2 →∞, lim

∥c∥→∞
G(c) +

ρ

2
‖αk+1 −Ac+ 1

ρ
γk‖2 →∞.

Thus, Weierstrass Theorem [1, Theorem 2.14] assures that (S-1’) and (S-2’) both have a
minimizer. As a consequence, this splitting method is well-defined and an infinite iterative
sequence {(αk, ck,γk, sk)} is generated. Also, {sk} can be seen as a sequence to approximate
the minimizer of Optimization (1.1).
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Next, we discuss how to solve subproblems (S-1’) and (S-2’). As for (S-1’), by definition,
F and ‖ · ‖2 can be split of the variable into subvectors, that is,

1

N

N∑
i=1

L(xi, yi, αi)+
ρ

2
‖α−Ack+ 1

ρ
γk‖2 =

N∑
i=1

L(xi, yi, αi)

N
+
ρ

2

(
αi − (Ack)i +

1

ρ
(γk)i

)2

,

and
L(xi, yi, αi)

N
+
ρ

2

(
αi − (Ack)i +

1

ρ
(γk)i

)2

≥ 0, i = 1, 2, ..., N.

Thus, we can equivalently transfer an Optimization in RN to some Optimizations in R, that
is,

(αk+1)i ∈ argmin
αi∈R

L(xi, yi, αi)

N
+
ρ

2

(
αi − (Ack)i +

1

ρ
(γk)i

)2

, i = 1, 2, ..., N. (S-1”)

In other words, we solve (S-1’) in RN by breaking it into N Optimizations (S-1”) in R and
each of them is easier to handle. For the general lower semi-continuous loss function L, the
solution set of (S-1”) may not be a singleton. In this case, we choose one of the elements in
the solution set as (αk+1)i, i = 1, ..., N .

As for (S-2’), since A is symmetric and positive definite and λ, ρ > 0, it is clear that
(S-2’) is nonnegative and continuously differentiable. By derivative rule and (3.6), we have
that for any c ∈ RN ,

∇(G+
ρ

2
‖αk+1 −A(·) + 1

ρ
γk‖2)(c) = 2λAc− ρA(αk+1 −Ac+ 1

ρ
γk)

= A
(
(2λI + ρA)c− ραk+1 − γk

)
,

where I is the identity matrix with an order N and

∇2(G+
ρ

2
‖αk+1 −A(·) + 1

ρ
γk‖2)(c) = 2λA+ ρA2.

Since A is symmetric and positive definite, 2λA+ρA2 is also symmetric and positive definite.
Hence, [2, Propositions 1.1.7 (a) and 1.1.10 (i)] assure that (S-2’) is convex on RN . Moreover,
since 2λI+ρA is symmetric and strictly positive definite and thus nonsingular, the following
linear system

(2λI + ρA)c = ραk+1 + γk (S-2”)

has a unique solution ck+1. Furthermore, since (S-2’) is convex and differentiable on RN

and
A
(
(2λI + ρA)ck+1 − ραk+1 − γk

)
= 0,

it is clear that ck+1 is a stationary point of (S-2’) and thus a minimizer of (S-2’). Next we
consider using conjugate gradient method for the well-posed linear system (S-2”) (see [13,
Section 4.7.3]).

When αk+1 and ck+1 are acquired, we can obtain γk+1 by (S-3). However, we have a
simpler one in mind that accomplishes the same goal. Substituting (S-3) into (S-2”) and
rearranging terms, we have that

γk+1 = 2λck+1. (S-3’)

Moreover, combining (3.6) with (S-3’), it follows that

∇G(ck+1) = 2λAck+1 = Aγk+1. (3.9)
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In conclusion, the splitting method for Optimization (1.1) can be represented as follows:

Algorithm 1 Splitting Method for the SVM in RKHS with Lower Semi-continuous Loss Function

input: initial value (α0, c0,γ0), the training data D, loss function L, the Gram matrix
A, regularization parameter λ > 0, Lagrangian multiplier ρ > 0 and stopping threshold
ε0 > 0.
for k = 0, 1, 2, ... do

(1) Choose αk+1 in argmin
αi

L(xi, yi, αi)

N
+
ρ

2
‖αi− (Ack)i +

1

ρ
(γk)i‖2, i = 1, 2, ..., N .

(2) Let ck(0) = ck, uk(0) = (2λI + ρA)ck(0) − (ραk+1 + γk),dk(0) = −uk(0).
for j = 0, 1, 2, ... do

(2-1) Set ck(j+1) ← ck(j) +
‖uk(j)‖2

(dk(j))T (2λI + ρA)dk(j)
dk(j).

(2-2) Set uk(j+1) ← uk(j) − ‖uk(j)‖2

(dk(j))T (2λI + ρA)dk(j)
(2λI + ρA)dk(j).

(2-3) Set dk(j+1) ← −uk(j+1) +
‖uk(j+1)‖2

‖uk(j)‖2
dk(j).

if uk(j+1) = 0 then stop.
end for
output: The approximate solution ck(j+1) as ck+1.
(3) Set γk+1 ← 2λck+1.

(4) Set sk+1 ←
N∑
i=1

(ck+1)iK(xi, ·).

if ‖αk+1 −Ack+1‖ < ε0 then stop.
end for
output: The approximate solution sk+1.

In Section 4, we verify that under some mild assumption, {sk} globally converges to a
stationary point of Optimization (1.1). In particular, if L is a convex loss function, then {sk}
is globally convergent to the minimizer fD. If L is a lower semi-continuous and nonconvex
loss function, then {sk} may converge to a stationary point rather than a minimizer. Hence,
it is better to solve Optimization (1.1) repeatedly by selecting some initial values randomly
and choosing the minimizer of these outputs as the approximate solution sD of Optimization
(1.1). Finally, we construct the classification rule by sD, that is,

R(x) =

{
+1, sD(x) ≥ 0,

−1, sD(x) < 0.

