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In particular, when K ⊂ Rn is a closed cone, GAVI(ω,K) reduces to the general affine
complementary problem denoted by GACP(ω,K). In the special case where Bx+ b = x for
every x ∈ K, GAVI(ω,K) reduces to the following affine variational inequality:

Find x ∈ K s.t. ⟨Ax+ a, y − x⟩ ≥ 0 for all y ∈ K. (AVI(A, a,K))

The above problem has been investigated in [3, 4, 15, 20] where the existence and stability
for AVI(A, a,K) with K being polyhedral have been studied in detail.

Under the assumption that F is strongly monotone with respect to G on K and G
is injective, Pang and Yao [13, Proposition 3.9] provided some sufficient conditions for the
existence of solutions to GVI(F,G,K). So, there is a natural questions arising here: Whether
the problem GAVI(ω,K) has a solution provided that g(x) = Bx+ b is not injective?

In this paper, we present a positive answer to the above question. In particular, we
propose a sufficient condition for the solution existence of GAVI and use a Tikhonov-type
regularization method for GAVI(ω,K). By using positive semi-definiteness of matrices,
exceptional family of elements, and recession cone of convex sets, we obtain an existence
result for solutions of the problem GAVI. Our approach, which is motivated by Tikhonov
regularization technique [18], is different from ones in [11] and references cited therein.
Although Tikhonov-type regularization methods have been studied extensively in variational
inequality theory (see, for instance, [2, 17]), as far as we know, there is no result on Tikhonov-
type regularization method applying to GAVI.

The outline of the paper is as follows. Section 2 provides some preliminaries. In Section
3, we present a sufficient condition for the solution existence of GAVI. A Tikhonov-type
regularization method including: the solution existence of the perturbing problem, the lo-
cally boundedness and upper semicontinuity of the solution map is proposed in Section 4.
In Section 5, some properties of the solution set are discussed.

1.2 Source Problems

Many economic equilibrium models can be formulated as GVIs. There are many mathemat-
ical formulations of the general equilibrium problem. The following problem is a simplified
model that easily leads to a GAVI.

Let m and n be the number of economic activities and goods, respectively. The unit cost
of operating the i-th activity is ci and the initial endowment of the j-th good is bj . The
unknown level of the i-th activity is denoted yi and the price of the j-th good is denoted pj .
The demand function for the j-th good is dj(p), where p = (pj) ∈ Rn is the price vector of
all goods. Assume that d(p) = d ∈ Rn. The technology input-output matrix of the economy
is given by the (m × n)-matrix A(p) = (aij(p)). Assume that A(p) = (aij) ∈ Rm×n. The
transpose of this matrix converts levels of activities into netput vectors of goods. For a
vector of activities, AT y is the vector of goods resulting from these activities; for a vector
p of prices, Ap is the vector of per unit activity returns. A pair of activity-price patterns
(y, p) is a general equilibrium if the following conditions are satisfied:

y ≥ 0, c−Ap ≥ 0, ⟨y, c−Ap⟩ = 0, (1.1)

and
p ≥ 0, b+AT y − d ≥ 0, ⟨p, b+AT y − d⟩ = 0. (1.2)

Condition (1.1) states that activity levels are nonnegative and all activities yield nonpositive
profits; moreover, activities with negative profits are not performed. The condition (1.2)
states that prices are nonnegative, supplies must satisfy demands, and excess supplies occur
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only in the case of free goods. Furthermore, activities y depends on other activities ỹ and
the price vector of all goods p depends on the price vector of other goods p̃. Assume that
y = Mỹ+e and p = Np̃+f withM ∈ Rm×, N ∈ Rn×n, e ∈ Rm and f ∈ Rn. Then, the above
economic equilibrium model satisfies the following GAVI problem: Find x̃ = (ỹ, p̃) ∈ Rm+n

such that B̃x̃+ b̃ ∈ K̃ = Rm+n
+ and

⟨Ãx̃+ ã, z̃ − B̃x̃− b̃⟩ ≥ 0 ∀z̃ ∈ K̃,

where

Ã =

(
M 0
0 N

)
, ã =

(
e
f

)
, B̃ =

(
0 −AN

ATM 0

)
, b =

(
c−Af

b− d+AT e

)
.

The general economic equilibrium model is the basis of much of mathematical economics
and general equilibrium theory and has proven very useful in macroeconomics (see [1]).

2 Preliminaries

Throughout this paper, for any positive integer n, Rn denotes a real Euclidean space
equipped with the scalar product ⟨· , ·⟩ and the induced norm ∥ · ∥. The set of all n × n
real matrices is denoted by Rn×n. The superscript T denotes transposition. For any posi-
tive integer l, denote [l] := {1, . . . , l} and l! := l(l − 1) . . . 1. Let

f(x) := Ax+ a and g(x) := Bx+ b.

For any nonempty closed convex set K of Rn, the asymptotic (recession) cone of K is
denoted by

K∞ = {v ∈ Rn : x+ tv ∈ K ∀t ≥ 0}

and let

H := {v ∈ Rn : ∃α ∈ R+ such that αv +Bv ∈ K∞},

where R+ = {x ∈ R : x ≥ 0}.
For any cone S ⊂ Rn, the dual of S is denoted by

S∗ := {y ∈ Rn : ⟨h, y⟩ ≥ 0 ∀h ∈ S}.

The open (closed) ball in Rn with center at 0 and radius ε is denoted by B(0, ε) (resp.,
B̄(0, ε)).

A multifunction S : Rm ⇒ Rn is said to be locally bounded at x̄ ∈ Rm if there exists
ε > 0 such that

Uε :=
∪

x̃∈B(0,ε)

S(x̄+ x̃)

is bounded.

We recall the notion of upper semicontinuity of multifunctions. A multifunction S :
Rm ⇒ Rn is said to be upper semicontinuous at x̄ ∈ Rm if for each open set V containing
S(x̄) there exists δ > 0 such that S(x) ⊂ V for every x ∈ Rm satisfying ∥x− x̄∥ < δ.

The solution set of GVI(F,G,K) (GAVI(ω,K), AVI(A, a,K)) is denoted by Sol(F,G,K)
(resp., Sol(ω,K), Sol(A, a,K)).
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Proposition 2.1. Let ϕ(x) = 1
2 ⟨x,Qx⟩+⟨q, x⟩ with Q ∈ Rn×n being symmetric and q ∈ Rn.

Then, for some x̄ ∈ Rn, if Bx̄+b is the minimum of p on K then x̄ ∈ Sol(ω,K) with A = QB
and a = Qb+ q. The reverse is true if

ϕ(z + t(y − z)) ≤ tϕ(y) + (1− t)ϕ(z) (2.1)

for every y, z ∈ K and for every t ∈ [0, 1].

