A2 Py, 4,

“ Yokohama Publishers

Aol /SSN 1349-8169 _ONLINE JOURNAL

Yok, %

A SELF-ADAPTIVE INERTIAL VISCOSITY PROJECTION
ALGORITHM FOR SOLVING SPLIT FEASIBILITY PROBLEM
WITH MULTIPLE OUTPUT SETS*

YAzZHENG DANGT, Camnua Hou AND YANG Liu

Abstract: We propose an inertial viscosity projection algorithm for solving the split feasibility problem
with multiple output sets in the Hilbert spaces. The stepsize of the algorithm is selected via a self-adaptive
technique which does not require prior information about operator norm. In addition, the inertial technique
and viscosity method are combined to improve the convergence. Under suitable conditions, we show the
strong convergence of the algorithm. Furthermore, we present new results on the algorithm for solving
the split feasibility problem and split feasibility problem with multiple output sets. Finally, two numerical
experiments are presented to illustrate the convergence behavior and the effectiveness of the algorithm.
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Introduction

Let Hy and Hs be two real Hilbert spaces. Let C' and () be nonempty, closed and convex
subsets of Hy and Hs, respectively. Let A : H; — Hs be a nonzero bounded linear operator.
The split feasibility problem (SFP) is formulated to find a point * € H; satisfying

x* € C such that Az™ € Q. (1.1)

The SFP was first introduced in [5], which has broad applications in many fields such
as phase retrievals and in medical image reconstruction [5, 28, 29], intensity-modulated
radiation therapy (IMRT) [6], gene regulatory network inference [30], and so on.

In recent years, focusing on real world applications, many iterative methods for solving
the SFP (1.1) have been introduced and analyzed. Among them, Byrne [3] introduced the
first applicable and most celebrated method called the well-known CQ-algorithm as follows:

z° € Hy; xk‘H = Po (.’I,‘k — Ak AT ([ — PQ )A.Z‘k ), (1.2)

where Pc and Py are the metric projections on to C and Q, respectively, and the stepsize
A € (0, W), where ||A|? is the spectral radius of the matrix ATA (AT stands for the
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adjoint operator of A). It is observed that, in order to achieve the convergence, one has to
estimate the norm of the bounded linear operator A (or the spectral radius of the matrix
AT A in the finite-dimensional framework) for selecting the step size A, which is not always
possible in practice. To avoid this obstacle, there have been a number of work to guarantee
convergence without any prior information of the matrix norm (see, for examples [31]). For
instance, Lépez et al. [18] introduced a new way to select the step size by replacing the
parameter Ay appeared in (1.2) with the following parameter:

__pegat) ) L3
T INVgEn P T 43

where pr € (0, 4), g (a%) = %H(I—PQ)A;U’“H2 and Vg (2%) = AT (I — Pg) Az* for all
k > 1. This method is a modification of the CQ method which is often called the self-
adaptive method. Some modifications of the CQ algorithm and the self-adaptive method
now have been invented for solving the SFP (see, for example [1, 12, 26, 28]).

Some generalizations of the SFP have also been studied by many authors. For example,
the split common fix point problem (SFPP) [4, 23], the multiple-sets SFP (MSSFP) [10,
17, 32], the split variational inequality problem (SVIP) [16, 27] and the split common null
point problem (SCNPP) [11, 21]. Recently, Reich et al. [22] considered and studied another
generalized split feasibility problem with multiple output sets (SFPwMOS) as follows: Let
H, H;, i=1,...,N be real Hilbert spaces and let A; : H — H;, i = 1,..., N be bounded
linear operators and let A7 : H;\y — H;, i = 1,...,N — 1 be its adjoint. Let C' and
Q;, i = 1,...,N be nonempty, closed and convex subsets of H and H;, ¢ = 1,..., N,
respectively. Given H, H; and A; as above, the split feasibility problem with multiple output
sets (SFPwMOS) is to find an element x* such that

el =0n (NN, A7HQ))) # 0. (1.4)

K2

Reich et al. [22] defined the function g : H — R as
L
R . 2
g(x):= 52221 (I —Pg,)Ax||”, forallz € H. (1.5)

It is not difficult to see that an element z* is a solution of the SFPwMOS (1.4) if and only
if it is the solution of the problem

] 1.
min g(z), (1.6)
this is equivalent to
0 € Vg (") + Ne (2, (1.7)

where N¢ () is the normal cone of C' at the point z. It implies that

N
x* = Po (a:* — aZAiT (I - PQi)Ai$*> )

i=1

where « is an arbitrary positive real number. Motivated by these characterizations, Reich
et al. [24] introduced the following iterative method for solving the SFPwMOS (1.4). For
any given point 20 € H, {z¥} is a sequence generated by the iterative method

N
=t f(aF) + (1= te) Po(a® — an Y AT (I = Po,)Asa®), (1.8)

i=1
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where f : C — C is a strict contraction mapping of H into itself with the contraction
constant 6 € [0, 1), ay, C (0,00) and ¢, C (0,1). It was proved that if the sequences {ay}
and {t} satisfy the conditions:

0<a<ap<b< 7o for all k > 1 and limy_,oo t = 0, 7o |t = o0,

then the sequence {z*} generated by (1.8) converges strongly to a solution point z* € I of
the SFPwMOS (1.4), which is a unique solution of the variational inequality

((I-flaz*, z—2")>0 Vzel.