We will complete the convergence analysis of Algorithm 1 in Section 4.

4 Convergence Analysis

In this section, we discuss the convergence of {sk} inspired by the work [11, 14] and use sim-
ilar line of arguments therein. To ensure the convergence, we need the following assumption
of Optimization (1.1).

Assumption 4.1. For Optimization (1.1), the following conditions hold
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(i) L is a lower semi-continuous and subanalytic loss function.
(ii) A is a symmetric and strictly positive definite matrix.

Before we show our main result in this section, we discuss what conclusions can be drawn
under Assumption 4.1. Subanalytic functions are quite wide, including semi-algebraic,
analytic, and semi-analytic functions (see [10, 6.6 Analytic Problems]). More precisely,
polynomial functions and piecewise polynomial functions are subanalytic functions. How-
ever, subanalyticity does not even imply continuity. Moreover, some margin-based loss
functions satisfy Assumption 4.1 (i), such as the least square loss, the Hinge loss, the
truncated least square loss, logistic loss, and so on (see [24, Section 2.3]). Since F , G

and (α, c) 7→ ρ

2
‖α − Ac‖2 are nonnegative, lower semi-continuous and subanalytic and

(α, c,γ) 7→ γT (α − Ac) is continuous, subanalytic and bounded for any bounded set in
R3N , [23, (I.2.1.9)] shows that Lρ is lower semi-continuous and subanalytic. Moreover,
[3, 4, 28] assure that Lρ is a KL function on R3N , that is, Lρ has KL property at each point
in R3N (see [5, Section 2.4]). The KL property of Lρ plays a crucial role in estimating the
error bound of the iterative sequence.

In some cases, A can be symmetric and strictly positive definite. For instance, the Gram
matrix A of strictly positive definite kernel for any training data D is always symmetric and
strictly positive definite. Gaussian kernel and Matérn kernel are the most common strictly
positive definite kernels. Suppose that A is symmetric and strictly positive definite and for
any f ∈ span{K(x1, ·), ...,K(xN , ·)}, there exists c,d ∈ RN such that

f =

N∑
i=1

ciK(xi, ·) =
N∑
i=1

diK(xi, ·),

which ensures that
(f(x1), f(x2), ..., f(xN ))T = Ac = Ad.

Since A is symmetric and strictly positive definite and thus nonsingular, it follows that
c = d. Thus, f has the unique finite representation

f =

N∑
i=1

ciK(xi, ·).

Moreover, we denote δ : H → RN ,

δ(f) := (δx1
(f), δx2

(f), ..., δxN
(f))T .

We see that for any f ∈ span{K(x1, ·), ...,K(xN , ·)},

δ(f) = (f(x1), f(x2), ..., f(xN ))T = Ac.

Hence, it is easy to check that δ is a linear mapping from span{K(x1, ·), ...,K(xN , ·)} onto

RN and thus an isomorphism by [16, 1.4.15 Theorem]. Since sk =
N∑
i=1

(ck)iK(xi, ·) for any

k ∈ N, it is clear that

δ(sk+1 − sk) = δ

(
N∑
i=1

(ck+1 − ck)iK(xi, ·)

)
= A(ck+1 − ck).

Therefore, [16, 1.4.14 Proposition (i)] shows that there exists 0 < w1 ≤ w2 such that

w1‖sk+1 − sk‖H ≤ ‖δ(sk+1 − sk)‖ = ‖A(ck+1 − ck)‖ ≤ w2‖sk+1 − sk‖H. (4.1)
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Now we begin to show our main result in this section.

Theorem 4.1. Suppose that Assumption 4.1 holds and Algorithm 1 is initialized at
(α0, c0,γ0). If ρ > 4λ‖A−1‖, then {sk} converges to a stationary point s∗ of Optimiza-
tion (1.1).

Before we prove our main result, we need two lemmas about {Lρ(α
k, ck,γk)} and {sk}.

Lemma 4.2. If the conditions in Theorem 4.1 hold, then there exists ζ1 > 0 such that

ζ1‖sk+1 − sk‖2H ≤ Lρ(α
k, ck,γk)− Lρ(α

k+1, ck+1,γk+1).

Proof. From (S-1), we know that αk+1 is the minimizer of α 7→ Lρ(α, c
k,γk), that is,

0 ≤ Lρ(α
k, ck,γk)− Lρ(α

k+1, ck,γk). (4.2)

Similarily from the definition of Lρ and using (S-3) and (3.9), we see that

Lρ(α
k+1, ck,γk)− Lρ(α

k+1, ck+1,γk)

=G(ck)−G(ck+1) + (γk)TA(ck+1 − ck) +
ρ

2
‖αk+1 −Ack‖2 − ρ

2
‖αk+1 −Ack+1‖2

=G(ck)−G(ck+1) + (γk)TA(ck+1 − ck) +
ρ

2
‖αk+1 −Ack+1‖2 + ρ

2
‖A(ck+1 − ck)‖2

+ ρ(αk+1 −Ack+1)TA(ck+1 − ck)− ρ

2
‖αk+1 −Ack+1‖2

=G(ck)−G(ck+1) + (γk+1)TA(ck+1 − ck) +
ρ

2
‖A(ck+1 − ck)‖2

=G(ck)−G(ck+1)− (2λAck+1)T (ck − ck+1) +
ρ

2
‖A(ck+1 − ck)‖2

=G(ck)−G(ck+1)− (∇G(ck+1))T (ck − ck+1) +
ρ

2
‖A(ck+1 − ck)‖2.