Proof. Suppose that Bx̄ + b ∈ K is the minimum of p on K for some x̄ ∈ Rn. Then, we
have

ϕ(Bx̄+ b) ≤ ϕ(z) ∀z ∈ K.

Hence, for some y ∈ K and t ∈ (0, 1], we obtain Bx̄+ b+ t(y −Bx̄− b) ∈ K and

ϕ(Bx̄+ b) ≤ ϕ(Bx̄+ b+ t(y −Bx̄− b)).

Dividing the above inequality by t and taking t → 0, we have

⟨∇ϕ(Bx̄+ b), y −Bx̄− b⟩ = ⟨Ax̄+ a, y −Bx̄− b⟩ ≥ 0,

where ∇ϕ(Bx̄+ b) denotes the gradient of p at Bx̄+ b. This leads to x̄ ∈ Sol(ω,K).

Conversely, suppose that x̄ ∈ Sol(ω,K). For every y ∈ K and for every t ∈ (0, 1], by the
assumption (2.1), we have

ϕ(Bx̄+ b+ t(y −Bx̄− b)) ≤ tϕ(y) + (1− t)ϕ(Bx̄+ b).

This implies that

ϕ(y)− ϕ(Bx̄+ b) ≥ ϕ(Bx̄+ b+ t(y −Bx̄− b))− ϕ(Bx̄+ b)

t

Letting t → 0, we have

ϕ(y)− ϕ(Bx̄+ b) ≥ ⟨∇ϕ(Bx̄+ b), y −Bx̄− b⟩ = ⟨Ax̄+ a, y −Bx̄− b⟩ ≥ 0.

Therefore, Bx̄+ b ∈ K is the minimum of p on K.

Remark 2.2. Proposition 2.1 shows that the minimum of a quadratic function on K can
be characterized by the problem GAVI(ω,K). Particularly, if Bx̄ + b is the minimum of p
on K then x̄ ∈ Sol(ω,K). Under the assumption that p is convex, the convex quadratic
programming problems are equivalent to the affine variational inequalities (AVI(Q, q,K)).
So, in this note, we only consider the case where p is nonconvex.

It is known that the problem GAVI(ω,K) is equivalent to a fixed point problem. This
relation is described in the following proposition.

Proposition 2.3. (see [12]) For given x̄ ∈ Rn, x̄ ∈ Sol(ω,K) if and only if x̄ satisfies the
following relation

x̄ = Φ(x̄),

where Φ(z) = z −Bz − b+ PK(Bz + b−Az − a) and PK is the projection of Rn onto K.
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Let F,G : Rn → Rn be two continuous functions and let x̄ ∈ Rn. A set of points
{xk} ⊂ Rn is called an exceptional family of elements for the pair (F,G) with respect to
x̄ ∈ Rn if ∥xk∥ → ∞ as k → ∞; and for each xk, there exists a scalar αk > 0 such that
zk := αk(xk − x̄) +G(xk) ∈ K and

−αk(xk − x̄)− F (xk) ∈ NK(zk),

where NK(zk) is the normal cone of K at zk.
The following is useful for our proofs.

Proposition 2.4. (see [19, Lemma 1]) For two continuous mappings F,G : Rn → Rn and
a nonempty, closed and convex set K ⊂ Rn, there exists either a solution of GVI(F,G,K)
or an exceptional family of elements with respect to any given x̄ ∈ Rn for the pair (F,G).

The map F is called generalized pseudo-monotone with respect to G onK if ⟨F (x), G(y)−
G(x)⟩ ≥ 0 for all x, y ∈ Rn satisfying G(x), G(y) ∈ K implies that ⟨F (y), G(y)−G(x)⟩ ≥ 0
for all x, y ∈ Rn.

3 Existence

In this section, we present a sufficient condition for the existence and uniqueness of solutions
to the problem GAVI(ω,K).

Theorem 3.1. Let K ⊂ Rn be a nonempty closed convex set. If the following conditions
are satisfied:

(i) A+B and ATB are positive semidefinite on H;

(ii) Sol((A, 0, B, 0),K∞) = {0},

then, for all a, b ∈ Rn, GAVI(ω,K) has a solution. In addition, if ATB is positive definite
on B−1(K −K) then GAVI(ω,K) has a unique solution.

Proof. On the contrary, suppose that GAVI(ω,K) has no solution. Then, it follows from
Proposition 2.4 that there exist {xk} ⊂ Rn satisfying ∥xk∥ → ∞ as r → ∞ and αk > 0 such
that zk := αkxk +Bxk + b ∈ K and

−αkxk −Axk − a ∈ NK(zk).

By the definition of the normal cone, we obtain

⟨αkxk +Axk + a, y − αkxk −Bxk − b⟩ ≥ 0 ∀y ∈ K,

that is,

⟨αkxk, y −Axk − a−Bxk − b⟩+ ⟨Axk + a, y −Bxk − b⟩ − (αk)2∥xk∥2 ≥ 0 (3.1)

for every y ∈ K. Without loss of generality, we may assume that ∥xk∥ ̸= 0 for all k and
xk

∥xk∥ → h̄ for some h̄ ∈ Rn. Dividing both sides of the inequality (3.1) by ∥xk∥2, we obtain

αk

⟨
xk

∥xk∥
,
y −Axk − a−Bxk − b

∥xk∥

⟩
+

⟨
Axk + a

∥xk∥
,
y −Bxk − b

∥xk∥

⟩
− (αk)2 ≥ 0. (3.2)
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Denote

uk :=

⟨
xk

∥xk∥
,
y −Axk − a−Bxk − b

∥xk∥

⟩
and

vk :=

⟨
Axk + a

∥xk∥
,
y −Bxk − b

∥xk∥

⟩
.

From (3.2) we have

αkuk + vk − (αk)2 ≥ 0. (3.3)

It is obvious that

lim
k→∞

uk = lim
k→∞

⟨
xk

∥xk∥
,
y −Axk − a−Bxk − b

∥xk∥

⟩
= −⟨h̄, (A+B)h̄⟩

and

lim
k→∞

vk = lim
k→∞

⟨
Axk + a

∥xk∥
,
y −Bxk − b

∥xk∥

⟩
= ⟨Ah̄,−Bh̄⟩ = −⟨h̄, ATBh̄⟩.

