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adjoint operator of A). It is observed that, in order to achieve the convergence, one has to
estimate the norm of the bounded linear operator A (or the spectral radius of the matrix
ATA in the finite-dimensional framework) for selecting the step size λk, which is not always
possible in practice. To avoid this obstacle, there have been a number of work to guarantee
convergence without any prior information of the matrix norm (see, for examples [31]). For
instance, López et al. [18] introduced a new way to select the step size by replacing the
parameter λk appeared in (1.2) with the following parameter:

τk =
ρkg(x

k)

∥∇g(xk)∥2
, k ≥ 1, (1.3)

where ρk ∈ (0, 4), g
(
xk
)
= 1

2

∥∥(I − PQ)Axk
∥∥2 and ∇g

(
xk
)
= AT (I − PQ)Axk for all

k ≥ 1. This method is a modification of the CQ method which is often called the self-
adaptive method. Some modifications of the CQ algorithm and the self-adaptive method
now have been invented for solving the SFP (see, for example [1, 12, 26, 28]).

Some generalizations of the SFP have also been studied by many authors. For example,
the split common fix point problem (SFPP) [4, 23], the multiple-sets SFP (MSSFP) [10,
17, 32], the split variational inequality problem (SVIP) [16, 27] and the split common null
point problem (SCNPP) [11, 21]. Recently, Reich et al. [22] considered and studied another
generalized split feasibility problem with multiple output sets (SFPwMOS) as follows: Let
H, Hi, i = 1, . . . , N be real Hilbert spaces and let Ai : H → Hi, i = 1, . . . , N be bounded
linear operators and let AT

i : Hi+1 → Hi, i = 1, . . . , N − 1 be its adjoint. Let C and
Qi, i = 1, . . . , N be nonempty, closed and convex subsets of H and Hi, i = 1, . . . , N ,
respectively. Given H, Hi and Ai as above, the split feasibility problem with multiple output
sets (SFPwMOS) is to find an element x∗ such that

x∗ ∈ Γ := C ∩ (∩N
i=1 A−1

i (Qi)) ̸= 0/. (1.4)

Reich et al. [22] defined the function g : H → R as

g (x) :=
1

2

N∑
i=1

∥(I − PQi
)Aix∥2 , for all x ∈ H. (1.5)

It is not difficult to see that an element x∗ is a solution of the SFPwMOS (1.4) if and only
if it is the solution of the problem

min
x∈C

g(x), (1.6)

this is equivalent to
0 ∈ ∇g (x∗) +NC (x∗) , (1.7)

where NC (x) is the normal cone of C at the point x. It implies that

x∗ = PC

(
x∗ − α

N∑
i=1

AT
i (I − PQi

)Aix
∗

)
,

where α is an arbitrary positive real number. Motivated by these characterizations, Reich
et al. [24] introduced the following iterative method for solving the SFPwMOS (1.4). For
any given point x0 ∈ H,

{
xk
}
is a sequence generated by the iterative method

xk+1 := tkf(x
k) + (1− tk)PC(x

k − αk

N∑
i=1

AT
i (I − PQi

)Aix
k), (1.8)
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where f : C → C is a strict contraction mapping of H into itself with the contraction
constant θ ∈ [0, 1), αk ⊂ (0,∞) and tk ⊂ (0, 1). It was proved that if the sequences {αk}
and {tk} satisfy the conditions:

0 < a ≤ αk ≤ b < 2
N max

i=1,...,N
{∥Ai∥2} for all k > 1 and limk→∞ tk = 0,

∑∞
k=1 tk = ∞,

then the sequence
{
xk
}
generated by (1.8) converges strongly to a solution point x∗ ∈ Γ of

the SFPwMOS (1.4), which is a unique solution of the variational inequality

⟨(I − f)x∗, x− x∗⟩ ≥ 0 ∀x ∈ Γ.

In optimization field, to speed up the convergence, Polyak [20] firstly proposed the inertial
extrapolation for solving smooth convex minimization problem which makes use of two
previous iterates to update the next iterate. Inertial type algorithms can speed up the
convergence rate, due to the fact the presence of inertial term. Hence, they have been
widely studied by many authors [7, 8, 9, 13, 25].

Inspired by the above works, in this paper, we propose a self-adaptive inertial viscosity
algorithm for solving the SFPwMOS (1.4) in general Hilbert spaces. The main contributions
of this paper are as follows:

(i) We adopt self-adaptive strategy to update the step-size based on the information of
the objective function and its gradient, to improve the flexibility of the algorithm.

(ii) We combine inertial technique with the nearly contractive viscosity-type iteration, to
speed up the convergence.

The rest of the paper is organized as follows. Some fundamental tools and results are
presented in Section 2. In Section 3, we construct an algorithm for solving the SFPwMOS
and analyze its strong convergence. Several derived results are presented in Section 4. In
Section 5, we illustrate the performance of the algorithm by testing a numerical example.

2 Preliminaries

Let I be the identity operator on H. Given a sequence
{
xk
}
in H and x ∈ H. We use

xk → x to denote that the sequence
{
xk
}
converges strongly to a point x as k → ∞.

Definition 2.1. Given a not necessarily linear operator T : H → H, denote by Fix(T ) :=
{x ∈ H|x = Tx} the set of all fixed points of T .

(i) quasi-nonexpansive if Fix(T ) ̸= 0/ and ∥Tx− z∥ ≤ ∥x− z∥ , ∀x ∈ H, z ∈ Fix(T ).

(ii) firmly nonexpansive if ∥Tx− Ty∥2 ≤ ⟨Tx− Ty, x− y⟩ , ∀x, y ∈ H, or equivalently,

∥Tx− Ty∥2 ≤ ∥x− y∥2 − ∥(I − T )x− (I − T )y∥2 , ∀x, y ∈ H.

Lemma 2.2. Let Q be a nonempty closed convex subset of H. PQ denotes the projection
onto the convex set Q, that is,

PQ (x) = arg min
y∈Q

∥x− y∥ .