From the equation above and (3.7), we have that

ρ

2
‖A(ck+1 − ck)‖2 ≤ Lρ(α

k+1, ck,γk)− Lρ(α
k+1, ck+1,γk). (4.3)

Furthermore, from the definition of Lρ and using (S-3), it follows that

−1

ρ
‖γk+1 − γk‖2 = Lρ(α

k+1, ck+1,γk)− Lρ(α
k+1, ck+1,γk+1).

By (S-3’), it is easy to check that

‖γk+1 − γk‖ = 2λ‖ck+1 − ck‖ = 2λ‖A−1A(ck+1 − ck)‖ ≤ 2λ‖A−1‖‖A(ck+1 − ck)‖.

Combining with two relations above, we see that

−4λ2‖A−1‖2

ρ
‖A(ck+1 − ck)‖2 ≤ Lρ(α

k+1, ck+1,γk)− Lρ(α
k+1, ck+1,γk+1). (4.4)

Hence, (4.2), (4.3) and (4.4) show that(
ρ

2
− 4λ2‖A−1‖2

ρ

)
‖A(ck+1 − ck)‖2 ≤ Lρ(α

k, ck,γk)− Lρ(α
k+1, ck+1,γk+1).
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Since ρ > 4λ‖A−1‖, we have that

ρ

2
− 4λ2‖A−1‖2

ρ
=
ρ2 − 8λ2‖A−1‖2

2ρ
>

16λ2‖A−1‖2 − 8λ2‖A−1‖2

2ρ
=

4λ2‖A−1‖2

ρ
> 0.

Thus,
4λ2‖A−1‖2

ρ
‖A(ck+1 − ck)‖2 ≤ Lρ(α

k, ck,γk)− Lρ(α
k+1, ck+1,γk+1).

Let ζ1 :=
4λ2‖A−1‖2(w1)

2

ρ
. Then ζ1 > 0. Therefore, the inequality above and (4.1) show

that
ζ1‖sk+1 − sk‖2H ≤ Lρ(α

k, ck,γk)− Lρ(α
k+1, ck+1,γk+1).

This proof is completed.

Lemma 4.3. If the conditions in Theorem 4.1 hold, then {Lρ(α
k, ck,γk)} is monotonically

decreasing, bounded and convergent.

Proof. First Lemma 4.2 shows that {Lρ(α
k, ck,γk)} is monotonically decreasing and for

any k ∈ N,

Lρ(α
0, c0,γ0) ≥ Lρ(α

k, ck,γk) = F (αk)+G(ck)− 1

2ρ
‖γk‖2+ ρ

2
‖αk−Ack+1

ρ
(γk)‖2. (4.5)

Moreover, since A is symmetric and strictly positive definite, the minimum eigenvalue of A

is
1

‖A−1‖
which is its largest possible strong convexity parameter. Thus, [1, Example 5.19

and Theorem 5.24 (iii)] show that

G(ck) = λ(ck − 0)T (Ack − 0) ≥ λ

‖A−1‖
‖ck‖2.

Since F (αk) ≥ 0 and ρ > 4λ‖A−1‖, (S-3’) provides that

G(ck)− 1

2ρ
‖γk‖2 ≥ λ

‖A−1‖
‖ck‖2 − 2λ2

ρ
‖ck‖2 ≥ λ

2‖A−1‖
‖ck‖2 ≥ 0. (4.6)

Hence, (4.5) and (4.6) show that

Lρ(α
0, c0,γ0) ≥ Lρ(α

k, ck,γk) ≥ 0,

which ensures that {Lρ(α
k, ck,γk)} is bounded. Thus, [21, Theorem 3.24] shows that

{Lρ(α
k, ck,γk)} is convergent. This proof is completed.

We denote the residual of {Lρ(α
k, ck,γk)} as

rk := Lρ(α
k, ck,γk)− lim

k→∞
Lρ(α

k, ck,γk).

Then Lemma 4.2 shows that {Lρ(α
k, ck,γk)} is monotonically decreasing and the descent

inequality can be rewritten as

ζ1‖sk+1 − sk‖2H ≤ rk − rk+1. (4.7)

Also, for any k ∈ N, rk ≥ 0 and {rk} is monotonically decreasing and convergent to 0.
We are now ready for proving the main result of this section.
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Proof of Theorem 4.1. We consider the following two cases:
(I) If there exists k0 ∈ N for which rk0 = 0, then for any k > k0 + 1, rk = rk+1 = 0.

Therefore, (4.7) shows that

ζ1‖sk+1 − sk‖2H ≤ rk − rk+1 = 0.

Since ζ1 > 0, it means that sk+1 = sk. Hence, {sk} is convergent.
(II) If rk > 0 for any k ∈ N, then we verify the convergence of {sk} by the KL property

of Lρ. First we show that {(αk, ck,γk)} is a bounded sequence. From (4.5) and (4.6), we
have that

Lρ(α
0, c0,γ0) ≥ λ

2‖A−1‖
‖ck‖2 ≥ 0.

It means that {ck} is bounded which ensures {γk} is also bounded by (S-3’). Furthermore,
(S-3) shows that

‖αk‖ ≤ ‖Ack‖+ 1

ρ
‖γk − γk−1‖ ≤ ‖A‖‖ck‖+ 1

ρ
(‖γk‖+ ‖γk−1‖).

