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in Definition 2.1 in this paper, where the CN function is a nonconvex nonsmooth function
form that can be transformed into a convex smooth function with convex equality con-
straints. The CN function somewhat relates to upper -UCk function [5, 12, 19, 34, 37, 41]
and factorable nonconvex function [6, 17, 25, 26, 31, 32, 43, 38].

The lower(upper)-Ck function was suggested by Professor Rockafellar [37]. The class of
lower-C1 functions was first introduced by Spingarn in [41]. In his work, Spingarn showed
that these functions are (Mifflin) semi-smooth and Clarke regular, and are characterized
by a generalized monotonicity property of their subgradients, called submonotonicity. The
definition of lower(upper)-Ck function is given in [12]. The lower(upper)-Ck function is
nonconvex or nondifferentiable, but it is locally Lipschitz approximate convex function in
[12]. Research on lower(upper)-Ck function is done on subdifferentiation and optimization in
[18, 19, 20, 21]. The Moreau envelopes erf is lower-C2 [5, 19, 34] such that subdifferential of
the lower(upper)-Ck functions can solve nonconvex optimization by prox-regularity and the
proximal mapping(operator) [20]. Chieu et al. proved second-order necessary and sufficient
conditions for lower-C2 functions to be convex and strongly convex in [9].

Some methods for nonsmooth nonconvex optimization problems with lower(upper)-Ck

functions have been studied in [13, 22, 23, 36]. Dao developed a nonconvex bundle method
based on the downshift mechanism and a proximity control management technique to solve
nonconvex nonsmooth constrained optimization problems, where he proved its global con-
vergence in the sense of subsequences for both classes of lower-C1 and upper-C1 in [13].
Hare et al. studied two proximal bundle methods for nonsmooth nonconvex optimization in
[22, 23] by proximal mapping on lower-C2 functions. Noll defined a first-order model of f as
an extended case of lower-Ck function and presented a bundle method in [36]. Clearly, if f
is a first-order model, f is not necessarily lower-Ck, and the reverse is not necessarily true.

On the other hand, the branch-and-bound method in conjunction with underestimating
convex problems had been proved to be an effective method to solve global nonconvex opti-
mization problems [1, 4, 42]. Almost all the methods used to solve nonconvex optimization
problems are to construct many convex relaxation subproblems with convex envelopes and
convex underestimating, as in [4, 40, 38, 43]. Based on this idea, the factorable programming
technique, one of the most popular approaches for constructing convex relaxations of non-
convex optimization problems including problems with convex-transformable functions, was
given in [32]. Due to its simplicity, factorable programming technique is included in most
global optimization packages such as Baron(1996), Antigone(2014), etc [35]. But, Nohra
and Sahinidis(2018) pointed out in [35] that a main drawback of factorable programming
technique is that it often results in large relaxation gaps.

In 1976, McCormick(1976) [32] first defined factorable nonconvex function, but factorable
nonconvex function is not necessarily lower-C1, such as f(x) = ||x||0.1+||x+1||0 on x ∈ Rn,
because f(x) = ||x||0.1+||x+1||0 is not locally Lipschitz [7]. In fact, the factorable nonconvex
functions in [26, 31, 32, 43] may be special CN functions (see Definition 2.1). In recent years,
research on nonconvex factorable programming further shows its effectiveness in solving the
global optimization, as shown in [6, 17, 25, 38]. There are many CN functions that are
not upper-Ck functions or factorable functions, such as |x|0 because upper-Ck functions are
continuous as shown in [18]. So, a CN function is not necessarily an upper-Ck function or
a factorable nonconvex function.