It has the following well-know properties:
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(i) x ∈ Q ⇔ PQ (x) = x;

(ii) ⟨x− PQ(x), z − PQ(x)⟩ ≤ 0, ∀x ∈ H and ∀z ∈ Q;

(iii) ⟨PQ(y)− PQ(x), y − x⟩ ≥ ∥PQ(y)− PQ(x)∥2 , ∀x, y ∈ H;

(iv) ∥PQ(x)− z∥2 ≤ ∥x− z∥2 − ∥PQ(x)− x∥2 , ∀x ∈ H and ∀z ∈ Q;

(v) ∥PQ(x)− PQ(y)∥2 ≤ ∥x− y∥2 ∀x, y ∈ H.

From Definition 2.1, we know that PQ is firmly nonexpansive.

Lemma 2.3 ([2]). Let x, y ∈ H and t, s ∈ R. R is the set of real numbers. Then

(i) ∥x+ y∥2 ≤ ∥x∥2 + 2 ⟨y, x+ y⟩ ;

(ii) ∥tx+ sy∥2 = t(t+ s) ∥x∥2 + s(t+ s) ∥y∥2 − st ∥x− y∥2 ;

(iii) ∥tx+ (1− t)y∥2 = t ∥x∥2 + (1− t) ∥y∥2 − t(1− t) ∥x− y∥2 .

Lemma 2.4 ([14]). Assume {ωk} is a sequence of non-negative real numbers such that{
ωk+1 ≤ (1− vk)ωk + vkuk, k ≥ 1,
ωk+1 ≤ ωk − τk + σk, k ≥ 1,

where {vk} , {uk} and {σk} are sequences of real numbers such that

(i) {vk} ⊂ (0, 1) and
∑∞

k=1 vk = ∞;

(ii) limk→∞ σk = 0;

(iii) lim supj→∞ ukj
≤ 0 whenever lim supj→∞ lkj

= 0 for any subsequence {kj} of {k}.

Then limk→∞ ωk = 0.

Lemma 2.5 ([19]). Let h be a contraction on H. The viscosity approximation method
proposed by Moudafi generates a strongly convergent sequence:{

x0 ∈ H,
xk+1 = tkh

(
xk
)
+ (1− tk)Tx

k for k ∈ N,

which converges strongly to a fixed point x∗ of T . In [31], Xu further proved that the above
x∗ also satisfies the following variational inequality:

⟨h(x∗)− x∗, x− x∗⟩ ≤ 0, ∀x ∈ Fix(T ),

provided that {tk} ∈ (0, 1).
Recall that the sequence of mappings hk from H into H is called a nearly contractive

mappings with sequence {(ζk, ak)} in [0, 1)× [0,∞). A useful and simple norm inequality is
the following

∥hk(x)− hk(y)∥ ≤ ζk ∥x− y∥+ ak,

for ak → 0, all x, y ∈ H and k ∈ N .
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3 Inertial Viscosity Projection Algorithm and Its Convergence

In this section, we propose a self-adaptive inertial viscosity projection algorithm for split
feasibility problem with multiple output sets, and prove its strong convergence.

Algorithm 3.1 (Self-adaptive inertial viscosity projection algorithm). Let {tk} {λk} be two
sequences in (0, 1), {ρk} ⊂ (0, 4), θk ∈ [0, θ] with θ ∈ [0, 1), and {hk} be a nearly contractive
mapping with {(ζk, ak)}. Set

x0, x1 ∈ H,
zk = xk + θk

(
xk − xk−1

)
,

τk := ρkgk(z
k)

∥∇gk(zk)∥2 ,

xk+1=(1−λk) z
k+λk

(
tkhk

(
zk
)
+ (1−tk)PC

(
zk−τk∇gk

(
zk
)))

, for k ∈ N.

(3.1)

where gk
(
zk
)
:= 1

2

∑N
i=1

∥∥(I − PQi)Aiz
k
∥∥2 , ∇gk(z

k) :=
∑N

i=1 A
∗
i (I − PQi)Aiz

k.

The following lemmas play an important role in the convergence proof of Algorithm 3.1.

Lemma 3.2. Let Γ be the solution set of the problem (1.4). Define an operator S : H1 → H2

as follows:

S(zk) = PC

(
zk − τk∇gk

(
zk
))

. (3.2)

For zk ∈ H and z ∈ Γ, the following inequality holds:∥∥S(zk)− z
∥∥2 ≤

∥∥zk − z
∥∥2 − r(zk), (3.3)

where r(zk) = ρk(4− ρk)
g2
k(z

k)

∥∇gk(zk)∥2 +
∥∥wk − PC(w

k))
∥∥2, wk = zk − τk∇gk

(
zk
)
.

Proof. Assume that the sequence zk is infinite, that is, Algorithm 3.1 does not terminate
in a finite number of iterations. Thus ∇gk

(
zk
)
̸= 0/ for all k ≥ 0. PΓ denotes the metric

projection, set z ∈ Γ. Note that I − PQi for each i = 1, . . . , N is firmly nonexpansive and
∇gk (z) = 0. Hence, we have from Lemma 2.2 that

〈
∇gk(z

k), zk − z
〉
=

〈
N∑
i=1

AT
i (I − PQi

)Aiz
k, zk − z

〉

=

N∑
i=1

〈
AT

i (I − PQi
)Aiz

k, zk − z
〉

=

N∑
i=1

〈
(I − PQi)Aiz

k, Aiz
k −Aiz

〉
≥

N∑
i=1

∥∥(I − PQi)Aiz
k
∥∥2

= 2gk(z
k),
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which implies that∥∥wk − z
∥∥2 =

∥∥(zk − z)− τk∇gk(z
k)
∥∥2

=
∥∥zk − z

∥∥2 + τ2k
∥∥∇gk(z

k)
∥∥2 − 2τk

〈
∇gk(z

k), zk − z
〉

≤
∥∥zk − z

∥∥2 + ρ2kg
2
k

(
zk
)