In optimization field, to speed up the convergence, Polyak [20] firstly proposed the inertial
extrapolation for solving smooth convex minimization problem which makes use of two
previous iterates to update the next iterate. Inertial type algorithms can speed up the
convergence rate, due to the fact the presence of inertial term. Hence, they have been
widely studied by many authors [7, 8, 9, 13, 25].

Inspired by the above works, in this paper, we propose a self-adaptive inertial viscosity
algorithm for solving the SFPwMOS (1.4) in general Hilbert spaces. The main contributions
of this paper are as follows:

(i) We adopt self-adaptive strategy to update the step-size based on the information of
the objective function and its gradient, to improve the flexibility of the algorithm.

(ii) We combine inertial technique with the nearly contractive viscosity-type iteration, to
speed up the convergence.

The rest of the paper is organized as follows. Some fundamental tools and results are
presented in Section 2. In Section 3, we construct an algorithm for solving the SFPwMOS
and analyze its strong convergence. Several derived results are presented in Section 4. In
Section 5, we illustrate the performance of the algorithm by testing a numerical example.

Preliminaries

Let I be the identity operator on H. Given a sequence {xk} in H and x € H. We use
z* — x to denote that the sequence {xk} converges strongly to a point x as k — oo.

Definition 2.1. Given a not necessarily linear operator T : H — H, denote by Fiz(T) :=
{x € H|x = Tz} the set of all fixed points of T.

(i) quasi-nonexpansive if Fiz(T) # @ and |Txz — z|| < ||l — 2||,Vz € H, z € Fiz(T).
(i) firmly nonexpansive if |Tz — Ty|* < (Tx — Ty, x —y), Va, y € H, or equivalently,

1Tz = Ty|* < |z —y|* = (I = D)z — (I - T)yl|*, ¥z, y € H.

Lemma 2.2. Let Q be a nonempty closed conver subset of H. Py denotes the projection
onto the convex set QQ, that is,

Po (x) = arg min ||z — y|| .
Q (%) gyEQII yll

It has the following well-know properties:
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(i) € Q< Py (z) ==
(ii) (z — Po(x),z — Po(x)) < 0,Vr € H and Vz € Q;
(iii) (Po(y) = Polx).y —z) > | Pa(y) — Po()|*, Va, y € H;
() [Po(@) — 2I> < Il — 2I* = [ Po(x) — 2ll*, Vo € H and V= € Q;
() I1Po(@) - Po(w)I < 1z — ylI* Ve, y € H.
From Definition 2.1, we know that Pg is firmly nonexpansive.
Lemma 2.3 ([2]). Let z,y € H and t,s € R. R is the set of real numbers. Then
@) llz+yll* < llz]” +2 (2 +y);
(i) [t + syl* = (¢ +5) 2] + st + 5) [y]* = st o =y
(ifi) [t + (1= 0)yl* =tz + (1 =) [lyl* = (L = ¢) = — ylI*.
Lemma 2.4 ([14]). Assume {wg} is a sequence of non-negative real numbers such that

W1 < (1 — vp)wy + vpug, k> 1,
Wrt1 < wg — Tk + Ok, k>1,

where {vi},{ur} and {o}} are sequences of real numbers such that

(i) {vr} C (0,1) and >3, vk = o0;

(il) limg—yoo o = 0;

(iii) limsup,_, . ux; < 0 whenever limsup;_, . Iy, = 0 for any subsequence {k;} of {k}.
Then limy_y oo wi, = 0.

Lemma 2.5 ([19]). Let h be a contraction on H. The viscosity approrimation method
proposed by Moudafi generates a strongly convergent sequence:

20 e H,
"t =tph (a%) + (1 — t) Ta® for k€ N,

which converges strongly to a fized point x* of T. In [31], Xu further proved that the above
x* also satisfies the following variational inequality:

(h(z*) —a*, z —a*) <0, Vo € Fiz(T),

provided that {t} € (0,1).