Hence, {αk} is bounded. In conclusion, {(αk, ck,γk)} is bounded. Let S be the set of
subsequential limits of {(αk, ck,γk)}. [21, Theorems 3.6 and 3.7] show that S is nonempty
compact, and

lim
k→∞

dist
(
(αk, ck,γk), S

)
= 0, (4.8)

where dist(·, ·) denotes Euclidean distance. Since Lρ is a KL function on R3N , by the
definition of KL function, Lρ is a KL function on S. Moreover, we show that Lρ is constant
on S. For any (α∗, c∗,γ∗) ∈ S, there exists a subsequence {(αkj , ckj ,γkj )} that converges
to (α∗, c∗,γ∗). Since Lρ is lower semi-continuous on R3N , the lower semi-continuity of Lρ

at (α∗, c∗,γ∗) and Lemma 4.3 show that

Lρ(α
∗, c∗,γ∗) ≤ lim inf

j→∞
Lρ(α

kj , ckj ,γkj ) = lim
k→∞

Lρ(α
k, ck,γk). (4.9)

Conversely, since αkj+1 is a minimizer of α 7→ Lρ(α, c
kj ,γkj ), it shows that

Lρ(α
∗, ckj ,γkj ) ≥ Lρ(α

kj+1, ckj ,γkj ). (4.10)

From the continuity of Lρ with respect to c and γ, it holds that

lim
j→∞

Lρ(α
∗, ckj ,γkj ) = Lρ(α

∗, c∗,γ∗). (4.11)

By (4.2), (4.3) and (4.4), we have that

Lρ(α
kj+1, ckj+1,γkj+1) ≤ Lρ(α

kj+1, ckj ,γkj ) ≤ Lρ(α
kj , ckj ,γkj ).

Since lim
k→∞

Lρ(α
kj , ckj ,γkj ) = lim

k→∞
Lρ(α

kj+1, ckj+1,γkj+1) = lim
k→∞

Lρ(α
k, ck,γk), we ver-

ify that
lim
j→∞

Lρ(α
kj+1, ckj ,γkj ) = lim

k→∞
Lρ(α

k, ck,γk). (4.12)

By [21, Theorem 3.19], (4.10), (4.11) and (4.12) show that

Lρ(α
∗, c∗,γ∗) ≥ lim

k→∞
Lρ(α

k, ck,γk). (4.13)
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Finally, (4.9) and (4.13) assure that

Lρ(α
∗, c∗,γ∗) = lim

k→∞
Lρ(α

k, ck,γk).

Hence, Lρ is constant on S.
Next, we use the uniformized KL property of Lρ on S to derive an important inequality

of the sequence {Lρ(α
k, ck,γk)}. [5, Lemma 3.6] assures that there exist ε > 0, η > 0 and a

nonnegative continuous concave function φ : [0, η) → (0,+∞) related to KL property such
that

(i) φ(0) = 0 and φ is continuously differentiable on (0, η) with positive derivatives φ′.
(ii) if dist((α, c,γ), S) < ε and lim

k→∞
Lρ(α

k, ck,γk) < Lρ(α, c,γ) < lim
k→∞

Lρ(α
k, ck,γk)+

η, then
φ

′
(Lρ(α, c,γ)− lim

k→∞
Lρ(α

k, ck,γk)) dist(0, ∂Lρ(α, c,γ)) ≥ 1.

where ∂ denotes the limiting subdifferential (see [20, Definition 8.3]). Since rk > 0, from
Lemma 4.3 and (4.8), it suffices to show that for ε > 0 and η > 0 above, there exists k1 ∈ N
such that for any k > k1,

φ
′
(rk) dist(0, ∂Lρ(α

k, ck,γk)) ≥ 1. (4.14)

From the concavity of φ, we get that

φ
′
(rk)(rk − rk+1) ≤ φ(rk)− φ(rk+1).

Multiplying dist(0, ∂Lρ(α
k, ck,γk)) on both side of the above inequality and using (4.14),

we obtain
rk − rk+1 ≤ dist(0, ∂Lρ(α

k, ck,γk))(φ(rk)− φ(rk+1)). (4.15)

Next we make an estimation on the upper bound of dist(0, ∂Lρ(α
k, ck,γk)). By [20, 8.8

Exercise (c) and 10.5 Proposition], it follows that

∂Lρ(α
k, ck,γk) = {∂F (αk)+γk+ρ(αk−Ack), 2λAck−Aγk−ρA(αk−Ack), αk−Ack}.

Invoking the optimality condition for (S-1’), we have that

−ρ
(
αk −Ack−1 +

1

ρ
γk−1

)
∈ ∂F (αk). (4.16)

We denote

α#
k := −ρ

(
αk −Ack−1 +

1

ρ
γk−1

)
+ γk + ρ(αk −Ack),

c#k := 2λAck −Aγk − ρA(αk −Ack),

γ#
k := αk −Ack.

Hence, (α#
k , c

#
k ,γ

#
k ) ∈ ∂Lρ(α

k, ck,γk), which ensures that

dist(0, ∂Lρ(α
k, ck,γk)) = inf

(α,c,γ)∈
∂Lρ(α

k,ck,γk)

‖(α, c,γ)‖ ≤ ‖(α#
k , c

#
k ,γ

#
k )‖ ≤ ‖α

#
k ‖+‖c

#
k ‖+‖γ

#
k ‖.

(4.17)
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Inserting (S-3) and (S-3’) into α#
k , c

#
k and γ#

k , we verify that

α#
k = −ρA(ck − ck−1) + γk − γk−1,

c#k = −A(γk − γk−1),

γ#
k =

1

ρ
(γk − γk−1).