∥∇gk(zk)∥2
−

2ρkgk
(
zk
)

∥∇gk(zk)∥2
(2gk(z

k))

=
∥∥zk − z

∥∥2 + ρ2kg
2
k

(
zk
)

∥∇gk(zk)∥2
−

4ρkg
2
k

(
zk
)

∥∇gk(zk)∥2

=
∥∥zk − z

∥∥2 − ρk (4− ρk)
g2k
(
zk
)

∥∇gk(zk)∥2
. (3.4)

By the definition of ρk, we obtain∥∥wk − z
∥∥2 ≤

∥∥zk − z
∥∥2 , ∀k ≥ 0. (3.5)

From Lemma 2.2 (iv) and (2.3), it is easy to get that∥∥S(zk)− z
∥∥2 =

∥∥PC(w
k)− z

∥∥2
≤
∥∥wk − z

∥∥2 − ∥∥wk − PC(w
k)
∥∥2

≤
∥∥zk − z

∥∥2 − ρk (4− ρk)
g2k
(
zk
)

∥∇gk(zk)∥2
−
∥∥wk − PC(w

k)
∥∥2

=
∥∥zk − z

∥∥2 − r(zk). (3.6)

Thus, the proof is completed.

Remark 3.3. Since {ρk} ⊂ (0, 4), we observe that r
(
xk
)
≥ 0 for all x ∈ H. Therefore, the

operator S is quasi-nonexpansive.

Lemma 3.4. Set zk := xk + θk(x
k − xk−1), where 0 ≤ θk < 1 for all k ∈ N . Then for all

z ∈ H, ∥∥zk − z
∥∥2 ≤

∥∥xk − z
∥∥2 + θk(

∥∥xk − z
∥∥2 − ∥∥xk−1 − z

∥∥) + 2θk
∥∥xk − xk−1

∥∥2 .
Proof. Using the identity 2 ⟨a, b⟩ = ∥a∥2 + ∥b∥2 − ∥a− b∥2, we have∥∥zk − z

∥∥2 =
∥∥xk − z + θk(x

k − xk−1)
∥∥2

=
∥∥xk − z

∥∥2 + 2θk
〈
xk − z, xk − xk−1

〉
+ θ2k

∥∥xk − xk−1
∥∥2

=
∥∥xk − z

∥∥2 + θk(
∥∥xk − z

∥∥2 + ∥∥xk − xk−1
∥∥2 − ∥∥xk−1 − z

∥∥2)
+ θ2k

∥∥xk − xk−1
∥∥2

=
∥∥xk−z

∥∥2+θk(
∥∥xk−z

∥∥2−∥∥xk−1−z
∥∥2)+θk(1 + θk)

∥∥xk−xk−1
∥∥2

≤
∥∥xk − z

∥∥2 + θk(
∥∥xk − z

∥∥2 − ∥∥xk−1 − z
∥∥2) + 2θk

∥∥xk − xk−1
∥∥2 . (3.7)
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Lemma 3.5. Given a contraction h with ζ ∈ (0, 1) , x∗ = PΓh (x
∗) and x∗ ∈ Γ. {hk} is a

nearly contractive mapping with {(ζk, ak )} such that ζk → ζ. Assume that {λk}, {tk}, and
{θk} satisfy the following conditions:

(i) limk→∞ hk (x
∗) = h (x∗);

(ii) 0 < λk ≤ 1 and k ∈ N ;

(iii) tk ∈ (0, 1) such that limk→∞ tk = 0 and
∑∞

k=1 tk = ∞;

(iv) limk→∞
θk
tk

∥∥xk − xk+1
∥∥ = 0.

Then the sequence
{
xk
}
generated by Algorithm 3.1 is bounded.

Proof. Let yk = tkhk

(
zk
)
+ (1− tk)S(z

k) and from Lemma 2.5, we have∥∥yk − x∗∥∥ =
∥∥tkhk

(
zk
)
+ (1− tk)S(z

k)− x∗∥∥
≤ tk

∥∥hk(z
k)− h(x∗)

∥∥+ (1− tk)
∥∥S(zk)− x∗∥∥

≤ tk(
∥∥hk(z

k)− h(x∗)
∥∥+ ∥hk(x

∗)− x∗∥) + (1− tk)
∥∥S(zk)− x∗∥∥

≤ tk(ζk
∥∥zk−x∗∥∥+ ak)+tk ∥hk(x

∗)−x∗∥+(1− tk)
∥∥S(zk)−x∗∥∥

≤ (1− (1− ζk)tk)
∥∥zk − x∗∥∥+ tk(∥hk(x

∗)− x∗∥+ ak). (3.8)

From (3.8), ζk ∈ (0, 1), tk ∈ (0, 1) and (ii), we have∥∥xk+1 − x∗∥∥
=
∥∥(1− λk)(z

k − x∗) + λk(y
k − x∗)

∥∥
≤ (1− λk)

∥∥zk − x∗∥∥+ λk

∥∥yk − x∗∥∥
≤ (1− λk)

∥∥zk − x∗∥∥+ λk(1− (1− ζk)tk)
∥∥zk − x∗∥∥+ λktk(∥hk(x

∗)− x∗∥+ ak)

= (1− (1− ζk)λktk)
∥∥zk − x∗∥∥+ λktk(∥hk(x

∗)− x∗∥+ ak)

= (1− (1− ζk)λktk)
∥∥zk − x∗∥∥+ (1− ζk)λktk

(∥hk(x
∗)− x∗∥+ ak
1− ζk

)
= (1− (1− ζk)λktk)

∥∥xk − x∗ + θk(x
k − xk−1)

∥∥
+ (1− ζk)λktk

(∥hk(x
∗)− x∗∥+ ak
1− ζk

)
≤ (1− (1− ζk)λktk)

∥∥xk − x∗∥∥+ θk
∥∥xk − xk−1

∥∥
+ (1− ζk)λktk

(∥hk(x
∗)− x∗∥+ ak
1− ζk

)
= (1− (1− ζk)λktk)