Recall that the sequence of mappings hy from H into H is called a nearly contractive
mappings with sequence {(Ck,ax)} in [0,1) x [0,00). A useful and simple norm inequality is
the following

1 (2) = hae()]| < G [l =yl + a,

forax — 0, allz, ye H and k € N.
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Inertial Viscosity Projection Algorithm and Its Convergence

In this section, we propose a self-adaptive inertial viscosity projection algorithm for split
feasibility problem with multiple output sets, and prove its strong convergence.

Algorithm 3.1 (Self-adaptive inertial viscosity projection algorithm). Let {5} {\x} be two
sequences in (0,1), {pr} C (0,4), 0, € [0,0] with 6 € [0,1), and {hy} be a nearly contractive
mapping with {(Cx,ar)}. Set

20, 2t € H,

2k —zk g, (xk . xkfl) ,

T 1= Pkgk(zk) (3'1)
) I\ng(zk)l\”

P =(1-X\g) 2P+ g (tkhk ( ) + (1—tx) Pe (Zk—Tngk (zk))) ,for k€ N.

where gy, (2%) := 152N ||(1 = Po,)Aiz*||*, Vgi(2%) := SN | A3(I — Pg,) A",
The following lemmas play an important role in the convergence proof of Algorithm 3.1.

Lemma 3.2. Let T be the solution set of the problem (1.4). Define an operator S : Hy — Ho
as follows:

S(z%) = Po (2% — Ve (7)) . (3.2)

For 2F € H and z € T, the following inequality holds:
HS(Zk)—ZHQ < ||zk—zH2—r(zk), (3.3)

. 2,k 2 4
where r(2*) = pp.(4 — pk>7gk( )+ Hwk - Pc(wk))’ s wh =28 — 7 Vg (7).

1Vgr (=9)]1?

Proof. Assume that the sequence z* is infinite, that is, Algorithm 3.1 does not terminate

in a finite number of iterations. Thus Vg (zk) # @ for all K > 0. Pr denotes the metric
projection, set z € I'. Note that I — Pg, for each ¢ = 1,..., N is firmly nonexpansive and
Vg (2) = 0. Hence, we have from Lemma 2.2 that

(Vage(z¥), 25 — 2) <ZAT (I — Pg,)A;2", 2% — z>

i=1

N
:Z<A (I — Pg,)Aiz", 2% —2)

N
- Z ((I - Pg,)Aiz*, Az — A;z)
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which implies that

lo¥ = 2[* = [ = 2) = 7 Vgu(H) |
= % =2+ 72 V()| - 2m (Vg(h), 2 - 2)
20k9k (2%)
<k ey ARED (201(5)
A gD P T R
b2, PRge (2F)  Apegi ()
= |[e" - | iz 12
Vg™ [[Vgr(Z)ll
2 (k
=||z* - = 2—pk(4—pk)M. (3.4)
| | IVgr(z*)]*
By the definition of pg, we obtain
? VE>0. (3.5)
From Lemma 2.2 (iv) and (2.3), it is easy to get that
5G*) = |* = | Pe(wh) = 2|
< [Jw* = 2|* = w* = Petw)|”
k) )
<||F -2 —pk(4—ﬂk)&— w — Po(w")
= - EE) ) H
= sz - ZH2 —r(2h). (3.6)
Thus, the proof is completed. O

Remark 3.3. Since {p;} C (0,4), we observe that r (z¥) > 0 for all z € H. Therefore, the
operator S is quasi-nonexpansive.

Lemma 3.4. Set 2 := 2% 4 0y (2% — 2F~1), where 0 < 0y, < 1 for all k € N. Then for all
z€H,

|24 =2 < [lo® = 2" 4 el — 2| = [l = 2[]) + 26 [l — 7.
Proof. Using the identity 2 (a,b) = ||a||* + ||b]|* — ||a — b]|*, we have
2% = 2] = [|2* — 2 + Ox(a* — 2* 1)
= ||l=* - 2H2 +20) (a¥ — 2, aF —2F71) + 07 |27 — ack_1||2
= [la* = 2" + el — 2" + ok = | = o< = 2]
+ 62 ||a* — 217
= [l ="+ Ol 2" = 2 =2 ) 4001+ 0) [l 24|
< o ol 4 0l — = — = ol 4 20— ()

O
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Lemma 3.5. Given a contraction h with ¢ € (0,1) , 2* = Prh(z*) and 2* € T'. {h} is a
nearly contractive mapping with {(Ck,ax )} such that § — (. Assume that {\i}, {tr}, and
{0} satisfy the following conditions:

(i) limg—oo hg (%) = b (2*);

(i) 0< A <land ke N;

(iii) ¢ € (0,1) such that limy_o ty = 0 and >ty = 00
(iv) limy o0 f—: H:v’“ — a;kHH =0.
Then the sequence {xk} generated by Algorithm 3.1 is bounded.