In summary, all studies of nonsmooth nonconvex optimization problems show that the
subdifferential techniques are applied to the global optimal criterions, dualities and algo-
rithms. Up to now, there is no published literature that gives the optimality conditions and
dualities of nonsmooth nonconvex optimization by differential technique. However, in this
paper, the optimality conditions and dualities of nonsmooth or nonconvex CN optimization
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problems are studied by differential technique.
In fact, some CN functions have special structure, such as a weak uniform CN function[27]

and a strong CN function [28]. If a weak uniform CN function is decomposable, the decom-
posable algorithm can effectively reduce the scale in solving the unconstrained optimization
problem with decomposable CN function which are [27]. In machine learning, there are
many decomposable optimization problems in nonsmooth and nonconvex [44]. We have
studied a vector feature extraction method based on SCN optimization,where the proposed
is applied to high-dimensional vector sparse feature extraction experiments and compressed
sensing reconstruction problems and is compared with other algorithms. It is proved that
a better accuracy and sparsity is achieved and the important sparse features in the dataset
are effectively selected in [46]. Furthermore, we propose a feature block decomposition
algorithm(GDL-SVM) of sparse support vector machine based on SCN function. In the
numerical experiment GDL-SVM is compared with other classical algorithms on six real
datasets, which proves that GDL-SVM ensures similar classification accuracy, and is signif-
icantly better in sparse classification results than those of other algorithms [47].

The main contributions of this paper include: 1) a concept of CN function; 2) sufficient
conditions for a global optimal solution to an unconstrained CN optimization problem;
3) the strong duality properties of unconstrained CN optimization; and 4) an augmented
Lagrangian penalty function algorithm for a global optimal solution to CN optimization. The
great value of this paper is that by CN function optimization existing differential theory is
used to solve the non convex and non smooth optimization problems, avoiding the use of
complex subdifferential theory. This makes it possible to design a fast algorithm with second
order convergence.

The remainder of this paper is organized as follows. In Section 2, the definition, some
examples and some properties of CN function are given. In Section 3, the formulation of
unconstrained optimization with a CN function is given and the sufficient conditions of its
global (local) optimal solution is proved. In Section 4, the (proper) Lagrange function of
a CN function and its dual problems of unconstrained optimization are defined with their
dual properties being discussed, and an augmented Lagrangian penalty function algorithm
is proposed and its convergence is proved. In Section 5, the conclusion is given.

2 Definition and Properties

In this section, a new function is defined - called (exact) CN function. Examples of (exact)
CN functions are given, where the exact CN function or CN function may be nonconvex or
nonsmooth. Some properties of (exact) CN function are proved.

Definition 2.1. Let a nonsmooth or nonconvex function f : Rn → R1 be given. If there
exist r + 1 differentiable convex functions, g : Rn × Rm → R1 and gi : Rn × Rm → R1,
i = 1, 2, . . . , r ≥ 1, such that for each x ∈ Rn

f(x) = min
y

{g(x,y)|∀(x,y) ∈ X(f)} (2.1)

holds, f is called a convertible nonsmooth or nonconvex function (abbreviated to CN func-
tion), where

X(f) = {(x,y) | gi(x,y) = 0, i = 1, 2, ..., r}. (2.2)

There is a special case of CN function: if for any (x,y) ∈ X(f) one has f(x) = g(x,y),
then f is called an exact CN function.

[g : g1, g2, . . . , gr] is called a CN form of f , which is written as f = [g : g1, g2, . . . , gr].
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An exact CN function is a CN function. For example, for x ∈ R, the nonconvex function
f(x) = (x2 − x)2 is an exact CN function, where a CN form of f is f = [(y − x)2 : x2 − y]
on (x, y) ∈ R2.

By Definition 2.1, if f is a weak uniform CN function [27], f is a CN function. But, if f
is a CN function, f may not necessarily be a weak uniform CN function. And if f is a strong
CN function [28], f is a CN function. But, if f is a CN function, f may not necessarily be
a strong CN function. Hence, the CN function is broader than weak uniform CN function
and strong CN function.

Next, examples are given to show that some nonconvex functions are CN functions.