∥∥xk − x∗∥∥
+ (1− ζk)λktk

(∥hk(x
∗)− x∗∥+ ak
1− ζk

+
θk

(1− ζk)λktk

∥∥xk − xk−1
∥∥). (3.9)

Since limk→∞ hk (x
∗) = h (x∗), limk→∞ ζk = ζ and limk→∞ ak = 0, we conclude that the

sequence
{∥∥hk(x

∗)−x∗
∥∥+ak

1−ζk

}
is bounded. On the other hand, the conditions (ii) and (iv)

imply the sequence
{

θk(
1−ζk

)
λktk

∥∥xk − xk−1
∥∥} is also bounded. Hence, we obtain an upper
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bound and let

M = lim sup
k→∞

{
∥hk (x

∗)− x∗∥+ ak
1− ζk

+
θk

(1− ζk)λktk

∥∥xk − xk−1
∥∥} .

Then we rewrite (3.9) as ∥∥xk+1 − x∗∥∥ ≤ max
{∥∥xk − x∗∥∥ , M} ,

by induction, we have ∥∥xk+1 − x∗∥∥ ≤ max
{∥∥x1 − x∗∥∥ , M} .

Thus, the sequence
{∥∥xk − x∗

∥∥} is bounded. The proof is completed.

Remark 3.6. Since
{∥∥xk − x∗

∥∥} is bounded, so we can obtain that
{∥∥zk − x∗

∥∥} and{∥∥yk − x∗
∥∥} are bounded. By Lemma 2.5, we know

∥∥hk(z
k)
∥∥ ≤

∥∥hk(z
k)− hk(x

∗)
∥∥+ ∥hk(x

∗)∥ ≤ ζk
∥∥zk − x∗∥∥+ ak + ∥hk(x

∗)∥ .

This shows that
{
hk

(
zk
)}

is also bounded.
Next, we will give the convergence analysis of Algorithm 3.1.

Theorem 3.7. Let H, Hi, i = 1, . . . , N be real Hilbert spaces and Ai : H → Hi, i = 1, . . . , N
be bounded linear operators. Given a contraction h with ζ ∈ (0, 1), x∗ = PΓh (x

∗) and
x∗ ∈ Γ. {hk} is a nearly contractive mapping with {(ζk, ak )} such that ζk → ζ. Let C and
Qi, i = 1, . . . , N be nonempty, closed convex subsets of H and Hi, i = 1, . . . , N respectively.
Suppose the sequences {λk}, {tk} and {θk} in Algorithm 3.1 satisfy the following conditions:

(i) tk ∈ (0, 1) such that limk→∞ tk = 0 and
∑∞

k=1 tk = ∞;

(ii) 0 < λk ≤ 1 and k ∈ N ;

(iii) limk→∞
θk
tk

∥∥xk − xk+1
∥∥ = 0;

(iv) limk→∞ hk(x
∗) = h(x∗).

Then the sequence
{
xk
}
generated by Algorithm 3.1 converges strongly to x∗ = PΓh (x

∗).

Proof. From the inequality

⟨u, v⟩ ≤ ∥u∥ ∥v∥ ≤ 1

2
(∥u∥2 + ∥v∥2),
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together with Lemma 2.5 and ζk ∈ (0, 1), we obtain∥∥yk − x∗∥∥2 =
∥∥tk(hk(z

k)− x∗) + (1− tk)(S(z
k)− x∗)

∥∥2
= tk

〈
hk(z

k)− x∗, yk − x∗〉+ (1− tk)
〈
S(zk)− x∗, yk − x∗〉

= tk
(〈
hk(z

k)− hk(x
∗), yk − x∗〉+ 〈hk(x

∗)− h(x∗), yk − x∗〉)
+ tk

〈
h(x∗)− x∗, yk − x∗〉+ (1− tk)

〈
S(zk)− x∗, yk − x∗〉

≤ tk
(∥∥hk(z

k)− hk(x
∗)
∥∥+ ∥hk(x

∗)− h(x∗)∥
) ∥∥yk − x∗∥∥

+ tk
〈
h(x∗)− x∗, yk − x∗〉+ (1− tk)

∥∥S(zk)− x∗∥∥ ∥∥ yk − x∗∥∥
≤ tk

[(
ζk
∥∥zk − x∗∥∥+ ak

)
+ ∥hk(x

∗)− h(x∗)∥
] ∥∥yk − x∗∥∥

+ tk
〈
h(x∗)− x∗, yk − x∗〉+ (1− tk)

∥∥S(zk)− x∗∥∥ ∥∥ yk − x∗∥∥
≤ tkζk

2

(∥∥zk − x∗∥∥2 + ∥∥yk − x∗∥∥2)+ 1− tk
2

(∥∥S(zk)− x∗∥∥2 + ∥∥yk − x∗∥∥2)
+ tk

〈
h(x∗)− x∗, yk − x∗〉+ tk(ak + ∥hk(x

∗)− h(x∗)∥)
∥∥ yk − x∗∥∥

≤ tkζk
2

∥∥zk − x∗∥∥2 + 1

2

∥∥yk − x∗∥∥2 + 1− tk
2

∥∥S(zk)− x∗∥∥2
+ tk

〈
h(x∗)− x∗, yk − x∗〉+ tk(ak + ∥hk(x

∗)− h(x∗)∥)
∥∥ yk − x∗∥∥ .