From (S-3’) and (4.1), we see that

‖γk − γk−1‖ = 2λ‖ck − ck−1‖ ≤ 2λ‖A−1‖‖A(ck − ck−1)‖ ≤ 2λw2‖A−1‖‖sk − sk−1‖H,
‖A(ck − ck−1)‖ ≤ w2‖sk − sk−1‖H.

Hence,

‖α#
k ‖ ≤

(
ρw2 + 2λw2‖A−1‖

)
‖sk − sk−1‖H,

‖c#k ‖ ≤ 2λw2‖A‖‖A−1‖‖sk − sk−1‖H, (4.18)

‖γ#
k ‖ ≤

2λw2‖A−1‖
ρ

‖sk − sk−1‖H.

Combining (4.17) with (4.18), we see that there exists ζ2 > 0 such that

dist(0, ∂Lρ(α
k, ck,γk)) ≤ ζ2‖sk − sk−1‖H. (4.19)

Finally, from (4.7), (4.15) and (4.19), we obtain an inportant inequality of {sk} which can
be used to verify the convergence of {sk}. Since ζ1, ζ2 > 0, by rearranging terms, whenever
k > k1 + 1, (4.7), (4.15) and (4.19) assure that

‖sk+1 − sk‖H ≤

√
ζ2
ζ1
‖sk − sk−1‖H (φ(rk)− φ(rk+1))

≤
‖sk − sk−1‖H +

ζ2
ζ1

(
φ(rk)− φ(rk+1)

)
2

.

By rearranging terms, we obtain further that

‖sk+1 − sk‖H ≤ ‖sk − sk−1‖H − ‖sk+1 − sk‖H +
ζ2
ζ1

(φ(rk)− φ(rk+1)). (4.20)

For any l > k1, summing up the above relation from k = k1 +1, ..., l, since ‖sl+1− sl‖H ≥ 0
and φ(rl+1) > 0, we see that

l∑
k=k1+1

‖sk+1 − sk‖H ≤ ‖sk1+1 − sk1‖H − ‖sl+1 − sl‖H +
ζ2
ζ1

(φ(rk1+1)− φ(rl+1))

≤ ‖sk1+1 − sk1‖H +
ζ2
ζ1
φ(rk1+1) <∞.

Therefore,
∞∑

k=k1+1

‖sk+1 − sk‖H ≤ ‖sk1+1 − sk1‖H +
ζ2
ζ1
φ(rk1+1) <∞,
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which ensures that

∞∑
k=1

‖sk+1 − sk‖H =

k1∑
k=1

‖sk+1 − sk‖H +
∞∑

k=k1+1

‖sk+1 − sk‖H <∞. (4.21)

Moreover, we see that

lim
j→∞

∞∑
k=j

‖sk+1 − sk‖H = 0.

For any ε1 > 0, there exists k2 ∈ N such that for any l > j > k2,

‖sl − sj‖H ≤
l−1∑
k=j

‖sk+1 − sk‖H ≤
∞∑
k=j

‖sk+1 − sk‖H < ε1.

Thus, {sk} is a Cauchy sequence. Since H is a Hilbert space which is a complete metric
space, it means that {sk} is convergent.

Combining (I) with (II), we conclude that {sk} is convergent. We denote

s∗ := lim
k→∞

sk.

Next we show that s∗ is a stationary point of Optimization (1.1). We denote the objective
function of Optimization (1.1) as T : H → R. Hence, the objective function of Optimization
(1.1) can be rewritten as

T (f) = 1

N

N∑
i=1

L(xi, yi, δxi(f)) + λ‖f‖2H = (F ◦ δ)(f) + λ‖f‖2H,

where ◦ denotes the composition. Moreover, [17, Definition 1.77 and Proposition 1.107]
assure that

∂T (s∗) = ∂(F ◦ δ)(s∗) +∇(λ‖ · ‖2H)(s∗). (4.22)

For any h ∈ H, since

δ(h)−δ(s∗) = ((h−s∗)(x1), ..., (h−s∗)(xN ))T = (〈h−s∗,K(x1, ·)〉H, ..., 〈h−s∗,K(xN , ·)〉H)T ,

from the definition of Fréchet derivative, we have that

lim
h→s∗

δ(h)− δ(s∗)− (〈h− s∗,K(x1, ·)〉H, ..., 〈h− s∗,K(xN , ·)〉H)T

‖h− s∗‖H
= lim

h→s∗

0

‖h− s∗‖H
= 0,

which ensures that

∇δ(s∗) = (〈·,K(x1, ·)〉H, ..., 〈·,K(xN , ·)〉H)
T
.

Since {sk} ⊆ span{K(x1, ·), ...,K(xN , ·)} and span{K(x1, ·), ...,K(xN , ·)} is closed by [16,
1.4.20 Corollary], we show that s∗ ∈ span{K(x1, ·), ...,K(xN , ·)}. Hence, there exists a
unique c∗ ∈ RN such that s∗ has the finite representation

s∗ =

N∑
i=1

(c∗)iK(xi, ·),
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which ensures that

δ(s∗) = (δx1
(s∗), ..., δxN

(s∗))T = (s∗(x1), ..., s
∗(xN ))T = Ac∗.

From the chain rule, we see that

∂(F ◦ δ)(s∗) = (∇δ(s∗))T∂F (δ(s∗)) = (〈·,K(x1, ·)〉H, ..., 〈·,K(xN , ·)〉H)
T
∂F (Ac∗). (4.23)

Since δ is an isomorphism from span{K(x1, ·), ...,K(xN , ·)} onto RN , lim
k→∞

sk = s∗ and

A is nonsingular, we observe that lim
k→∞

ck = c∗. We denote

α∗ := Ac∗, γ∗ := 2λc∗.