Proof. Let y* = thy, (2%) + (1 — t)) S(z*) and from Lemma 2.5, we have

(zF) + (1 = t) S(2%)
< tg Hhk(zk) — h(z |
< e[|l (%) = R(z®)|| + b (z®) — 2*[) + (1 — t&) || S (") — 27|

< (G [~ + an) b [ a) —a [+ (1 — ) [ S(H)—a”|

< (1= (1= Gt || = 2" + tulllea™) — o + ). (35)

*

— T

From (3.8), ¢x € (0,1), tx € (0,1) and (ii), we have

H S g

(1= Xe)(z" = 2) + A (y” — 2¥)|
(1= Ae) [ = 2| + A [l =27
(1= X0) ||2° = 2*|| + (@ = (1 = CGe)te) ||2° — o™ || + Aete ([ hn(2*) — 2*|| + ax)
(1= (1= Ce)Awte) |27 — 2*|| + Aete (| he(z*) — 27| + ax)

(1 - ot (L= Z” +ar)

IN A

=1-(1-¢)
= (1= (1= G)Mte) [|2* — a* + O (a® — 21|

+ (1 — Ck) Akt ( ”hk(x? : Z:” = ak)

< (1= (1= G)Aetw) [ l2* =27
([ (2*) — 2™ || + ax
+(1- Ck))‘ktk( G )
= (1= (1= Cp)Autr) || ="
I (z*) — a*|| + ax O _
(=Gt (T e e ) (3.9)

Since limg o0 by (2*) = h(z*), limg— oo ¢ = ¢ and limy_ o0 ax = 0, we conclude that the

hk(z*l):é*HJmk} is bounded. On the other hand, the conditions (ii) and (iv)

imply the sequence {ﬁ |zF — 2*=1||} is also bounded. Hence, we obtain an upper

sequence { | ‘
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bound and let

. [ (%) — || + ak bk ko oke1 }
M = lim su, + ¥ —x .
k—>oop{ 1= (1 = Cr) Aty | |

Then we rewrite (3.9) as

[o*+ — 2% || < maz {{|=* — 27|, M},
by induction, we have
|7+ — 2% < maz {||a* — 2*||, M}.
Thus, the sequence {||z* — 2*||} is bounded. The proof is completed. 0

Remark 3.6. Since {||z* — 27|/} is bounded, so we can obtain that {|z* -z~
{||y¥ — 2*||} are bounded. By Lemma 2.5, we know

|} and

[P < (7w () = b ()] + ()] < G [|2* = 2| + ap + [[Ae(2™)]] -

This shows that {h;C (zk)} is also bounded.
Next, we will give the convergence analysis of Algorithm 3.1.

Theorem 3.7. Let H, H;,i =1,..., N be real Hilbert spaces and A; : H - H;,i=1,...,N
be bounded linear operators. Given a contraction h with ¢ € (0,1), z* = Prh(z*) and
x* € T. {h} is a nearly contractive mapping with {(Cx,ar )} such that ¢, — ¢. Let C' and
Qi,i=1,...,N be nonempty, closed convex subsets of H and H;,i =1,..., N respectively.
Suppose the sequences {\i}, {tx} and {0y} in Algorithm 3.1 satisfy the following conditions:

(i) tx € (0,1) such that limy_eo tx =0 and Y po tx, = 00;
(i) 0< Ay <1l and k € N;
(i) limg oo 2 [Ja* — 2FFH| = 0;
(iv) limg_yoo Ax(x*) = h(x*).

Then the sequence {xk} generated by Algorithm 3.1 converges strongly to ©* = Prh (x*).

Proof. From the inequality

1 2 2
(u, v) < lull ol < 5l + [l
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together with Lemma 2.5 and (i € (0,1), we obtain

o = |* = et (z5) = %) + (1 = 1) (S(F) = o)
(

:tk<hk( k)—x*, y’“— >+(1—tk)<S 2Py — ,yk—x*>
=t ((Pu, ), ¥ —x >+<hk(m*)—h( "), yF —z%))
+tk<h k—w>+(1—tk)< (zF) — 2%, yF —2*)
<tk(uhk — hy (@) (") = h |)Hy z"|
+tg (h(a®) — 2%, gF —a%) + (1 — 1) ||5(Z -~z ||||y Il
<ty [(CkHz —x || +ak) + () = R(z)] [|o"* — 2|

+ ty, (h(z*) Y- N4 (1 —tg) ||S(Zk x*” || y* —x*H

< B (e = o) - a)) + =5 (15 - 'IF)
+ it (h(z*) — a*, y* —a*) + te(ax + () — h(z")]]) 1 y"* — x|
< B ot g It - — |’
+ <h(ac*) —a*, Yk - x*> + tr(ak + [|he(2*) — h(z™)|) H k

This means that
||yk — :c*||2 <t ||zk — :c*||2 + (1 —tx) HS(zk) - :c*||2 + 2ty <h(:c*) —z, Yt - m*>
+ 2t (ag + ||hr(z™) — h(z™)]]) H Yk — x*” .