This means that∥∥yk − x∗∥∥2 ⩽ tkζk
∥∥zk − x∗∥∥2 + (1− tk)

∥∥S(zk)− x∗∥∥2 + 2tk
〈
h(x∗)− x∗, yk − x∗〉

+ 2tk(ak + ∥hk(x
∗)− h(x∗)∥)

∥∥ yk − x∗∥∥ .
Then, together with the inequality∥∥S(zk)− x∗∥∥2 ≤

∥∥zk − x∗∥∥2 − r(zk),

we have∥∥yk − x∗∥∥2 ≤ tkζk
∥∥zk − x∗∥∥2 + 2tk

〈
h(x∗)− x∗, yk − x∗〉

+ 2tk(ak + ∥hk(x
∗)− h(x∗)∥)

∥∥yk − x∗∥∥+ (1− tk)
∥∥zk − x∗∥∥2 − (1− tk)r(z

k)

= [1− (1− ζk)tk]
∥∥zk − x∗∥∥2 + 2tk

〈
h(x∗)− x∗, yk − x∗〉

+ 2tk(ak + ∥hk(x
∗)− h(x∗)∥)

∥∥yk − x∗∥∥− (1− tk)r(z
k). (3.10)

By Lemma 2.3 (iii) and (3.10), we obtain∥∥xk+1 − x∗∥∥2 =
∥∥(1− λk)

(
zk − x∗)+ λk

(
yk − x∗)∥∥2

= (1− λk)
∥∥zk − x∗∥∥2 + λk

∥∥yk − x∗∥∥2 − λk(1− λk)
∥∥zk − yk

∥∥2
⩽ (1− λk)

∥∥zk − x∗∥∥2 + λk [1− (1− ζk)tk]
∥∥zk − x∗∥∥2

+ 2λktk
〈
h (x∗)− x∗, yk − x∗〉+ 2λktk(ak + ∥hk(x

∗)− h(x∗)∥)
∥∥yk − x∗∥∥

− λk(1− λk)r(z
k)− λk(1− λk)

∥∥zk − yk
∥∥2

= [1− (1− ζk)λktk]
∥∥zk − x∗∥∥2

+ 2λktk
〈
h (x∗)− x∗, yk − x∗〉+ 2λktk(ak + ∥hk(x

∗)− h(x∗)∥)
∥∥yk − x∗∥∥

− λk(1− λk)r(z
k)− λk(1− λk)

∥∥zk − yk
∥∥2 . (3.11)
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From Lemma 2.3 (i), we get∥∥zk − x∗∥∥2 =
∥∥xk − x∗ + θk

(
xk − xk−1

)∥∥2
≤
∥∥xk − x∗∥∥2 + 2θk

〈
xk − xk−1, zk − x∗〉

⩽
∥∥xk − x∗∥∥2 + 2θk

∥∥xk − xk−1
∥∥ ∥∥ zk − x∗∥∥ . (3.12)

Putting (3.12) into (3.11) and k → ∞, we have∥∥xk+1 − x∗∥∥2 ⩽ [1− (1− ζk)λktk] (
∥∥xk − x∗∥∥2 + 2θk

∥∥xk − xk−1
∥∥ ∥∥ zk − x∗∥∥)

+ 2λktk
〈
h (x∗)− x∗, yk − x∗〉+ 2λktk(ak + ∥hk(x

∗)− h(x∗)∥)
∥∥yk − x∗∥∥

− λk(1− tk)r(z
k)− λk(1− λk)

∥∥zk − yk
∥∥2

⩽ [1− (1− ζk)λktk]
∥∥xk − x∗∥∥2 + 2θk

∥∥xk − xk−1
∥∥ ∥∥ zk − x∗∥∥

+ 2λktk
〈
h (x∗)− x∗, yk − x∗〉+ 2λktk(ak + ∥hk(x

∗)− h(x∗)∥)
∥∥yk − x∗∥∥

− λk(1− tk)r(z
k)− λk(1− λk)

∥∥zk − yk
∥∥2 . (3.13)

Set

ϕk =
∥∥xk − x∗∥∥2 ,

lk = λk (1− tk) r
(
zk
)
+ λk (1− λk)

∥∥zk − yk
∥∥2 ,

vk = (1− ζk)λktk,

uk=
2

(1−ζk)
(
〈
h (x∗)−x∗, yk−x∗〉+(ak+∥hk (x

∗)−h (x∗)∥)
∥∥yk − x∗∥∥

+
θk
λktk

∥∥xk−xk−1
∥∥ ∥∥zk−x∗∥∥).

Then, we rewrite (3.13) as

ϕk+1 ⩽ [1− vk]ϕk + vkuk, (3.14)

ϕk+1 ⩽ ϕk − lk + σk, (3.15)

where

σk = 2θk
∥∥xk − xk−1

∥∥ ∥∥zk − x∗∥∥+ 2λktk
〈
h(x∗)− x∗, yk − x∗〉

+ 2λktk(ak + ∥hk(x
∗)− h(x∗)∥)

∥∥yk − x∗∥∥ .
Since

∑∞
k=1 tk = ∞ and Theorem 3.7 (ii) hold, limk→∞ ζk = ζ. It follows that

∞∑
k=1

(1− ζk)λktk = ∞.

Because tk ∈ (0, 1) and Theorem 3.7 (iii), we see that limk→∞ θk
∥∥xk − xk−1

∥∥ = 0. To-

gether with the boundedness of
{
∥zk − x∗∥

}
,
{
∥yk − x∗∥

}
and limk→∞ tk = 0, we have

limk→∞ σk = 0.
We now show that ϕk → 0 as k → ∞ by considering two possible cases.
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Case 1 {ϕk} is eventually decreasing (i.e., there exists j ≥ 0 such that ϕk > ϕk+1 holds
for all k ≥ j). In this case, ϕk must be convergent, and from (3.15) it follows that

lk ≤ (ϕk − ϕk+1) + σk. (3.16)

Noting limk→∞ σk = 0, letting k → ∞ in (3.16) yields lk → 0 as k → ∞. Since limk→∞ lk =
0, limk→∞ tk = 0 and 0 < λk ≤ 1, we have

lim
k→∞

∥∥zk − yk
∥∥2 = 0,

and

lim
k→∞

r(zk) = lim
k→∞

[
ρk(4− ρk)

g2k(z
k)