Consider the following two cases:
Case 1: {αk} is unbounded. Dividing both sides of the inequality (3.3) by (αk)2 and

letting k → ∞ yields −1 ≥ 0, a contradiction.
Case 2: {αk} is bounded. Then, without loss of generality we may assume that αk → ᾱ

for some ᾱ ∈ R+. From (3.3), by passing to the limit, we obtain

−ᾱ⟨h̄, (A+B)h̄⟩ − ⟨h̄, ATBh̄⟩ − (ᾱ)2 ≥ 0. (3.4)

Since 1
∥xk∥ → 0, applying [14, Theorem 8.2] to zk = αk(xk − x̄) +Bxk + b ∈ K, we have

1

∥xk∥
zk =

1

∥xk∥
(
αk(xk − x̄) +Bxk + b

)
→ ᾱh̄+Bh̄ ∈ K∞.

It follows that h̄ ∈ H. By (i) we have

⟨h̄, (A+B)h̄⟩ ≥ 0 (3.5)

and

⟨h̄, ATBh̄⟩ ≥ 0. (3.6)

We claim that ᾱ ̸= 0. Indeed, suppose to the contrary that ᾱ = 0. Fix w ∈ K. For every
h ∈ K∞, putting z := w + h∥xk∥, we have z ∈ K. From (3.1) it follows that

⟨αkxk +Axk + a, z − αkxk −Bxk − b⟩ ≥ 0,

that is,

⟨αkxk +Axk + a,w + h∥xk∥ − αkxk −Bxk − b⟩ ≥ 0.

Dividing both sides of last inequality by ∥xk∥2 and letting k → +∞ yields:⟨
Ah̄, h−Bh̄

⟩
≥ 0;

Hence, there exists h̄ ̸= 0 such that h̄ ∈ Sol((A, 0, B, 0),K∞). This contradicts to the
assumption (ii). Therefore, we have ᾱ ̸= 0.
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From (3.5) and (3.6), we deduce that

−ᾱ⟨h̄, (A+B)h̄⟩ − ⟨h̄, ATBh̄⟩ − (ᾱ)2 < 0,

which is contrary to the inequality (4.2). Therefore, this case does not occur and the problem
GAV I(ω,K) has a solution.

We now prove that GAVI(ω,K) has a unique solution. Indeed, suppose, on the contrary,
that GAVI(ω,K) have two different solutions x̄ and x̂. Then, B(x̂− x̄) ∈ K −K. We have

⟨Ax̄+ a,Bx̂+ b−Bx̄− b⟩ ≥ 0,

and
⟨Ax̂+ a,Bx̄+ b−Bx̂− b⟩ ≥ 0.

This follows that
⟨A(x̂− x̄), B(x̂− x̄)⟩ ≤ 0,

which means
⟨(x̂− x̄), ATB(x̂− x̄)⟩ ≤ 0.

This contradicts the assumption that ATB is positive definite on B−1(K −K). Therefore,
GAVI(ω,K) has a unique solution.

Remark 3.2. Consider the problem GVI(F,G,K) with K being a nonempty closed convex
subset of Rn and F,G being two continuous functions from Rn into itself, Pang and Yao
[13, Proposition 3.9] showed that GVI(F,G,K) has a unique solution if G is injective and
Lipschitz at u for some u ∈ G−1(K) and F is strongly monotone with respect to G on K.
Clearly, the assumptions in Theorem 3.1 is weaker than ones in [13, Proposition 3.9] applied
to GAVI(ω,K). This is illustrated by the following example.

Example 3.3. Consider the problem GAVI(ω,K) with n = 2,

A =

(
a1 a2
a3 1

)
, a =

(
0
0

)
, B =

(
1 0
0 0

)
, b =

(
0
0

)
,

and K = {(0, u) : u ∈ R} where a1, a2, a3 ∈ R. We show that the above problem has a
solution for every a1, a2, a3 ∈ R. Indeed, we have K is a closed convex set and K∞ = K.
Then, (K∞)∗ = {(v1, v2) ∈ R2 : v2 = 0} and

H = {(v1, v2) ∈ R2 : ∃α ∈ R+ s.t. ((α+ 1)v1, αv2) ∈ K∞} = {(0, v2) : v2 ∈ R}.

For any a1, a2, a3 ∈ R, we obtain that

⟨v, (A+B)v⟩ = v22 ≥ 0 ∀v = (v1, v2) ∈ H

and
⟨v, (ATB)v⟩ = 0 ∀v = (v1, v2) ∈ H.

Hence, A + B and ATB are positive semidefinite on H. The condition (i) follows. Solving
the following system

Bv = (v1, 0) ∈ K∞, Av = (a1v1 + a2v2, a3v1 + v2) ∈ (K∞)∗ and ⟨Av,Bv⟩ = 0,

we obtain v = (0, 0). Then, the assumption (ii) is satisfied. According to Theorem 3.1, the
problem in this example has a solution for every a1, a2, a3 ∈ R. Note that the map G herein
is not injective; hence, [13, Proposition 3.9] can not be applied to this problem.
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The following example shows that GAVI(ω,K) has no solution if the assumption on the
positive semidefiniteness in Theorem 3.1 is violated.

Example 3.4. We consider the problem GAVI(ω,K) with n = 2,

A =

(
b1 b2
−2 −1

)
, a =

(
0
0

)
, B =

(
1 0
0 2

)
, b =

(
0
0

)
,

and K = {(z1, z2) ∈ R2 : z2 ≥ z21 , z1 ≥ 1} where b1, b2 ∈ R. Then, K∞ = {(0, u) : u ∈ R+}
and H = K∞. For any b1, b2 ∈ R, we obtain that

⟨v, (ATB)v⟩ = −2v22 .

Thus, ATB is not positive semidefinite on H.

We prove that this problem has no solution for every b1, b2 ∈ R. Indeed, suppose that
the above problem has a solution x̄ = (x̄1, x̄2). Then, we have

Bx̄ = (x̄1, 2x̄2) ∈ K (3.7)

and

⟨Ax̄, y −Bx̄⟩ ≥ 0 ∀y ∈ K. (3.8)

From (3.7) it follows that x̄1 ≥ 1 and x̄2 ≥ 1
2 . Let ȳ = (x̄1, 2x̄2 + 2) ∈ K. Then,

⟨Ax̄, ȳ −Bx̄⟩ = (b1x̄1 + b2x̄2,−2x̄1 − x̄2)
T (0, 2) = −4x̄1 − 2x̄2 < 0,

which contradicts to (3.8). Therefore, the above problem has no solution.

In the case where Bx+ b = x for every x ∈ K, we have H = K∞. By Theorem 3.1, we
obtain the following corollary.

Corollary 3.5. (see [3, Theorem 6.3]) Consider the problem AVI(A, a,K). Let K ⊂ Rn

be a nonempty closed convex set. If A is positive definite on K∞, then for all a ∈ Rn,
AVI(A, a,K) has a solution.