Then, together with the inequality

IS (z*) 7 |* = r(2h),
we have
y* — 2 sz—x*||2+2tk<h( ) —at, yF - a)
+ 2t (ak + |he(z*) = h(x Hy — 2|+ (1= tg) || — ¥ || = (1 = t)r(2H)
== (=Gt | 2" (h(z*) —a*, y* — ")
+ 2ty (ar, + [[he(@*) = h(z*)|) |ly* = 2*[] = (1 = t)r(z"). (3.10)

By Lemma 2.3 (iii) and (3.10), we obtain

o+t =) = 1 - m (=2 2 (0 - =)

=(1- ly"* (1= X) sz_kaQ
<(1- 1 - (1= Gt || 2* — 7|
+2Aktk<h ) =2t yt =2t + 2t (ar + () — h(®)|)) [JyF

) —
(1= A)r(2F) = Me(1 = Ae) [|2% — o)
= [1— (1 - Gl |12 — o
20t (h () —a*, = 2*) + 2htelar + () — A [y — o
— (= A)r(2R) = Me(1 = M) ||2% — ¥ (3.11)
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From Lemma 2.3 (i), we get

2
’ =|

="+, (= )
2 + 20, <xk — gkl Pk - x*)

R e [

12" =]l

< [|o* -

< 2" -2

(3.12)
Putting (3.12) into (3.11) and k — oo, we have

Hx’”l — x*| 2 <1 = (1 = k) Mpte] (ka - 3:*”2 + 20, ||xk — gk )
+ 20ty (b (2%) — 2%, y% — &) + 2\t (an + ||he(2*) — h(z")|) ||y* — 2*
— (1= B (2%) = A1 = M) ||2F — o
€ (= Gl — o+ 20— 5
F et (B (o) — ",y — a*) + Dhetilan 1 [ae”) — B ¥ — 2|

— (1 = t)r(2F) = M(1 = M) || = ¥ (3.13)

=~

: |

Set

o = [ =",
I, = g (1 — tk)r (Zk) + A (1 — )\k) sz — yk’
v = (1 — Ce) Akt

2
)

Uk:(1_27CIc)(<h COEEE yk*m*>+(ak+”hk (x*)fh(:c*)H)Hyk fas*H
Gk k k-1 k *
pbwal Lt | Et ]

Then, we rewrite (3.13) as

(1 — vk] o1 + viun, (3.14)
b — e + Ok, (3.15)

Prt1

NN

oT

where

o = 204 H:Ek - m’%l” ||z]C — SC*H + 2\tg (h(z*) — a*, y* — z*)
+ 2Mptr(ar + || i (z™) — h(x™)]|) ||yk - 33*” .

Since Y"7~, tx = oo and Theorem 3.7 (ii) hold, limy_, (& = ¢. It follows that

(1 — Ck) Aktk = 0.
k=1

Because t;, € (0,1) and Theorem 3.7 (iii), we see that limg_, Ok ||xk — xk*H = 0. To-
gether with the boundedness of {|[z" —z*|}, {|ly* —2*||} and limy_t) = 0, we have
limk*)OO O = 0.

We now show that ¢ — 0 as k — oo by considering two possible cases.
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Case 1 {¢} is eventually decreasing (i.e., there exists j > 0 such that ¢ > ¢p41 holds
for all k > 7). In this case, ¢, must be convergent, and from (3.15) it follows that

k< (Pr — Ort1) + O (3.16)

Noting limy_, o 0 = 0, letting k — oo in (3.16) yields I, — 0 as k — oo. Since limg_yo0 I =
0, limg 0o tx =0 and 0 < A\ < 1, we have

. 2
Jim |28 =y

and
20k
. 9x(z7)
lim 7(z%) = hm k(4 — pr) ||w — Po(w H
koo koo IV gk (=*)]*
which implies
lim ||w — Po(w )|| =0, (3.17)
k—o0
L}jz —0ask — 0. (3.18)
IVgr(z®)|

We note that for each i = 1,2,..., N, AT(I — Pg,)A;(+) is Lipschitz continuous. Since the
sequence {z"} is bounded and

AT (I = Pg)Aiz¥|| = | AT(I - Po,)Assk — AT(I - Po,) Ase” H<<max 1A, ||) e

foralli = 1,2 , N we have the sequence {HAT (I —Pg,)A: zkH}k , 1s bounded. Hence,
{IVar(z* ||} is bounded. Consequently, we have from (3.18) that
lim ||(I — Po,)A:z*||* =0, (3.19)
k—o0

for each i = 1,2,...,N. Since w* = 2¥ — 7, Vgr(z¥), then we have from (3.19) that