∥∇gk(xk)∥2
+
∥∥wk − PC(w

k)
∥∥] = 0,

which implies
lim
k→∞

∥∥wk − PC(w
k)
∥∥ = 0, (3.17)

g2k(z
k)

∥∇gk(xk)∥2
→ 0 as k → ∞. (3.18)

We note that for each i = 1, 2, . . . , N , AT
i (I − PQi

)Ai(·) is Lipschitz continuous. Since the
sequence

{
zk
}
is bounded and

∥∥AT
i (I − PQi)Aiz

k
∥∥=∥∥AT

i (I − PQi)Aiz
k −AT

i (I − PQi)Aix
∗∥∥≤( max

1≤i≤N
∥Ai∥

)∥∥zk − x∗∥∥ ,
for all i = 1, 2, . . . , N we have the sequence

{∥∥AT
i (I − PQi

)Aiz
k
∥∥}∞

k=1
is bounded. Hence,{∥∥∇gk(x

k)
∥∥}∞

k=1
is bounded. Consequently, we have from (3.18) that

lim
k→∞

∥∥(I − PQi
)Aiz

k
∥∥2 = 0, (3.19)

for each i = 1, 2, . . . , N . Since wk = zk − τk∇gk(z
k), then we have from (3.19) that∥∥wk − zk

∥∥ = τk
∥∥∇gk(z

k)
∥∥→ 0, as k → ∞. (3.20)

On the other hand, using (i) and (iii), since zk = xk + θk(x
k − xk−1), we have∥∥zk − xk

∥∥ = θk
∥∥xk − xk−1

∥∥→ 0, as k → ∞. (3.21)

From (3.20) and (3.21), we obtain∥∥wk − xk
∥∥ =

∥∥wk − zk + zk − xk
∥∥ ≤

∥∥wk − zk
∥∥+ ∥∥zk − xk

∥∥→ 0. (3.22)

Since
{
xk
}
is bounded, there exists a subsequence

{
xkj
}
of
{
xk
}
such that

{
xkj
}
→ x̂∗.

Now we show that x̂∗ ∈ Γ. That is, we need to show x̂∗ ∈ C and Aix̂
∗ ∈ Qi, i = 1, 2, . . . , N .

From (3.22) and (3.17) we can conclude that

lim
j→∞

∥∥xkj − PC(x
kj )
∥∥ = lim

j→∞

∥∥wkj − PC(w
kj )
∥∥ = ∥x̂∗ − PC(x̂

∗)∥ → 0.

Thus, x̂∗ ∈ C. From (3.19) and (3.21) we can obtain that

lim
j→∞

∥∥(I − PQi)Aiz
kj
∥∥2 = lim

k→∞

∥∥(I − PQi)Aix
kj
∥∥2 = ∥(I − PQi)Aix̂

∗∥2 = 0.
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That is, Aix̂
∗ ∈ Qi, i = 1, 2, . . . , N for all i = 1, 2, . . . , N. Hence x̂∗ ∈ Γ.

Moreover, for x∗ = PΓh(x
∗), we can see that

lim sup
k→∞

〈
xk − x∗, h(x

∗
)− x∗

〉
= lim

k→∞

〈
xk − PΓh(x

∗), h(x
∗
)− PΓh(x

∗)
〉
≤ 0.

Together with limk→∞ ak = 0, limk→∞ hk(x
∗) = h(x∗) and limk→∞

θk
tk

∥∥xk − xk−1
∥∥ =

0, we conclude that

lim sup
k→∞

uk = lim sup
k→∞

2

(1− ζk)

〈
h(x∗)− x∗, yk − x∗〉 ≤ 0.

By Lemma 2.5, we get as k → ∞, ϕk → 0.
Case 2 {ϕk} is not eventually decreasing. Hence, we can find an integer k0 such that

ϕk0
≤ ϕk0+1. Define

Jk := {k0 ≤ i ≤ k : ϕi ≤ ϕi+1} , k > k0.

Obviously, Jk is nonempty and satisfies Jk ⊆ Jk+1. Let

τ(k) := max Jk, k > k0. (3.23)

It is clear that τ(k) → ∞ as k → ∞ (otherwise, {ϕk} is eventually decreasing). It is also
clear that sτ(k) ≤ sτ(k)+1 for all k > k0. Moreover,

ϕk ≤ ϕτ(k)+1 , ∀k > k0. (3.24)

In fact, if τk = k, then inequity (3.24) is trivial; if τk = k− 1, then τ(k) + 1 = k, and (3.24)
is also trivial; If τ(k) < k − 1, then there exists an integer i ≥ 2 such that τ(k) + i = k.
Thus we deduce from the definition of τ(k) that

ϕτ(k)+1 > ϕτ(k)+2 > · · · > ϕτ(k)+i = ϕk, (3.25)

and inequity (3.24) holds again. Since ϕτ(k) < ϕτ(k)+1 all k > k0, it follows from (3.16) that

0 ≤ lτ(k) ≤ δτ(k) → 0, (3.26)

so that lτ(k) → 0 as k → ∞. The rest part of the proof is similar to that of case 1, hence,
it is omitted.

The proof is completed.

4 Derived Results

For the SFPwMOS (1.4), when N = 1, it becomes the SFP (1.1). Thus, we have the following
corollary for solving the SFP (1.1), which is an immediate consequence of Theorem 3.7.

Corollary 4.1. Let H1 and H2 be two real Hilbert spaces and let A : H1 → H2 be bounded
linear operator. Let C and Q be nonempty, closed and convex subsets of H1 and H2,
respectively. Given a contraction h with ζ ∈ (0, 1) and x∗ = PΓh (x

∗). Assume that
Ω = C ∩ A−1(Q) ̸= 0/, let{hk} be a nearly contractive mapping with {(ζk, ak)} such that
ζk → ζ. For any starting point x0, x1 ∈ H1, let

{
xk
}
be the sequence generated by{

zk = xk + θk
(
xk − xk−1

)
,

xk+1 := (1− λk) z
k + λk

(
tkhk

(
zk
)
+ (1− tk)PC

(
zk − τk∇fk

(
zk
)))

,
(4.1)

where τk := ρkfk(z
k)

∥∇fk(zk)∥2 , and ∇fk
(
xk
)
:= AT (I−PQ)Axk. Suppose the sequences {λk}, {tk}

and {θk} satisfy the conditions in Theorem 3.7. Then, the sequence
{
xk
}
converges strongly

to the solution x∗ ∈ Ω, where x∗ = PΩh(x
∗).
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When we take h (x) = x0 in Algorithm 3.1, we note also the following results regarding
to the SFPwMOS (1.4).