4 A Tikhonov-Type Regularization Method

For each ε > 0, let

fε(x) := Ax+ εx+ a

and

gε(x) := Bx+ εx+ b.

Consider the following perturbed problem: Find x ∈ Rn such that gε(x) ∈ K and

⟨fε(x), y − gε(x)⟩ ≥ 0 ∀y ∈ K. (GAVI(fε, gε,K))

Let xε ∈ Sol(fε, gε,K). Then, the sequence {xε : ε > 0} is called the Tikhonov-type
trajectory of the problem GAVI(ω,K). We show the convergence of the Tikhonov-type
trajectory {xε : ε > 0} under some checkable conditions.
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4.1 Convergence theorem

The main result is presented as follows.

Theorem 4.1. Let ATB and A + B be two positive semidefinite matrices. Then, the fol-
lowing statements are valid:

(a) For each ε > 0, GAVI(fε, gε,K) has a unique solution;

(b) If A+B is a positive definite matrix then, for the Tikhonov-type trajectory {xε : ε > 0},
the following three properties are equivalent:

(b1) limε→0 xε exists;

(b2) lim supε→0 ∥xε∥ < +∞;

(b3) Sol(ω,K) is nonempty.

Moreover, if any one of the statements (b1)–(b3) holds, the limit limε→0 xε is not only
a solution of the problem GAVI(ω,K) but also the unique solution of the problem
AVI((A+B)T , K̂), where K̂ is the convex hull of Sol(ω,K).

Proof. (a) Suppose that A+B and ATB are positive semidefinite matrices. Let Aε := A+εI
and Bε := B + εI, where I ∈ Rn×n is the unit matrix. Clearly, Aε +Bε and (Aε)

T (Bε) are
positive definite matrices. Suppose to the contrary that GAVI(fε, gε,K) has no solution.
Then, it follows from Proposition 2.4 that there exist {xr} ⊂ Rn satisfying ∥xr∥ → ∞ as
r → ∞ and σr > 0 such that zr := σrxr + gε(x

r) ∈ K such that

⟨σrxr +Aεx
r + a, y − σrxr −Bεx

r − b⟩ ≥ 0 ∀y ∈ K.

Multiplying both sides of the above inequality by ∥xr∥−2 yields

σr

⟨
xr

∥xr∥
,
y −Aεx

r − a−Bεx
r − b

∥xr∥

⟩
+

⟨
Aεx

r + a

∥xr∥
,
y −Bεx

r − b

∥xr∥

⟩
− (σr)2 ≥ 0.

It implies
σrαr + γr − (σr)2 ≥ 0, (4.1)

where αr :=

⟨
xr

∥xr∥ ,
y−Aεx

r−a−Bεx
r−b

∥xr∥

⟩
and γr :=

⟨
Aεx

r+a
∥xr∥ , y−Bεx

r−b
∥xr∥

⟩
. Without loss of

generality, we assume that xr/∥xr∥ → v̄ for some v̄ ∈ Rn \ {0}. Then,

lim
r→∞

αr = lim
r→∞

⟨
xr

∥xr∥
,
y −Aεx

r − a−Bεx
r − b

∥xr∥

⟩
= −⟨v̄, (Aε +Bε)v̄⟩

and

lim
r→∞

γr = lim
r→∞

⟨
Aεx

r + a

∥xr∥
,
y −Bεx

r − b

∥xr∥

⟩
= ⟨Aεv̄,−Bεv̄⟩ = −⟨v̄, AT

ε Bεv̄⟩.

If {σr} is unbounded then dividing both sides of the inequality (4.1) by (σr)2 and letting
r → ∞ yields −1 ≥ 0, a contradiction. Thus, {σr} is bounded. There exists a subsequence
{σrj} ⊂ {σr} such that σrj → σ̄ as j → ∞ for some σ̄ ∈ R+. Passing (4.1) to the limit as
j → ∞ gives

−σ̄⟨v̄, (Aε +Bε)v̄⟩ − ⟨v̄, AT
ε Bεv̄⟩ − (σ̄)2 ≥ 0. (4.2)
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This contradicts to the fact that Aε + Bε and (Aε)
T (Bε) are positive definite matrices.

Hence, this case does not occur and the problem GAVI(fε, gε,K) has a solution.
Suppose to the contrary that GAVI(fε, gε,K) has two different solutions x̄ and x̂. Then,

⟨Aεx̄ + a,Bεx̂ + b − Bεx̄ − b⟩ ≥ 0, and ⟨Aεx̂ + a,Bεx̄ + b − Bεx̂ − b⟩ ≥ 0. This follows
that ⟨Aε(x̂− x̄), Bε(x̂− x̄)⟩ ≤ 0, which contradicts to the assumption that AT

ε Bε is positive
definite. Therefore, GAVI(fε, gε,K) has a unique solution.

(b) Suppose that A + B is a positive definite matrix and {xε : ε > 0} is the Tikhonov
trajectory of the problem GAVI(ω,K). We show that (b1), (b2), and (b3) are equivalent.

(b1) ⇒ (b2) This is obvious.
(b2) ⇒ (b3) By the assumption that lim supε→0 ∥xε∥ < +∞, there exists a subsequence

{xεj} ⊂ {xε} such that xεj → x̂ for some x̂ ∈ Rn. Since xεj ∈ Sol(fεj , gεj ,K), we have

Bxεj + εjxεj + b ∈ K

and

⟨Axεj + εjxεj + a, y −Bxεj − εjxεj − b⟩ ≥ 0.

Passing these relations to the limits as j → ∞ yields

Bx̂+ b ∈ K and ⟨Ax̂+ a, y −Bx̂− b⟩ ≥ 0.

This follows that x̂ ∈ Sol(ω,K); hence, Sol(ω,K) is nonempty.
(b3) ⇒ (b1) Suppose that (b3) holds. Let any x̄ ∈ Sol(ω,K). Since xε ∈ Sol(fε, gε,K)

and x̄ ∈ Sol(ω,K), we have

⟨Ax̄+ a,Bxε + εxε + b−Bx̄− b⟩ ≥ 0 (4.3)

and

⟨Axε + εxε + a,Bx̄+ b−Bxε − εxε − b⟩ ≥ 0. (4.4)

By (4.3) and (4.4) one obtains

⟨A(xε − x̄) + εxε, B(xε − x̄) + εxε⟩ ≤ 0.

This implies that

⟨(A+B)(xε − x̄), xε⟩ ≤ 0 (4.5)

since ATB is a positive semidefinite matrix. By (4.5) and the assumption that A + B is a
positive definite matrix, there exists σ > 0 such that

σ⟨xε, xε⟩ ≤ ⟨(A+B)xε, xε⟩ ≤ ⟨(A+B)x̄, xε⟩.