Example 2.2. Since the nonconvex function f(x) =
n∑

i=1

√
|xi| has a CN form function

f = [g(x,y) =

n∑
i=1

yi : y
4
i − yi+n, x

2
i − yi+n, y

2
i+2n − yi, i = 1, 2, . . . , n],

it is a CN function, where (x,y) ∈ Rn ×R3n and

X(f) = {(x,y)|y4i − yi+n = 0, x2
i − yi+n = 0, y2i+2n − yi = 0, i = 1, 2, . . . , n}.

Since yi = y2i+2n ≥ 0 and yi =
√

|xi|(i = 1, 2, . . . , n), f is an exact CN function.

Example 2.3. The nonconvex function f(x) = (
√
|a⊤

1 x|+b1)
3
√

|a⊤
2 x|+b2 is CN for b1, b2 > 0

and a1,a2 ∈ Rn\{0}, since it has a CN form

f(x) = [y10 + 1 : (a⊤
1 x)

2 − y1, y
4
2 − y1, y

2
3 − y2,−ln(y2 + b1) + y8,

(a⊤
2 x)

2 − y4, y
6
5 − y4, y

2
6 − y5,−In(y10 + 1) + y7,

0.5(y5 + b2 + y8)
2 − 0.5y9 − y7, (y5 + b2)

2 + y28 − y9, y
2
11 − y10],

where (x,y) ∈ Rn ×R11 and

X(f) = {(x,y) | (a⊤
1 x)

2 − y1 = 0, y42 − y1 = 0, y23 − y2 = 0,−In(y2 + b1) + y8 = 0,

(a⊤
2 x)

2 − y4 = 0, y65 − y4 = 0, y26 − y5 = 0,−In(y10 + 1) + y7 = 0,

0.5(y5 + b2 + y8)
2 − 0.5y9 − y7 = 0, (y5 + b2)

2 + y28 − y9 = 0, y211 − y10 = 0}.

X(f) is equivalent to

X(f) = {(x,y) | (a⊤
1 x)

2 = y42 , y8 = ln(y2 + b1), y2 = y23 ≥ 0

(a⊤
2 x)

2 = y65 , y7 = ln(y10 + 1), y5 = y26 ≥ 0,

(y5 + b2)y8 = y7, y10 = y211 ≥ 0},

i.e.,

X(f) = {(x,y) | y8 = ln(
√

|a⊤
1 x|+ b1), y5 = 3

√
|a⊤

2 x|,

(y5 + b2)y8 = ln(y10 + 1), y10 = y211 ≥ 0},

So, we have y10 = (
√

|a⊤
1 x|+ b1)

y5+b2 − 1. Hence, f(x) is an exact CN function.
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Example 2.4. Let nonconvex function f(x) =
√
||aTx| − b| be given on x ∈ Rn, where

a ∈ Rn and b ∈ R1. We have

f(x)=[g(x, y1, y2, y3, y4, y5, y6)=y5 : (y3−b)2−y4, y
4
5−y4, y

2
6−y5, y

2
3−y2, (a

Tx)2−y2, y
2
1−y3],

where (x,y) ∈ Rn ×R6 and

X(f) = {(x,y)|(y3 − b)2 = y4, y
4
5 = y4, y

2
6 = y5, y

2
3 = y2, (a

Tx)2 = y2, y
2
1 = y3}.

Since y5 = |y3 − b|0.5 and y3 = |aTx|, f(x) is an exact CN function.

The following examples are given to show that some nondifferentiable or nonconvex
functions are CN functions.

Example 2.5. For (x,y) ∈ R2 ×R3, the nondifferentiable nonconvex function

f(x1, x2) = (x2
1 − x2)

2 + |x2
1 − x2|0 =

{
0 if x2

1 − x2 = 0,
(x2

1 − x2)
2 + 1 if x2

1 − x2 ̸= 0,

is a CN function since f = [g : g1, g2, g3] = [y21 + y2 : x2
1 − x2 − y1, (y1 − y2 + 1)2 − y3, y

2
1 +

(y2 − 1)2 − y3, y
2
2 − y2], where |t|0 = 1 for t ̸= 0 or |t|0 = 0 for t = 0 and

X(f) = {(x1, x2, y1, y2, y3) | x2
1 − x2 − y1 = 0, (y1 − y2 + 1)2 − y3 = 0,

y21 + (y2 − 1)2 − y3 = 0, y22 − y2 = 0}.