Hw k|| —TkHng )| =0, ask — . (3.20)
On the other hand, using (i) and (iii), since z* = ¥ + 0, (2" — 2F~1), we have

I~

ka zekak—xk_lH — 0,as k — 0. (3.21)
From (3.20) and (3.21), we obtain
||w’C - ka = Hw’C A ackH < Hwk - zkH + sz - ka — 0. (3.22)

Since {xk} is bounded, there exists a subsequence {mkf} of {mk} such that {xkf} — T
Now we show that z* € I'. That is, we need to show z* € C and A;7* € Q;,7=1,2,...,N.
From (3.22) and (3.17) we can conclude that

)

lim ||z* — Po(2%)| = lzm |whs — Po(wh)|| = ||Z* — Pc(z*)|| — 0.
]*)OO

Thus, z* € C. From (3.19) and (3.21) we can obtain that

lim ||(I — Pg,)A;z" || - hm (I — Pg,)Aix J|| = ||(I — Po,)Az*|* =

Jj—oo
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That is, A;7* € Q4,1 =1,2,...,N foralli=1,2,...,N. Hence z* € I.
Moreover, for z* = Prh(z*), we can see that
lim sup <xk — ", h(z') — x*> = lim <xk — Prh(z*), h(z") — Pph($*)> <0.
k—oc0 k—o0
Together with limg oo ar = 0, limg_,oo hi(z*) = h(z*) and limg_ oo (Z—: ka — xk_lH =
0, we conclude that
lim sup up, = lim sup ———— (h(z*) — z*, y* — z*) <0.
k%oop F kﬂoop (1 _Ck) < ( ) Y >

By Lemma 2.5, we get as k — oo, ¢ — 0.
Case 2 {¢} is not eventually decreasing. Hence, we can find an integer kg such that

(bko < ¢k0+1~ Define
Jp i =1{ko <i <k:¢i < dip1}, k> ko.

Obviously, Ji is nonempty and satisfies Ji C Jx41. Let
7(k) = max Jg, k> ko. (3.23)

It is clear that 7(k) — oo as k — oo (otherwise, {¢x} is eventually decreasing). It is also
clear that s.() < s;(x)41 for all & > ky. Moreover,

Ok < Orky+1, Yk > ko. (3.24)

In fact, if 7, = k, then inequity (3.24) is trivial; if 7, = k — 1, then 7(k) + 1 = k, and (3.24)
is also trivial; If 7(k) < k — 1, then there exists an integer ¢ > 2 such that 7(k) +1i = k.
Thus we deduce from the definition of 7(k) that

Pr(k)+1 > Dr()42 > -0 > Dr(h)+i = Do (3.25)
and inequity (3.24) holds again. Since ¢y < ¢ (k)41 all k > ko, it follows from (3.16) that
0< l.,-(k) < (5.,-(k) — 0, (3.26)

so that I;(x) — 0 as k — oo. The rest part of the proof is similar to that of case 1, hence,
it is omitted.
The proof is completed. O

Derived Results

For the SFPwMOS (1.4), when N = 1, it becomes the SFP (1.1). Thus, we have the following
corollary for solving the SFP (1.1), which is an immediate consequence of Theorem 3.7.

Corollary 4.1. Let Hy and Hs be two real Hilbert spaces and let A : Hy — Ho be bounded
linear operator. Let C' and @ be nonempty, closed and convex subsets of Hy and Ho,
respectively.  Given a contraction h with ¢ € (0,1) and «* = Pprh(z*). Assume that
Q=0CnNAYQ) # 0, let{hi} be a nearly contractive mapping with {(Cx,ax)} such that
Cx — C. For any starting point 2°, x' € Hy, let {xk} be the sequence generated by

{ 2k =ak 40y (a:k — wk’l) , (4.1)
gkt = (1—Xg) 2F 4+ Ak (L‘khk (Zk) + (1 —tx) Po (Zk — 7.V f (Zk))) ,

where T, 1= %, and V fy, (%) := AT (I — Pg)Az*. Suppose the sequences {\v}, {ti}

and {0} satisfy the conditions in Theorem 3.7. Then, the sequence {xk} converges strongly
to the solution x* € Q, where ©* = Poh(z*).
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When we take h (x) = 2% in Algorithm 3.1, we note also the following results regarding
to the SFPwMOS (1.4).