Corollary 4.2. Let H, Hi, i = 1, . . . , N be real Hilbert spaces and let Ai : H → Hi, i =
1, . . . , N be bounded linear operators. Let C and Qi, i = 1, . . . , N be nonempty, closed and
convex subsets of H and Hi, i = 1, . . . , N respectively. Assume that the problem (1.4) is
consistent. For any initial guess x0, x1 ∈ H1, let

{
xk
}
be the sequence generated by{

zk = xk + θk
(
xk − xk−1

)
,

xk+1 := (1− λk) z
k + λk

k

(
tkx

0 + (1− tk)PC

(
zk − τk∇gk

(
zk
)))

,
(4.2)

where τk, and ∇gk are given by (3.1). Suppose the sequences {λk}, {tk} and {θk} satisfy the
conditions in Theorem 3.7. Then, the sequence

{
xk
}
generated by (4.2) strongly converges

to the solution x = PΩ(x
0) ∈ Γ.

When we take λk ≡ 1 in Algorithm 3.1, we obtain the following result regarding the
SFPwMOS (1.4).

Corollary 4.3. Let H, Hi, i = 1, . . . , N be real Hilbert spaces and let Ti : H → Hi, i =
1, . . . , N be bounded linear operators. Let C and Qi, i = 1, . . . , N be nonempty, closed
and convex subsets of H and Hi, i = 1, . . . , N respectively. Given a contraction h with
ζ ∈ (0, 1) and x∗ = PΓh (x

∗). Assume that the problem (1.4) is consistent. Let {hk} be a
nearly contractive mapping with {(ζk, ak)} such that ζk → ζ. and any initial guess x0 ∈ H,
let
{
xk
}
be the sequence generated by{

zk = xk + θk
(
xk − xk−1

)
,

xk+1 := tkhk

(
zk
)
+ (1− tk)PC

(
zk − τk∇gk

(
zk
))

,
(4.3)

where τk, and ∇gk are given by (3.1). Suppose the sequences satisfies the conditions (i)
and (iv). Then, the sequence

{
xk
}

generated by (4.3) strong converges to the solution
x∗ = PΩh(x

∗) ∈ Γ.

Of course, when we take h (x) = x0, we get the following result regarding the SFPwMOS
(1.4).

Corollary 4.4. Let H, Hi, i = 1, . . . , N be real Hilbert spaces and let Ai : H → Hi, i =
1, . . . , N be bounded linear operators. Let C and Qi, i = 1, . . . , N be nonempty, closed and
convex subsets of H and Hi, i = 1, . . . , N respectively. Assume that the problem (1.4) is
consistent. For any initial guess x0 ∈ H, let

{
xk
}
be the sequence generated by{

zk = xk + θk
(
xk − xk−1

)
,

xk+1 := tkx
0 + (1− tk)PC

(
zk − τk∇gk

(
zk
))

,
(4.4)

where τk, and ∇gk are given by (3.1). Suppose the sequences {tk} satisfies the conditions
(i). Then, the sequence

{
xk
}

generated by (4.4) strongly converges to the solution x∗ =
PΩh(x

∗) ∈ Γ.

Remark 4.5. In Corollary 4.4 above, for special case, where N = 1, the iterative scheme
(4.4) reduced exactly to iterative scheme proposed by He et al. [15, Theorem 3.2].
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5 Numerical Experiment

In this section, we test two numerical experiments to demonstrate the performance and
convergence of Algorithm 3.1. All the codes are written in MATLAB and are performed
on a DELL laptop with RAM 8 GB and Intel(R) Core (TM) i5-8265U CPU @ 1.60GHz.
Consider the following Problem:

Find a point x∗ such that

x∗ ∈ Γ := C ∩ (∩N
i=1A

−1
i (Qi)) ̸= 0/, (5.1)

where the sets C and Qi, i = 1, . . . , N and the linear bounded operators Ai, i = 1, . . . , N .

Example 5.1. Let

A1 =

0.8 0.4 0.2
0.9 0.6 0.5
0.1 0.2 0.9

 , A2 =

0.5 0.2 0.3
0.7 0.5 0.3
0.3 0.5 0.8

 ,

C =
{
x ∈ R3|x1 − x2

2 + 2x3 ≤ 0
}
,

Q1 =
{
x ∈ R3

∣∣ x2
1 + x2 − x3 ≤ 0},

Q2 =
{
x ∈ R3

∣∣ x1 + x2
2 − x3 ≤ 0}.

In the experiments we use Ek < ε as the stopping criteria, where Ek := TOLk, ε is

a small enough positive number, TOLk := 1
3

(∥∥xk − PC

(
xk
)∥∥2 +

∥∥A1x
k − PQ1

(
A1x

k
)∥∥2 +∥∥A2x

k − PQ2

(
A2x

k
)∥∥2). Note that if Ek = 0, then xk ∈ Γ.

Firstly, we select different ρk and take λk = 0.8, θk = 0.6 to explore the influence of ρk
on Algorithm 3.1. The results are listed in Table 1.

Table 1: The iterative numbers of Algorithm 3.1 under different choices of ρk and ε

ε ρk = 3.98 ρk = 3.00 ρk = 1.50

10−3 Iter. = 22
TOLk = 9.06E − 04

Iter. = 26
TOLk = 7.96E − 04

Iter. = 33
TOLk = 9.17E − 04

10−4 Iter. = 24
TOLk = 6.29E − 05

Iter. = 31
TOLk = 7.60E − 05

Iter. = 51
TOLk = 9.05E − 05

The behavior of the function Ek in Table 1 is described in the following Figures 1.