In fact, X(f) is equivalent to

X(f) = {(x1, x2, y1, y2, y3)|x2
1 − x2 − y1 = 0, y1(y2 − 1) = 0, y2 ∈ {0, 1}}.

We can easily verify that (1) is true. If x2
1 − x2 = 0 for given (x1, x2) ∈ R2, then y1 = 0,

and y2, y3 ∈ {0, 1}. So, we have

f(x1, x2) = min
(y1,y2,y3)

{g(x1, x2, y1, y2, y3) = y21 + y2|y1 = 0, y2, y3 ∈ {0, 1}} = 0.

If x2
1 − x2 ̸= 0 for given (x1, x2) ∈ R2, then x2

1 − x2 = y1, y2 = 1 and y3 = y21 . So, we have
f(x1, x2) = g(x1, x2, y1, y2, y3) = y21 + 1.

Hence, f is not an exact CN function.

Example 2.6. Let a discontinuous function f(x) =
√
∥Ax− b∥ + ∥x∥0 be on x ∈ Rn,

where matrix A ∈ Rm×n and b ∈ Rm are given. ∥x∥0 is 0-norm function in [7]. There are
g(x,y) and gi(x,y) with (x,y) ∈ Rn ×R2n+3 such that

f(x) = [yn+2 +

n∑
i=1

yi : ∥Ax− b∥2 − y2n+1, y
4
2n+2 − y2n+1, y

2
2n+3 − y2n+2, y

2
i − yi,

(xi + yi − 1)2 − yi+n, x
2
i + (yi − 1)2 − yi+n, i = 1, 2, . . . , n].

So, f(x) is a CN funtion, but not exact.

Example 2.7. Let a nonconvex and nondifferentiable function:

f(x) = 2ϕ1(x)ϕ2(x) + |ϕ1(x)− ϕ2(x)|0 =

{
2ϕ1(x)ϕ2(x) if ϕ1(x)− ϕ2(x) = 0,
2ϕ1(x)ϕ2(x) + 1 if ϕ1(x)− ϕ2(x) ̸= 0,
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where ϕ1, ϕ2 : Rn → R are differentiable convex functions. Its CN form is defined by

f = [g(x,y) = (y1 + y2)
2 − y3 + y6 : ϕ1(x)− y1, ϕ2(x)− y2, y

2
1 + y22 − y3, y

2
6 − y6,

(y1 − y2 + y6 − 1)2 − y5, (y1 − y2)
2 + (y6 − 1)2 − y5],

where (x,y) ∈ Rn ×R6. So, f(x1) is a CN function.

For CN functions, we have the following properties.

Proposition 2.8. If f1(x), f2(x) : Rn → R are exact CN functions, then the following
conclusions hold,

(i) αf1(x) is an exact CN function, where α ̸= 0.

(ii) α1f1(x) + α2f2(x) is an exact CN function, where α1, α2 ̸= 0.

(iii) ϕ(f1(x)) is an exact CN function, where ϕ : R → R is a monotone increasing convex
function.

(iv) f1(x)f2(x) is an exact CN function.

(v) f1(x)
f2(x)

is an exact CN function, if f2(x) ̸= 0 on x ∈ Rn.

(vi) min{f1(x), f2(x)} is an exact CN function.

(vii) log(f1(x)) is an exact CN function, if f1(x) > 0 on x ∈ Rn.