This follows that

∥xε∥ ≤ 1

σ
∥(A+B)x̄∥.

By the boundedness of {xε}, there exists a subsequence {xεj} ⊂ {xε} converging to x̂ for
some x̂ ∈ Rn. By the fact that Bxεj + εjxεj + b ∈ K and the closedness of K, we have
Bx̂+ b ∈ K. Since xεj ∈ Sol(fεj , gεj ,K), for each y ∈ K, we have

⟨Axεj + εjxεj + a, y −Bxεj − εjxεj − b⟩ ≥ 0.

Letting εj → 0 in the inequality above, we get ⟨Ax̂+a, y−Bx̂−b⟩ ≥ 0. Hence, x̂ ∈ Sol(ω,K).
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Furthermore, passing the inequality (4.5) to the limit as ε → 0 yields

⟨(A+B)T x̂, x̄− x̂⟩ ≥ 0. (4.6)

Since x̄ ∈ Sol(ω,K) is chosen arbitrarily, the inequality (4.6) holds for every x̄ ∈ Sol(ω,K).
Suppose that K̂ is the convex hull of Sol(ω,K). Then, for each x ∈ K̂, there exist

x̄1, . . . , x̄p in Sol(ω,K) and nonnegative real numbers α1, . . . , αp satisfying α1+ . . .+αp = 1
such that x = α1x̄1 + . . .+ αpx̄p. By (4.6), we have

⟨(A+B)T x̂, x− x̂⟩ =
p∑

i=1

αi⟨(A+B)T x̂, x̄i − x̂⟩ ≥ 0.

Combining this with the fact that x̂ ∈ K̂, we obtain

x̂ ∈ Sol((A+B)T , 0, K̂).

By the positive definiteness of A + B and the result in part (a), the problem AVI((A +
B)T , 0, K̂) has a unique solution. Therefore, {xεj} ≡ {xε} and limε→0 xε exists. The proof
is complete.

By the above arguments, we obtain a Tikhonov-type Regularization (TTR) scheme as
follows.

Step 1: Taken x0 ∈ Rn satisfying g(x0) = Bx0 + b ∈ K.

Step 2: Given xk, if xk solves GAVI(ω,K) then xk+p = xk for all p ≥ 1 and stop, otherwise
go to Step 3.

Step 3: Calculate a point xk+1 ∈ Sol(fεk , gεk ,K) with εk ↓ 0 and go to Step 2 with k := k+1.

The following corollary follows from Theorem 4.1.

Corollary 4.2. Let A + B be positive definite and ATB be positive semidefinite. Then,
if Sol(ω,K) is nonempty then the approximate solution xk+1 obtained from TTR scheme
converges to a solution x̄ of the problem GAVI(ω,K).

In this subsection, we present a practical example that show how TTR works.

Example 4.3. Consider the problem GAVI(ω,K) with n = 10, K = R10
+ ,

A = diag{117, 29, 87, 61, 131, 97, 115, 29, 113, 203},

B = diag{231, 0, 85, 0, 53, 63, 0, 205, 216, 99},

a = (21, 0, 166, 0, 98, 117, 0, 6, 35, 499)T ,

b = (−11, 43,−125, 72,−18,−71, 239,−27,−111,−43)T .

It is not difficult to check that A+B is positive definite and ATB is positive semidefinite. For
each ε > 0, the problem GAVI(fε, gε,K) reduces to the following generalized complementary
problem: Finding x ∈ Rn

+ such that

Ax+ εx+ a ≥ 0, Bx+ εx+ b ≥ 0, ⟨Ax+ εx+ a,Bx+ εx+ b⟩ = 0,
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that is, 

(117 + ε)x1 + 21
(29 + ε)x2

(87 + ε)x3 + 166
(61 + ε)x4

(131 + ε)x5 + 98
(97 + ε)x6 + 117

(115 + ε)x7

(29 + ε)x8 + 6
(113 + ε)x9 + 35
(203 + ε)x10 + 499


≥ 0,



(231 + ε)x1 − 11
εx2 + 43

(85 + ε)x3 − 125
εx4 + 72

(53 + ε)x5 − 18
(63 + ε)x6 − 71

εx7 + 239
(205 + ε)x8 − 27
(216 + ε)x9 − 111
(99 + ε)x10 − 43


≥ 0,



(117 + ε)x1 + 21
(29 + ε)x2

(87 + ε)x3 + 166
(61 + ε)x4

(131 + ε)x5 + 98
(97 + ε)x6 + 117

(115 + ε)x7

(29 + ε)x8 + 6
(113 + ε)x9 + 35
(203 + ε)x10 + 499



T 

(231 + ε)x1 − 11
εx2 + 43

(85 + ε)x3 − 125
εx4 + 72

(53 + ε)x5 − 18
(63 + ε)x6 − 71

εx7 + 239
(205 + ε)x8 − 27
(216 + ε)x9 − 111
(99 + ε)x10 − 43


= 0.

For some ε > 0 small enough, we have εx2 + 43 > 0; hence, x2 = 0. Similarly, we obtain
that x4 = 0 and x7 = 0. If x1 ≤ 0 then (231 + ε)x1 − 11 < 0. Hence, x1 = 11

231+ε . It

follows that x3 = 125
85+ε , x5 = 18

53+ε , x6 = 71
63+ε , x8 = 27

205+ε , x9 = 111
216+ε , x10 = 43

99+ε . Thus,
Sol(fε, gε,K) = {xε} with

xε =

(
11

231 + ε
, 0,

125

85 + ε
, 0,

18

53 + ε
,

71

63 + ε
, 0,

27

205 + ε
,

111

216 + ε
,

43

99 + ε

)
.

We have

xε → x̄ =

(
11

231
, 0,

125

85
, 0,

18

53
,
71

63
, 0,

27

205
,
111

216
,
43

99

)
.

as ε → 0. We conclude that x̄ ∈ Sol(ω,K).

4.2 Semicontinuity of the Tikhonov-type trajectory generated by TTR method

The stability for variational inequality and polynomial programming problems is investigated
in detail in [5, 4, 6, 7, 16]. In this section, we characterize the semicontinuity of the Tikhonov-
type trajectory generated by TTR method .

Let Sol(·) : R+ ⇒ Rn be a multifunction defined by

Sol(ε) := Sol(fε, gε,K)

for every ε ≥ 0. In this section, we characterize the upper/lower semicontinuity of the map
Sol(·).