Corollary 4.2. Let H, H;, i = 1,..., N be real Hilbert spaces and let A; : H — H;, i =
1,..., N be bounded linear operators. Let C and Q;, i = 1,..., N be nonempty, closed and
convex subsets of H and H;, i = 1,...,N respectively. Assume that the problem (1.4) is
consistent. For any initial guess 20, ' € Hy, let {xk} be the sequence generated by

{zk:xk—i-ek(xk—xk_l), (4.2)
oF = (1= M) 28 + )\’,2 (tho + (1 —tx) Po (zk — &V gg (zk))) , '
where T, and Vg, are given by (3.1). Suppose the sequences {\r}, {tr} and {0k} satisfy the
conditions in Theorem 3.7. Then, the sequence {xk} generated by (4.2) strongly converges
to the solution x = Po(2°) € T.

When we take A = 1 in Algorithm 3.1, we obtain the following result regarding the
SFPwMOS (1.4).

Corollary 4.3. Let H, H;, i = 1,...,N be real Hilbert spaces and let T; : H — H;, i =
1,..., N be bounded linear operators. Let C' and Q;, ¢ = 1,...,N be nonempty, closed
and convex subsets of H and H;, i = 1,...,N respectively. Given a contraction h with
¢ €(0,1) and z* = Prh(z*). Assume that the problem (1.4) is consistent. Let {hy} be a
nearly contractive mapping with {(Cx,ax)} such that x — C. and any initial guess 2° € H,
let {xk} be the sequence generated by

= ok 40 (aF — 21 i3

2k =t hy zk) + (1 —t) P (zk — Vi (zk)) , (4.3)

where 1y, and Vgy are given by (3.1). Suppose the sequences satisfies the conditions (i)
and (). Then, the sequence {:vk} generated by (4.3) strong converges to the solution
x* = Poh(z*) € T.

Of course, when we take h (z) = 2°, we get the following result regarding the SFPwMOS
(1.4).

Corollary 4.4. Let H, H;, i = 1,...,N be real Hilbert spaces and let A; : H — H;, i =
1,..., N be bounded linear operators. Let C and Q;, i = 1,..., N be nonempty, closed and
convez subsets of H and H;, i = 1,..., N respectively. Assume that the problem (1.4) is
consistent. For any initial guess 2° € H, let {xk} be the sequence generated by

zk:a:k—l—@k(xk—xk_l), (4.4)
okl =29 + (1 — tr) Po (zk — 1V (zk)) , ’
where T, and Vi are given by (3.1). Suppose the sequences {ti} satisfies the conditions
(i). Then, the sequence {xk} generated by (4.4) strongly converges to the solution x* =

Poh(z*) €T

Remark 4.5. In Corollary 4.4 above, for special case, where N = 1, the iterative scheme
(4.4) reduced exactly to iterative scheme proposed by He et al. [15, Theorem 3.2].
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Numerical Experiment

In this section, we test two numerical experiments to demonstrate the performance and
convergence of Algorithm 3.1. All the codes are written in MATLAB and are performed
on a DELL laptop with RAM 8 GB and Intel(R) Core (TM) i5-8265U CPU @ 1.60GHz.
Consider the following Problem:

Find a point z* such that

€T = CN (MY, A7(Q) # 6 (5.1)
where the sets C' and Q;,7 = 1,..., N and the linear bounded operators 4;,i=1,..., N.

Example 5.1. Let

0.8 04 0.2 0.5 02 03
A =109 06 05|, Ay= |07 0.5 03],
0.1 0.2 0.9 0.3 0.5 0.8
C = {xeR3|a:1— 3 4 223 SO},
Q= {a:eR‘g‘ x? 29 — a3 <0},
Q2:{$€R3| IL‘1+I§*I’3 SO}
In the experiments we use Ej < € as the stopping criteria, where Ey := TOLy, ¢ is

a small enough positive number, TOLj, := %(ka — Pc (:Ek)HQ + ||A1mk - Pg, (Alxk)Hg +
|| Asa® — Po, (Asa®)||?). Note that if By = 0, then z* € T.

Firstly, we select different p; and take A\, = 0.8, 8 = 0.6 to explore the influence of pg
on Algorithm 3.1. The results are listed in Table 1.

Table 1: The iterative numbers of Algorithm 3.1 under different choices of p, and e

€ pr = 3.98 pr = 3.00 pr = 1.50

10-3 ITter. = 22 ITter. = 26 ITter. = 33
TOL, =9.06E —04 TOLy=796E —04 TOL,=9.17F —04

104 Iter. =24 Iter. =31 Iter. =51

TOL, =6.29E —-05 TOL, =7.60E—-05 TOL;=9.05E—05

The behavior of the function Ej in Table 1 is described in the following Figures 1.

It can be observed from Table 1 and Figure 1 that Algorithm 3.1 has better performance
as pj converges to 4, but py # 4.

Secondly, we carry out Algorithm 3.1 with different 6 to test the effect of inertial on
Algorithm 3.1. Throughout the process, we take A\, = 0.8, pr = 3.98. The results are
reported in Table 2.

The behavior of the function Ej in Table 2 is described in Figure 2 as follows.