Proof. Since f1(x) and f2(x) are exact CN functions, their CN forms are given respectively
by

f1(x) = [g1(x,y1) : g1i (x,y
1), i = 1, 2, ..., r1], (2.3)

f2(x) = [g2(x,y2) : g2j (x,y
2), j = 1, 2, . . . , r2], (2.4)

where y1 ∈ Rm1 ,y2 ∈ Rm2 , g1(x,y1) and g1i (x,y
1) are differentiable convex functions

on (x,y1),i = 1, 2, ..., r1; g2(x,y2) and g2j (x,y
2) are differentiable convex functions on

(x,y2),j = 1, 2, . . . , r2. Let z1 = g1(x,y1), z2 = g2(x,y2).
(i) By Definition 2.1 and (2.3), an exact CN form of αf1(x) is defined by

αf1(x) = [αz1 : g1(x,y1)− z1, g
1
i (x,y

1), i = 1, 2, ..., r1],

where (x,y1, z1) ∈ Rn ×Rm1 ×R1 is variable.
(ii) By (2.3) and (2.4), an exact CN form of α1f1(x) + α2f2(x) is defined by

α1f1(x) + α2f2(x) = [α1z1 + α2z2 : g1(x,y1)− z1, g
2(x,y2)− z2,

g1i (x,y
1), i = 1, 2, ..., r1, g

2
j (x,y

2), j = 1, 2, . . . , r2].

where (x,y1,y2, z) ∈ Rn ×Rm1 ×Rm2 ×R2 is variable.
(iii) By (2.3), an exact CN form of ϕ(f1(x)) is defined by

ϕ(f1(x)) = [ϕ(g1(x,y1)) : g1i (x,y
1), i = 1, 2, ..., r].

(iv) By (2.3) and (2.4), an exact CN form of f1(x)f2(x) is defined by

f1(x)f2(x) = [0.5(z1 + z2)
2 − 0.5z3 : z21 + z22 − z3, g

1(x,y1)− z1, g
2(x,y2)− z2,

g1i (x,y
1), i = 1, 2, ..., r1, g

2
j (x,y

2), j = 1, 2, . . . , r2].
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where (x,y1,y2, z) ∈ Rn ×Rm1 ×Rm2 ×R3 is variable.

(v) By (2.3) and (2.4), an exact CN form of f1(x)
f2(x)

is defined by

f1(x)

f2(x)
= [z3 : (z3 + z2)

2 − z4 − 2z1, z
2
2 + z23 − z4, g

1(x,y1)− z1, g
2(x,y2)− z2,

g1i (x,y
1), i = 1, 2, ..., r1, g

2
j (x,y

2), j = 1, 2, . . . , r2],

where (x,y1,y2, z) ∈ Rn ×Rm1 ×Rm2 ×R4 is variable.

(vi) By (2.3) and (2.4), an exact CN form of min{f1(x), f2(x)} is defined by

min{f1(x), f2(x)} = [z1 : (z2 + z3)
2 − z4, z

2
2 + z23 − z4, z

2
5 − z2, z

2
6 − z3,

g1(x,y1)− z1 + z2, g
2(x,y2)− z1 + z3,

g1i (x,y
1), i = 1, 2, ..., r1, g

2
j (x,y

2), j = 1, 2, . . . , r2],

where (x,y1,y2, z) ∈ Rn ×Rm1 ×Rm2 ×R6 is variable.

(vii) By Definition 2.1 and (2.3), an exact CN form of log(f1(x)) is defined by

log(f1(x)) = [z2 : − log z1 + z2, g
1(x,y1)− z1, g

1
i (x,y

1), i = 1, 2, ..., r1],

where (x,y1, z) ∈ Rn ×Rm1 ×R2 is variable.

Proposition 2.9. If f1(x), f2(x) : R
n → R are CN functions, then the following conclusions

hold,

(i) αf1(x) is a CN function, where α > 0.

(ii) α1f1(x) + α2f2(x) is a CN function, where α1, α2 > 0.