Theorem 4.4. Let Sol(ε) be nonempty for every ε ≥ 0. If ATB and A + B are positive
semidefinite on B−1(K −K) then the solution map Sol(·) is lower semicontinuous on R+.
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Proof. We will show that Sol(·) is lower semicontinuous on R+. Indeed, suppose to the
contrary that there exists ε ≥ 0 such that Sol(·) is not lower semicontinuous at ε, that
is, there exist x̄ ∈ Sol(ε) and a sequence {εk} ⊂ R+ satisfying εk → ε such that, for any
zk ∈ Sol(εk) satisfying zk → z̄, one has z̄ ̸= x̄.

Since zk ∈ Sol(εk), we conclude that

Bzk + εkzk + b ∈ K and ⟨Azk + εkzk + a, z −Bzk − εkzk − b⟩ ≥ 0 ∀z ∈ K. (4.7)

For each z ∈ K, passing the two relations in (4.7) to the limit as k → ∞ gives

Bz̄ + εz̄ + b ∈ K and ⟨Az̄ + εz̄ + a, z −Bz̄ − εz̄ − b⟩ ≥ 0. (4.8)

Since x̄ ∈ Sol(ε), we have Bx̄+ εx̄+ b ∈ K. Substituting z = Bx̄+ εx̄+ b into (4.8) yields

⟨Az̄ + εz̄ + a,Bx̄+ εx̄+ b−Bz̄ − εz̄ − b⟩ ≥ 0. (4.9)

From Bz̄ + εz̄ + b ∈ K it follows that

⟨Ax̄+ εx̄+ a,Bz̄ + εz̄ + b−Bx̄− εx̄− b⟩ ≥ 0. (4.10)

Combining (4.9) with (4.10), we obtain (B + εI)(x̄− z̄) ∈ K −K and

⟨(A+ εI)(x̄− z̄), (B + εI)(x̄− z̄)⟩ ≤ 0. (4.11)

By the assumption that ATB and A+ B are positive semidefinite on B−1(K −K), we see
that

(A+ εI)T (B + εI) = ATB + ε(A+B) + ε2I

is positive definite on B−1(K −K). This contradicts the inequality (4.11). Therefore, the
solution map Sol(·) is lower semicontinuous on R+. The proof is complete.

Denote G := {ε ∈ R+ : Sol(Aε, 0, Bε, 0,K
∞) = {0}} with Aε = A+ εI and Bε = B+ εI.

We have the following lemma.

Lemma 4.5. G is open in R+.

Proof. Suppose to the contrary G is not open in R+. Then, there exists {ρk} ⊂ R+ \ G
converging to ρ ∈ S. For each ρk, there exists vk ∈ Rn such that ∥vk∥ = 1 and

Bvk + ρkvk ∈ K∞, Avk + ρkvk ∈ (K∞)∗, ⟨Avk + ρkvk, Bvk + ρkvk⟩ = 0. (4.12)

Without loss of generality, we may assume that the sequence {vk} itself converges to v̂ for
some v̂ ∈ Rn. Taking the limits in (4.12) as k → ∞ yields

∥v̂∥ = 1, Bv̂ + ρv̂ ∈ K∞, Av̂ + ρv̂ ∈ (K∞)∗ and ⟨Av̂ + ρv̂, Bv̂ + ρv̂⟩ = 0.

This implies that 0 ̸= v̂ ∈ Sol(Aρ, 0, Bρ, 0,K
∞) and ρ /∈ G, which contradicts to the fact

that ρ ∈ G. The proof is complete.

The following theorem characterize the upper semicontinuity of the solution map Sol(·).

Theorem 4.6. For each ε ∈ R+, if Sol(Aε, 0, Bε, 0,K
∞) = {0} and Sol(fε, gε,K) is

nonempty, then the solution map Sol(·) is upper semicontinuous at ε.
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Proof. By Lemma 4.5, there exists ρ > 0 such that ε+ B̄(0, ρ) ⊂ G. We claim that Sol(·) is
locally bounded at ε, that is,

Uρ :=
∪

ρ̃∈B(0,ρ)

Sol(ε+ ρ̃) (4.13)

is bounded. Indeed, suppose to the contrary that Uρ is unbounded. Then, there exist
ρk ∈ B(0, ρ) and zk ∈ Sol(ε + ρk) such that ∥zk∥ → ∞. Since B(0, ρ) is bounded, we
assume that ρk → ρ̄ for some ρ̄ ∈ B̄(0, ρ) and ε+ ρ̄ ∈ ε+ B̄(0, ρ) ⊂ G, that is, Sol(A+ (ε+
ρ̄)I, 0, B+(ε+ ρ̄)I, 0,K∞) = {0}. Without loss of generality, we may assume that ∥zk∥ ̸= 0
for all k and ∥zk∥−1zk → v̄ for some v̄ ∈ Rn with ∥v̄∥ = 1. Since zk ∈ Sol(ε+ ρk), we have
Bzk + b+ (ρk + ε)zk ∈ K and

⟨Azk + a+ (ε+ ρk)zk, z −Bzk − (ε+ ρk)zk − b⟩ ≥ 0. (4.14)

Since 1
∥zk∥ → 0, applying [14, Theorem 8.2] to Bzk + b+ (ε+ ρk)zk ∈ K, we have

(B + (ε+ ρ̄)I)v̄ ∈ K∞.

Fix any x̄ ∈ K. For every h ∈ K∞, one has x̄ + ∥zk∥h ∈ K. Substituting x̄ + ∥zk∥h for z
in (4.14), we obtain

⟨Azk + a+ (ε+ ρk)zk, x̄+ ∥zk∥h−Bzk − (ε+ ρk)zk − b⟩ ≥ 0. (4.15)

Dividing both sides of the inequality (4.15) by ∥zk∥ and letting k → ∞ yields⟨
(A+ (ε+ ρ̄)I)v̄, h− (B + (ε+ ρ̄)I)v̄

⟩
≥ 0.

This leads to the following

0 ̸= v̄ ∈ Sol(A+ (ε+ ρ̄)I, 0, B + (ε+ ρ̄)I, 0,K∞) = {0},

which is a contradiction. Hence, Sol(·) is locally bounded at ε.

Suppose that Sol(·) is not upper semicontinuous at ε. Then, there exist a nonempty open
set U which contains Sol(ε) and xk ∈ Sol(εk) with εk → 0 satisfying

xk ∈ Sol(εk) \ U. (4.16)

Since Sol(·) is locally bounded at ε, the sequence {xk} is bounded. Without loss of generality
we may assume that xk → x̂ and x̂ ∈ Sol(ε). Hence, x̂ ∈ U . This contradicts the fact that
U is open and (4.16) holds. Therefore, Sol(·) is upper semicontinuous at ε.