From (S-3) and (S-3’), it follows that

lim
k→∞

(αk, ck,γk) = (α∗, c∗,γ∗),

that is, (α∗, c∗,γ∗) ∈ S. Therefore,

Lρ(α
∗, c∗,γ∗) = F (α∗) +G(c∗) = lim

k→∞
Lρ(α

k, ck,γk).

From the continuity of G, we observe further that

lim
k→∞

F (αk) = lim
k→∞

(
Lρ(α

k, ck,γk)−G(ck)− (γk)T (αk −Ack)− ρ

2
‖αk −Ack‖2

)
= F (α∗).

In the view of (4.16), by [20, Proposition 8.7] and passing to the limit along {(αk, ck,γk)},
it follows that

−2λc∗ = −γ∗ ∈ ∂F (α∗) = ∂F (Ac∗). (4.24)

Hence, (4.23) and (4.24) show that

(〈·,K(x1, ·)〉H, ..., 〈·,K(xN , ·)〉H)
T
(−2λc∗) = −〈·, 2λs∗〉H ∈ ∂(F ◦ δ)(s∗). (4.25)

On the other hand, from the definition of Fréchet derivative, we have that

lim
h→s∗

λ‖h‖2H − λ‖s∗‖2H − 〈h− s∗, 2λs∗〉H
‖h− s∗‖H

= lim
h→s∗

λ‖h− s∗‖2H
‖h− s∗‖H

= lim
h→s∗

λ‖h− s∗‖H = 0,

which ensures that
∇(λ‖ · ‖2H)(s∗) = 〈·, 2λs∗〉H. (4.26)

From (4.22), (4.25) and (4.26), we conclude that

0 ∈ ∂T (s∗) = ∂(F ◦ δ)(s∗) +∇(λ‖ · ‖2H)(s∗),

that is, s∗ is a stationary point of Optimization (1.1). This proof is completed.

Next we analyze the convergent rate of {sk}. By [5, Example 5.3] and [3, Theorem 3.1],
we know that φ has the following form

φ(z) = ez1−θ, for e > 0, θ ∈ [0, 1).

Moreover, we have the following proposition about convergent rate.
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Proposition 4.4. If the conditions in Theorem 4.1 hold, then we have the following esti-
mations:

(i) If θ = 0, then there exists n1 ∈ N such that for k > n1,

sk = s∗.

(ii) If θ ∈ (0,
1

2
], then there exists n2 ∈ N, C1 > 0 and ξ ∈ [0, 1) such that for k > n2,

‖sk − s∗‖H ≤ C1ξ
k.

(iii) If θ ∈ (
1

2
, 1), then there exists n3 ∈ N and C2 > 0 such that for k > n3,

‖sk − s∗‖H ≤ C2k
1−θ
1−2θ .

Proof. First we consider the case that θ = 0. Suppose that {Lρ(α
k, ck,γk)} satisfies the

case (II) in Theorem 4.1. From (4.21), we have that

lim
k→∞

‖sk − sk−1‖H = 0. (4.27)

Moreover, (4.19) and (4.27) assure that when k is sufficient largely,

dist(0, ∂Lρ(α
k, ck,γk)) ≤ ζ2‖sk − sk−1‖H <

1

e
. (4.28)

On the other hand, by the definition of φ, we have that φ′(rk) = e. Hence, (4.14) shows
that

e · dist(0, ∂Lρ(α
k, ck,γk)) ≥ 1. (4.29)

Clearly, (4.28) and (4.29) are contradiction. Therefore, {Lρ(α
k, ck,γk)} satisfies the case

(I) in Theorem 4.1, that is, there exists n1 ∈ N such that whenever k > n1, s
k = s∗. Item

(i) holds.
Next we consider the case that θ ∈ (0, 1). We denote

∆k :=

∞∑
j=k

‖sj+1 − sj‖H.

Since ∆k−1 −∆k = ‖sk − sk−1‖H, for any k > k1, summing up (4.20) from j = k, k + 1, ...,
the triangle inequality ensures that

‖sk − s∗‖H ≤
∞∑
j=k

‖sj+1 − sj‖H

= ∆k ≤ ∆k−1 −∆k +
ζ2
ζ1
φ(rk)

= ∆k−1 −∆k +
ζ2
ζ1
e(rk)1−θ.

(4.30)

Since φ′(rk) = e(1− θ)(rk)−θ, (4.14) shows that

(rk)θ ≤ e(1− θ)dist(0, ∂Lρ(α
k, ck,γk)).
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Hence, the inequality above and (4.19) assure that

(rk)1−θ = ((rk)θ)
1−θ
θ ≤

(
e(1− θ)dist(0, ∂Lρ(α

k, ck,γk))
) 1−θ

θ

≤ (e(1− θ)ζ2(∆k−1 −∆k))
1−θ
θ .

(4.31)

Let q :=
ζ2
ζ1
e[e(1− θ)ζ2]

1−θ
θ . Thus q > 0. Combining (4.30) with (4.31), we have that

∆k ≤ ∆k−1 −∆k +
ζ2
ζ1
e[e(1− θ)ζ2]

1−θ
θ (∆k−1 −∆k)

1−θ
θ

= ∆k−1 −∆k + q(∆k−1 −∆k)
1−θ
θ .

(4.32)

Moreover, (4.27) shows that there exists k3 ∈ N such that for any k > k3,

‖sk − sk−1‖H = ∆k−1 −∆k < 1.