It can be observed from Table 1 and Figure 1 that Algorithm 3.1 has better performance
as ρk converges to 4, but ρk ̸= 4.

Secondly, we carry out Algorithm 3.1 with different θk to test the effect of inertial on
Algorithm 3.1. Throughout the process, we take λk = 0.8, ρk = 3.98. The results are
reported in Table 2.

The behavior of the function Ek in Table 2 is described in Figure 2 as follows.

From Table 2 and Figure 2, it can be seen that the bigger the θk, the faster the conver-
gence.

Next, we test the performance of Algorithm 3.1 in higher dimensions.
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Figure 1: Numerical behavior of Algorithm 3.1 under different choices of ρk and ε

Table 2: The iterative numbers of Algorithm 3.1 under different choices of θk and ε
ε θk = 0.6 θk = 0.4 θk = 0.3 θk = 0.1

10−3 Iter. = 22
TOLk = 9.06E − 04

Iter. = 27
TOLk = 9.96E − 04

Iter. = 34
TOLk = 8.49E − 04

Iter. = 43
TOLk = 9.71E − 04

10−4 Iter. = 24
TOLk = 6.29E − 05

Iter. = 39
TOLk = 8.47E − 05

Iter. = 48
TOLk = 8.51E − 05

Iter. = 62
TOLk = 9.58E − 05

10−5 Iter. = 37
TOLk = 8.08E − 06

Iter. = 50
TOLk = 9.90E − 06

Iter. = 62
TOLk = 8.64E − 06

Iter. = 81
TOLk = 9.54E − 06

Example 5.2. Let A1 = (aij)N×N , A2 = (bij)N×N , aij ∈ (0, 0.1) and bij ∈ (0, 0.1) are a
random matrix,respectively. N be a positive integer.

C =
{
x ∈ RN |x1 − x2

2 + 2x3 + x4 + · · ·+ xN ≤ 0
}
,

Q1 =
{
x ∈ RN

∣∣ x2
1 + x2 − x3 + x4 + · · ·+ xN ≤ 0},

Q2 =
{
x ∈ RN

∣∣ x1 + x2
2 − x3 + x4 + · · ·+ xN ≤ 0}.

In the experiments we use Ek < ε as the stopping criteria, where Ek := TOLk, ε is

a small enough positive number, TOLk := 1
3

(∥∥xk − PC

(
xk
)∥∥2 + ∥∥A1x

k − PQ1

(
A1x

k
)∥∥2 +∥∥A2x

k − PQ2

(
A2x

k
)∥∥2). Note that if Ek = 0, then xk ∈ Γ.

We take λk = 0.7, ρk = 3.0, θk = 0.4 in Algorithm 3.1 to study the behavior of Algorithm
3.1 and compare it with the scheme (1.8). In the processes, we take x1 as the initial point,
where x1 = rand(1, N). Let tk = 2

k , h
(
xk
)
= f

(
xk
)
= 0.1xk in both Algorithm 3.1 and

Scheme (1.8). Here, we select the other initial point in Algorithm 3.1 as x0 = rand(1, N).
The behavior values of the function Ek with different ε and N are listed in Table 3 and
Table 4, where“ Iter.”,“Cpu”denote the number of iterations and cpu time in seconds,
respectively.

Table 3: The iterative numbers of Algorithm 3.1 and Scheme (1.8) for N = 10 and different choices of ε

ε 10−3 10−4 10−5

Algorithm 3.1
Iter. = 7

TOLk = 4.62E − 04
Iter. = 9

TOLk = 9.60E − 05
Iter. = 12

TOLk = 5.23E − 06

Scheme (1.8)
Iter. = 10

TOLk = 8.0E − 04
Iter. = 17

TOLk = 9.24E − 05
Iter. = 26

TOLk = 9.98E − 06

We also plot Ek versus the number of iterations in the following Figure 3.
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Figure 2: Numerical behavior of Algorithm 3.1 under different choices of θk and ε

Table 4: The iterative numbers of Algorithm 3.1 and Scheme (1.8) for N = 30 and different choices of ε

ε 10−3 10−4 10−5

Algorithm 3.1
Iter. = 8

TOLk = 4.20E − 04
Iter. = 10

TOLk = 7.95E − 05
Iter. = 13

TOLk = 4.46E − 06

Scheme (1.8)
Iter. = 19

TOLk = 9.25E − 04
Iter. = 41

TOLk = 9.75E − 05
Iter. = 84

TOLk = 9.90E − 06

The results are shown in Table 3, Table 4 and Figure 3, which shows that algorithm 3.1
has better performance than scheme (1.8) no matter N = 10 or N = 30, by reason of taking
much less iterations.

From these numerical results, we can see that our algorithm is effective and promising
for solving SFPwMOS. The results of Example 5.2 also show that Algorithm 3.1 has good
performance in higher dimensions. Notice that the application of inertial technique and
self-adaptive method can improve the performance of the algorithm.

6 Conclusions

In this paper, we study the self-adaptive inertial viscosity projection algorithm for solving
split feasibility problem with multiple output sets. The proposed algorithm shows that the
sequence converges to a solution of this problem with a simple and novel way. The algorithm
uses an adaptive strategy to update the step size and combines inertia technology with
approximate compression technology to improve the efficiency of the algorithm. Preliminary
numerical results show that the proposed method is practical and promising for SFPwMOS.
It has the potential to analyze and design other algorithms for fixed point problems, as well
as a more comprehensive computational study is researched in the further.



SELF-ADAPTIVE INERTIAL PROJECTION SOLVING SPLIT FEASIBILITY PROBLEM 731

Figure 3: Numerical behavior of Algorithm 3.1 with Scheme (1.8) under different choices of N and ε
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