5 Properties of the Set of Solutions

In this section, some properties of the solution set Sol(ω,K) of the problem GAVI(ω,K)
are investigated. In Subsection 3.1, we show that Sol(ω,K) is the union of finitely many
polyhedral convex sets. A necessary and sufficient condition for unboundedness of Sol(ω,K)
is also discussed. In Subsection 3.2, we characterize the closedness and convexity under the
assumption on generalized pseudo-monotonicity.
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5.1 Unboundedness of the set of solutions

Let K be a nonempty polyhedral convex set defined by K := {x ∈ Rn : Cx + d ≤ 0} with
C being a m× n real matrix and d ∈ Rm. The following lemma is useful to investigate the
properties of the solution set.

Lemma 5.1. A vector x̄ ∈ Rn is a solution of GAVI(ω,K) if and only if there exists
λ̄ = (λ̄1, . . . , λ̄m) such that  Ax̄+ CT λ̄+ a = 0,

CBx̄+ Cb+ d ≤ 0, λ̄ ≥ 0,
λ̄T (CBx̄+ Cb+ d) = 0.

(5.1)

Proof. Necessity: Denote by Ci the i-th row of C and denote by di the i-th component of
d. For each i ∈ [m], put ci := CT

i . For any x̄ ∈ Sol(ω,K), denote

I0 := {i ∈ [m] : ⟨ci, Bx̄+ b⟩+ di = 0} and I1 := [m] \ I0.

Let any h ∈ Rn satisfying ⟨ci, h⟩ ≤ 0 for all i ∈ I0. Put xt = Bx̄+ b+ th. Then, there exists
ε > 0 such that ⟨ci, xt⟩+ di ≤ 0 for every i ∈ [m] for every t ∈ (0, ε); hence, xt ∈ K. Since
x̄ ∈ Sol(ω,K), we have

0 ≤ ⟨Ax̄+ a, xt −Bx̄− b⟩ = t⟨Ax̄+ a, h⟩.

It follows that ⟨−Ax̄ − a, h⟩ ≤ 0 for every h ∈ Rn satisfying ⟨ci, h⟩ ≤ 0 for all i ∈ I0.
According to Farkas Lemma [14, p. 200], there exist λ̄i ≥ 0 and i ∈ I0, such that∑

i∈I0

λ̄ici = −Ax̄− a.

For each i ∈ I1, let λ̄i = 0. Choose λ̄ = (λ̄1, . . . , λ̄m) and the system (5.1) follows.

Sufficiency: Suppose that there exists λ̄ = (λ̄1, . . . , λ̄m) satisfying (5.1). For every z ∈ K
we have Bx̄+ b ∈ K and

⟨Ax̄+ a, z −Bx̄− b⟩ = ⟨−CT λ̄, z −Bx̄− b⟩
= −⟨λ̄, (Cz + d)− (C(Bx̄+ b) + d)⟩
= −λ̄T (Cz + d) + λ̄T (C(Bx̄+ b) + d)

= −λ̄T (Cz + d)

≥ 0.

Therefore, x̄ ∈ Sol(ω,K).

The following property shows that Sol(ω,K) is the union of many polyhedral convex
sets.

Theorem 5.2. The set Sol(ω,K) is the union of N polyhedral convex sets with

N =

m∑
p=1

m!

p!(m− p)!
.
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Proof. According to Lemma 5.1, a point x ∈ Rn is a solution of GAVI(ω,K) if and only if
there exists λ = (λ1, . . . , λm) such that Ax+ CTλ+ a = 0,

Qx+ q ≤ 0, λ ≥ 0,
λT (Qx+ q) = 0

(5.2)

with Q = CB and q = Cb+ d. For each x ∈ Sol(ω,K), let

I := {i ∈ [m] : Qix+ qi = 0},

where Qi is the i-th row vector of the matrix Q and qi is the i-th component of the vector q.
Let Ic := [m] \ I. By the fact that λT (Qx+ q) = 0, we have λIc = 0. Then, x is a solution
of GAVI(ω,K) if and only if there exists λ ∈ Rm

+ such that (x, λ) ∈ ∆I with ∆I being the
set of solutions of the following system Ax+ CTλ+ a = 0,

QIx+ qI = 0, λI ≥ 0,
QIcx+ qIc ≤ 0, λIc = 0.

(5.3)

This leads to
Sol(ω,K) =

∪
I⊂[m]

PRn(∆I)

with PRn(x, λ) = x. Since ∆I is a polyhedral convex set and PRn is a linear operator,
PRn(∆I) is also a polyhedral convex set. Therefore, Sol(ω,K) is the union of N polyhedral
convex sets with

N =

m∑
p=1

m!

p!(m− p)!
.

The following corollary follows immediately from Theorem 5.2.

Corollary 5.3. The following statements hold:

(i) If Sol(ω,K) is unbounded, then it contains a solution ray, that is, there exist x̄ ∈
Sol(ω,K) and v̄ ∈ Rn \ {0} such that x̄+ tv̄ ∈ Sol(ω,K) for every t ≥ 0;

(ii) If Sol(ω,K) is bounded and infinite, then it contains a solution interval, that is, there
exist α > 0, x̄ ∈ Sol(ω,K), and v̄ ∈ Rn \ {0} such that x̄ + tv̄ ∈ Sol(ω,K) for every
t ∈ [0, α];

(iii) If Sol(ω,K) is convex, then it is a polyhedral convex set.

A necessary and sufficient condition for the unboundedness of Sol(ω,K) is proposed in
the following theorem.

Theorem 5.4. The set Sol(ω,K) is unbounded if and only if there exists a pair (u, v) ∈
Sol(ω,K)× \{(0, 0)} satisfying the following three conditions:

(i) Bv ∈ K∞, Av ∈ (K∞)∗, ⟨Av,Bv⟩ = 0;

(ii) ⟨Au+ a,Bv⟩ = 0;
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(iii) ⟨Av, z −Bu− b⟩ ≥ 0 ∀z ∈ K.

In particular, if Sol((A, 0, B, 0),K∞) = {0}, then Sol(ω,K) is bounded.

Proof. Necessity: Suppose that Sol(ω,K) is unbounded. Arguing similarly as in the proof
of Theorem 5.2, we can show that there exists a subset I ⊂ [m] such that PRn(∆I) defined
by (5.3) is unbounded. Then, there exist u ∈ PRn(∆I) and v ∈ Rn \ {0} such that

u+ tv ∈ PRn(∆I) ⊂ Sol(ω,K) (5.4)

for every t ≥ 0. Since g(u+ tv) ∈ K, we have

0 ≥ C(B(u+ tv) + b) + d = C(Bu) + Cb+ tC(Bv)

for every t ≥ 0. It implies that C(Bv) ≤ 0; hence, Bv ∈ K∞. From (5.4), one has

⟨f(u+ tv), z − g(u+ tv)⟩ ≥ 0 ∀z ∈ K. (5.5)

For any z fixed, we have⟨
Au+ a

t
+Av,

z −Bu− b

t
−Bv

⟩
≥ 0 ∀t > 0.