If θ ∈ (0, 12 ], then
1−θ
θ ≥ 1. We denote n2 := max{k1, k3}. If k > n2, then (4.32) shows

that
∆k ≤ (1 + q)(∆k−1 −∆k). (4.33)

This implies that ∆k ≤ q
1+q∆k−1. Let C1 := ( q

1+q )
−1−n2∆n2 and ξ := q

1+q . Thus C1 > 0,

and ξ ∈ [0, 1). Combining (4.30) with (4.33), we show that

‖sk − s∗‖H ≤ ∆k ≤
(

q

1 + q

)k−1−n2

∆n2 = C1ξ
k.

Item (ii) holds.
If θ ∈ ( 12 , 1), then

1−θ
θ < 1. Whenever k > n2, it follows that

1 ≤ (1 + q)
θ

1−θ (∆k−1 −∆k)∆
− θ

1−θ

k .

Let v > 1. First we assume that ∆
− θ

1−θ

k ≤ v∆− θ
1−θ

k−1 , it holds that

(∆k−1 −∆k)∆
− θ

1−θ

k ≤ v(∆k−1 −∆k)∆
− θ

1−θ

k−1

≤ v
∫ ∆k−1

∆k

z−
θ

1−θ dz

=
1− θ
2θ − 1

v[∆
1−2θ
1−θ

k −∆
1−2θ
1−θ

k−1 ].

Combining with two inequalities above, we find that

2θ − 1

(1− θ)v
(1 + q)−

θ
1−θ ≤ ∆

1−2θ
1−θ

k −∆
1−2θ
1−θ

k−1 .

Next we assume that ∆
− θ

1−θ

k > v∆
− θ

1−θ

k−1 . Since − 1−2θ
θ > 0, we have ∆

1−2θ
1−θ

k > v
2θ−1

θ ∆
1−2θ
1−θ

k−1 .
This ensures that

(v
2θ−1

θ − 1)∆
1−2θ
1−θ
n2 ≤ (v

2θ−1
θ − 1)∆

1−2θ
1−θ

k−1 ≤ ∆
1−2θ
1−θ

k −∆
1−2θ
1−θ

k−1 .
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Let µ := min

{
2θ−1
(1−θ)v (1 + q)−

θ
1−θ , (v

2θ−1
θ − 1)∆

1−2θ
1−θ
n2

}
. Thus µ > 0, and

µ ≤ ∆
1−2θ
1−θ

k −∆
1−2θ
1−θ

k−1 . (4.34)

Since 1−θ
1−2θ < 0, summing up the above relation from j = n2, ..., k−1 and rearranging terms,

(4.30) and (4.34) show that there exists C2 > 0 such that if k > n3 = n2,

‖sk − s∗‖H ≤ ∆k ≤ [∆
1−2θ
1−θ
n2 + (k − n2 + 1)µ]

1−θ
1−2θ ≤ C2k

1−θ
1−2θ .

Item (iii) follows immediately. This proof is completed.

5 Numerical Examples

In this section, we test Algorithm 1 by the synthetic data and the real data. We choose
some training data and testing data, RKHSs, and loss functions to test Algorithm 1. Let
K1 be Gaussian kernel, that is,

K1(x,x
′) = exp(−σ1‖x− x′‖22), for σ1 > 0

and K2 be Matérn 1-norm kernel, that is,

K2(x,x
′) = exp(−σ2‖x− x′‖1), for σ2 > 0,

where ‖ · ‖1 denotes 1-norm in Euclidean space. Moreover, these two kernels are symmetric
and strictly positive definite. In this section, we use the RKHSs induced from the kernels
K1 and K2.

On the other hand, let L1, L2, L3 and L4 be four loss functions used in our experiments,
that is,

L1(x, y, t) =

{
1− yt, yt− 1 < 0

0, yt− 1 ≥ 0
, L2(x, y, t) =


−yt+ 2, yt− 1 < −1
−2yt+ 2, −1 ≤ yt− 1 < 0

0, yt− 1 ≥ 0

,

and

L3(x, y, t) =

{
log(2− yt), yt− 1 < 0

0, yt− 1 ≥ 0
, L4(x, y, t) =


1, yt− 1 < −1
1− yt, −1 ≤ yt− 1 < 0

0, yt− 1 ≥ 0

.

We see that L1 is convex Hinge loss, L2 is a nonconvex linear piecewise loss function, L3 is
a nonconvex piecewise logarithmic loss function and L4 is a nonconvex ramp loss function.
These four loss functions satisfy Assumption 4.1 (i). Here are the graphs of these loss
functions above.
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Figure 1: For the graphs of loss functions L1, L2, L3 and L4, we replace yt to t because of
the symmetry of y = +1 and y = −1.

To illustrate how to solve Optimization (S-1”), we give a simple example. As for L1, by
simple algebra, the corresponding Optimization (S-1”) on R has the following minimizer. If
yi = +1, then

(αk+1)i =


νi +

1
ρN , νi < 1− 1

ρN ,

1, 1− 1
ρN ≤ νi < 1,

νi, νi ≥ 1,

where νi = (Ack)i −
1

ρ
(γk)i. If yi = −1, then

(αk+1)i =


νi, νi < −1,
−1, −1 ≤ νi < −1 + 1

ρN ,

νi − 1
ρN , νi ≥ −1 + 1

ρN .

As for L2, L3 and L4, similarily, we can use some simple algebra in R to solve the corre-
sponding Optimization (S-1”). Next we introduce our test results on synthetic data and real
data.