From Table 2 and Figure 2, it can be seen that the bigger the 6y, the faster the conver-
gence.

Next, we test the performance of Algorithm 3.1 in higher dimensions.
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Figure 1: Numerical behavior of Algorithm 3.1 under different choices of p;, and

Table 2: The iterative numbers of Algorithm 3.1 under different choices of 6 and e

€ 0, = 0.6 0, =0.4 0, = 0.3 0, =0.1
10-3 Iter. = 22 Iter. = 27 Iter. = 34 Iter. = 43
TOL, =9.06E —04 TOLp =9.96E —-04 TOL, =849E —-04 TOLy =9.7T1E — 04
104 Iter. = 24 Iter. = 39 Iter. = 48 Iter. = 62
TOLp =6.29E —05 TOLp =847E —05 TOL, =851E —-05 TOLy =9.58E — 05
10-5 Iter. = 37 Iter. = 50 Iter. = 62 Iter. =81

TOL, =8.08E —06 TOLp =9.90E —-—06 TOL, =864E —06 TOL), =9.54FE — 06

Example 5.2. Let Ay = (aij) vy n> A2 = (bij) yyn» @ij € (0,0.1) and b;; € (0,0.1) are a
random matrix,respectively. N be a positive integer.

C’:{xERN|z1— x%+2x3+:c4—|—~--—|—xN§O},
QlZ{SUGRN| $%+$2—$3+$4+~-~+wN < 0},
Q= {zxeRY| &y +a5—ws+as+---+ay <0}

In the experiments we use Ej < e as the stopping criteria, where Ey := TOLy, € is
a small enough positive number, TOLy, := %(ka — P (wk) H2 + HAlgck — P, (Ala:k) H2 +
HAgxk — Pg, (Agxk) Hz) Note that if E; = 0, then z* € T.

We take A\, = 0.7, pr = 3.0, 0 = 0.4 in Algorithm 3.1 to study the behavior of Algorithm
3.1 and compare it with the scheme (1.8). In the processes, we take z! as the initial point,
where 2! = rand(1,N). Let t; = 2, h(2*) = f (z¥) = 0.12* in both Algorithm 3.1 and
Scheme (1.8). Here, we select the other initial point in Algorithm 3.1 as 2° = rand(1, N).
The behavior values of the function E, with different ¢ and N are listed in Table 3 and
Table 4, where “Iter.”, “Cpu” denote the number of iterations and cpu time in seconds,
respectively.

Table 3: The iterative numbers of Algorithm 3.1 and Scheme (1.8) for N = 10 and different choices of &

e 1077 107 10°°
Algorithm 3.1 Iter. =17 Iter. =9 Iter. =12
’ TOLy =4.62E —04 TOLy, =9.60E —05 TOLy =5.23E — 06
Iter. = 10 Iter. =17 Iter. = 26

Scheme (1.8)

TOL; = 8.0E — 04 TOL; =9.24FE — 05 TOL; =9.98E — 06

We also plot Ej versus the number of iterations in the following Figure 3.
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Figure 2: Numerical behavior of Algorithm 3.1 under different choices of 0 and e

Table 4: The iterative numbers of Algorithm 3.1 and Scheme (1.8) for N = 30 and different choices of &

5 10~° 10~ 71 10-°
Algorithm 3.1 Iter. =8 Iter. =10 Iter. =13
: TOLy =4.20E —-04 TOLy =7.95E —05 TOLy =4.46FE — 06
Iter. =19 Iter. =41 Iter. = 84

Scheme (1.8)

TOL, =9.25E —04 TOL, =9.75E —05 TOL; = 9.90F — 06

The results are shown in Table 3, Table 4 and Figure 3, which shows that algorithm 3.1
has better performance than scheme (1.8) no matter N = 10 or N = 30, by reason of taking
much less iterations.

From these numerical results, we can see that our algorithm is effective and promising
for solving SFPwMOS. The results of Example 5.2 also show that Algorithm 3.1 has good
performance in higher dimensions. Notice that the application of inertial technique and
self-adaptive method can improve the performance of the algorithm.

(6] Conclusions

In this paper, we study the self-adaptive inertial viscosity projection algorithm for solving
split feasibility problem with multiple output sets. The proposed algorithm shows that the
sequence converges to a solution of this problem with a simple and novel way. The algorithm
uses an adaptive strategy to update the step size and combines inertia technology with
approximate compression technology to improve the efficiency of the algorithm. Preliminary
numerical results show that the proposed method is practical and promising for SFPwMOS.
It has the potential to analyze and design other algorithms for fixed point problems, as well
as a more comprehensive computational study is researched in the further.
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Figure 3: Numerical behavior of Algorithm 3.1 with Scheme (1.8) under different choices of N and
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