Letting t → ∞ yields
⟨Av,Bv⟩ ≤ 0. (5.6)

Choosing z = g(u) + t2Bv ∈ K, by (5.5) we have

⟨A(u+ tv) + a, (t2 − t)Bv⟩ ≥ 0 ∀t > 1. (5.7)

Dividing both sides of the last inequality by t(t2 − t) and letting t → ∞, we obtain

⟨Av,Bv⟩ ≥ 0. (5.8)

Combining (5.6) with (5.8) gives
⟨Av,Bv⟩ = 0.

Choosing z = g(u) ∈ K, by (5.5) one has

⟨A(u+ tv) + a,−tBv⟩ ≥ 0.

It implies that ⟨Au+a,Bv⟩ ≤ 0. Thanks to (5.7), we get ⟨Au+a,Bv⟩ ≥ 0. Hence, condition
(ii) is valid. Then, (5.5) implies that

0 ≤ ⟨A(u+ tv) + a, z −B(u+ tv)− b⟩ = ⟨Au+ a, z −Bu− b⟩+ t⟨Av, z −Bu− b⟩

for every z ∈ K for every t > 0. This leads to ⟨Av, z − Bu − b⟩ ≥ 0 and condition (iii) is
satisfied. For each h ∈ K∞, choosing z = g(u) + h ∈ K, from the last inequality, we have
⟨Av, h⟩ ≥ 0. Thus, Av ∈ (K∞)∗ and condition (i) follows.

Sufficiency: Suppose that there exists a pair (u, v) ∈ Sol(ω,K)×Rn \ {(0, 0)} satisfying
(i)–(iii). For each t > 0, let zt = u+ tv. Then,

g(zt) = B(u+ tv) + b = Bu+ b+ tBv ∈ K
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since Bu+ b ∈ K and Bv ∈ K∞. For any z ∈ K, we obtain that

⟨f(zt), z − g(zt)⟩ = ⟨A(u+ tv) + a, z −B(u+ tv)− b⟩
= ⟨Au+ a+ tAv, z −Bu− b− tBv⟩
= ⟨Au+ a, z −Bu− b⟩ − t⟨Au+ a,Bv⟩+ t⟨Av, z −Bu− b⟩ − t2⟨Av,Bv⟩
≥ 0.

It follows that zt ∈ Sol(ω,K) for every t > 0; hence, Sol(ω,K) is unbounded.
Finally, if Sol((A, 0, B, 0),K∞) = {0} then there is no (u, v) satisfying the condition (i).

Therefore, Sol(ω,K) is bounded.

5.2 Convexity of the set of solutions

Consider the following generalized Minty variational inequality: Find x̄ ∈ Rn such that

Bx̄+ b ∈ K and ⟨Ay + a, y −Bx̄− b⟩ ≥ 0. (GAVIM (ω,K))

Denote by SolM (ω,K) the set of solutions of GAVIM (ω,K).
The following theorem describes the relation between the problem GAVI(ω,K) and the

problem GAVIM (ω,K) and characterizes the closedness and convexity of Sol(ω,K).

Theorem 5.5. Suppose that g−1(y) ̸= ∅ for every y ∈ K, and f(g(x)) = f(x) for all
x ∈ g−1(K). The following two statements are valid:

(i) SolM (ω,K) ⊂ Sol(ω,K);

(ii) If f is generalized pseudo-monotone with respect to g on K then

Sol(ω,K) ⊂ SolM (ω,K)

and Sol(ω,K) is a closed convex set.

Proof. (i) Fix any x̄ ∈ SolM (ω,K). For each y ∈ K, since g−1(y) ̸= ∅ for every y ∈ K, there
exists z ∈ Rn such that g(z) = y. Let z(t) := x̄+ t(z − x̄) for each t ∈ (0, 1). The convexity
of K implies that g(z(t)) = (1 − t)g(x̄) + tg(z) ∈ K. In addition, since f(g(x)) = f(x)
for all x ∈ g−1(K), we have z(t) ∈ g−1(K) and f(g(z(t))) = f(z(t)). From the fact that
x̄ ∈ SolM (ω,K) and g(z(t)) ∈ K, one gets

0 ≤ ⟨f(g(z(t))), g(z(t))− g(x̄)⟩ = ⟨f(z(t)), t(g(z)− g(x̄))⟩

for every t > 0. Then,
⟨f(z(t)), y − g(x̄)⟩ ≥ 0.

Letting t → 0 yields
⟨f(x̄), y − g(x̄)⟩ ≥ 0. (5.9)

This deduces that x̄ ∈ Sol(ω,K).
(ii) Let any x̄ ∈ Sol(ω,K). Then, for each y ∈ K, we have g(x̄) ∈ K and ⟨f(x̄), y−g(x̄)⟩ ≥

0. For each y ∈ K, since g−1(y) ̸= ∅, there exists z ∈ K such that g(z) = y. Combining this
with the fact that f(g(x)) = f(x) for all x ∈ g−1(K), we have f(y) = f(g(z)) = f(z). Since
f is generalized pseudo-monotone with respect to g on K, by (5.9) it follows that

⟨f(z), g(z)− g(x̄)⟩ ≥ 0.



EXISTENCE AND TIKHONOV-TYPE REGULARIZATION METHOD FOR GAVIS 19

Hence, ⟨f(y), y − g(x̄)⟩ ≥ 0. This proves that x̄ ∈ SolM (ω,K).
We now show that Sol(ω,K) is a polyhedral convex set. Indeed, for each y ∈ K, we denote

by S(y) the set of all x̄ satisfying ⟨f(y), y−g(x̄)⟩ ≥ 0. Then, S(y) is a polyhedral convex set.
Since f is generalized pseudo-monotone with respect to g on K and SolM (ω,K) = Sol(ω,K),
we obtain that

Sol(ω,K) =
∩
y∈K

S(y)

is a closed convex set.

6 Conclusions

In the present paper, we have investigated the general affine variational inequalities and
have presented the following contributions:

(i) A sufficient condition for the solution existence of GAVI (Theorem 3.1);

(ii) A Tikhonov-type regularization method to find a solution of the problem GAVI, in-
cluding: scheme, convergence theorem, and semicontinuity of Tikhovov-type trajectory
have been proposed (Theorems 4.1–4.6);

(iii) Under the suitable conditions, we have characterized unboundedness, closedness, and
convexity of the set of solutions (Theorems 5.2–5.5).

The obtained results have provided useful information to further study on theory, algorithms,
and practical applications for general variational inequalities.
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