5.1 Examples on Synthetic Data

We sample from Ω1 = [−3, 10]× [−3, 10] labeled by +1 and Ω2 = [−10, 3]× [−10, 3] labeled
by −1 randomly to obtain different training sets and testing sets. The data labeled by +1
are equal to the data labeled by −1 in each training set or testing set. Here is an example
of sampling. In the following figures, two subdatasets are colored in blue and red.
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Figure 2: Example of Sampling (N = 300).

First we show the convergence of Algorithm 1 for nonconvex loss function L3. Some
parameters and results of the numerical experiment be represented as follows.

• Gaussian kernel K1, where σ1 = 1.
• The nonconvex loss function L3.
• N = 300, λ = 0.1, ρ = 0.05 and ε0 = 10−12.
• Choose 20 initial values randomly in [−10, 10]N .

From (4.21), we can show the convergence of {sk} by
∞∑
k=1

‖sk+1− sk‖H. By definition of

{sk} and (3.4), we have that

‖sk+1 − sk‖H =

√√√√ N∑
i=1

(ck+1 − ck)i(sk+1 − sk)(xi) =
√

(ck+1 − ck)TA(ck+1 − ck).

In the following two pictures, we show the convergence of Algorithm 1 by
∞∑
k=1

‖sk+1− sk‖H.

Figure 3: Convergence of Algorithm 1 with Nonconvex Loss Function L3.

Figure 3 shows that for the training data and parameters, Algorithm 1 converges in
61 iterations. This shows the effectiveness of Algorithm 1. Next, we use different sizes
of training sets and testing sets to test Algorithm 1. Some parameters and results of the
numerical experiment are represented as follows.
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• Gaussian kernel K1, where σ1 = 1.
• The nonconvex loss function L2.
• N = 300, λ = 0.1, ρ = 1 and ε0 = 10−12.
• Choose 20 initial values randomly in [−10, 10]N .

Table 1: Comparison of Different Sizes of Data.

Training Data Testing Data Time(s) Training Accuracy Testing Accuracy
100 40 3.546 98% 85%
200 80 7.302 94% 87.5%
300 120 10.524 93.7% 90%
400 160 14.833 93% 87.5%
500 200 18.343 93.2% 90%
600 240 21.813 92.7% 87.1%
700 280 27.469 92.4% 89.3%
800 320 33.776 92.1% 90.9%
900 360 44.653 90.3% 90%
1000 400 56.510 92.3% 89%

Table 1 shows that solving Optimization (1.1) by Algorithm 1 is feasible in terms of
running time and accuracy. Next we will show that choosing different kinds of loss functions
and kernels have different accuracy.

Now we sample from the area Ω1 and Ω2 randomly to obtain a training set with 300 points
and a testing set with 120 points. Some parameters of these experiments are represented as
follows.

• The kernels K1 and K2, where σ1 = 2 and σ2 = 1.
• The loss functions L1, L2, L3 and L4.
• λ = 0.5, ρ = 5 and ε0 = 10−12.
• Choose 20 initial values randomly in [−10, 10]N .

In each experiment, we will choose a loss function and a kernel. The results of these
experiments represent as follows.

Table 2: Numerical Results of Using Different Loss Functions and Kernels.

Loss Function Kernel Training Accuracy Testing Accuracy
L1 K1 95.7% 87.5%
L2 K1 95% 88.3%
L3 K1 95.7% 88.3%
L4 K1 95% 87.5%
L1 K2 92% 90.8%
L2 K2 93.7% 90%
L3 K2 94.7% 90.8%
L4 K2 93% 90%

From Table 2, it is easy to see that nonconvex loss function L3 performs better than
L1, L2 and L4 in these experiments. It shows that the SVM in RKHS with nonconvex loss
function is better than the SVM in RKHS with convex loss function in some cases. Next,
we introduce the numerical experiment result on a real-world benchmark dataset.
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5.2 Examples on UCI Machine Learning Repository

The vinho verde data in UCI machine learning repository has two kinds of wine samples.
We will identify them based on physicochemical tests. There are 11 input variables about
them, which are fixed acidity, volatile acidity, citric acid, residual sugar, chlorides, free
sulfur dioxide, total sulfur dioxide, density, pH, sulphates, and alcohol. We have 2000 wine
samples in training set, and a half of them are labeled by +1 and the others are labeled by
-1. Moreover, we have 718 wine samples in testing set, and a half of them are labeled by +1
and the others are labeled by -1. Next, we introduce some parameters of these experiments
as follows.

• The kernels K1 and K2, where σ1 = 5 and σ2 = 5.
• The loss functions L1, L2, L3 and L4.
• N = 2000, λ = 0.5, ρ = 1 and ε0 = 10−12.
• Choose 20 initial values randomly in [−10, 10]N .

In each experiment, we will choose a loss function and a kernel and we have the following
results.

Table 3: Numerical Results on Vinho Verde Data.

Loss Function Kernel Training Accuracy Testing Accuracy
L1 K1 99,9% 90.0%
L2 K1 100% 90.8%
L3 K1 99.9% 90.3%
L4 K1 99.9% 90.3%
L1 K2 100% 88.3%
L2 K2 100% 91.8%
L3 K2 100% 87.6%
L4 K2 100% 91.2%

From Table 3, we check that L2 performs better than L1, L3 and L4. It shows that in
some cases nonconvex loss function is more suitable than convex loss function, which is our
motivation for this paper.

In Section 5, we demonstrate the effectiveness of solving Optimization (1.1) by Algo-
rithm 1. In addition, we give some examples to show that in some cases, the SVM in
RKHS with nonconvex loss function is better than the SVM in RKHS with convex loss
function. Therefore, we should reconsider not only convex loss function but also nonconvex
loss function.
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