(iii) ϕ(f1(x)) is a CN function, where ϕ : R → R is a monotone increasing convex function.

(iv) f1(x)f2(x) is a CN function if f1(x) ≥ 0 and f2(x) ≥ 0 hold on ∀x ∈ Rn.

(v) f1(x)
f2(x)

is a CN function, if f2(x) > 0 on x ∈ Rn is an exact CN function.

Proof. The proof of (i,ii,iii) is completely similar to (i), (ii) and (iii) of Proposition 2.8.

Since f1(x) and f2(x) are CN functions, their CN forms are given respectively by

f1(x) = [g1(x,y1) : g1i (x,y
1), i = 1, 2, ..., r1], (2.5)

f2(x) = [g2(x,y2) : g2j (x,y
2), j = 1, 2, . . . , r2], (2.6)

where y1 ∈ Rm1 ,y2 ∈ Rm2 , g1(x,y1) and g1i (x,y
1) are differentiable convex functions

on (x,y1),i = 1, 2, ..., r1; g2(x,y2) and g2j (x,y
2) are differentiable convex functions on

(x,y2),j = 1, 2, . . . , r2. Let z1 = g1(x,y1), z2 = g2(x,y2).

(iv) By (2.5) and (2.6), an CN form of f1(x)f2(x) is defined by

f1(x)f2(x) = [0.5(z1 + z2)
2 − 0.5z3 : z21 + z22 − z3, g

1(x,y1)− z1, g
2(x,y2)− z2,

g1i (x,y
1), i = 1, 2, ..., r1, g

2
j (x,y

2), j = 1, 2, . . . , r2].
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where (x,y1,y2, z) ∈ Rn × Rm1 × Rm2 × R3 is variable with z = (z1, z2, z3). For fixed x,
since

min
(y1,y2,z)

{0.5(z1 + z2)
2 − 0.5z3 | z21 + z22 − z3 = 0, g1(x,y1)− z1 = 0,

g2(x,y2)− z2 = 0, g1i (x,y
1) = 0, i = 1, 2, ..., r1,

g2j (x,y
2) = 0, j = 1, 2, . . . , r2}

= min
(y1,y2)

{g1(x,y1)g2((x,y2) | g1i (x,y
1) = 0, i = 1, 2, ..., r1, g

2
j (x,y

2) = 0, j = 1, 2, . . . , r2}

= min
y1

{g1(x,y1)|g1i (x,y1) = 0 , i = 1, 2, ..., r1}min
y2

{g2((x,y2)|g2j (x,y2) = 0, j = 1, 2, . . . , r2}

= f1(x)f2(x),

f1(x)f2(x) is a CN function.

(v) By (2.3) and (2.4), an CN form of f1(x)
f2(x)

is defined by

f1(x)

f2(x)
= [z3 : (z3 + z2)

2 − z4 − 2z1, z
2
2 + z23 − z4, g

1(x,y1)− z1, g
2(x,y2)− z2,

g1i (x,y
1), i = 1, 2, ..., r1, g

2
j (x,y

2), j = 1, 2, . . . , r2],

where (x,y1,y2, z) ∈ Rn × Rm1 × Rm2 × R4 is variable with z = (z1, z2, z3, z4). For fixed
x, since

min
(y1,y2,z)

{[z3|(z3 + z2)
2− z4− 2z1= 0, z22+ z23− z4= 0, g1(x,y1)− z1= 0, g2(x,y2)− z2= 0,

g1i (x,y
1) = 0, i = 1, 2, ..., r1, g

2
j (x,y

2) = 0, j = 1, 2, . . . , r2}

= min
(y1)

{g
1(x,y1)

g2(x,y2)
|g1i (x,y1) = 0, i = 1, 2, ..., r1} =

f1(x)

f2(x)
,

f1(x)
f2(x)

is a CN function.

The multi-convex function is a class of very important nonconvex functions [39](2017).
Many types of multi-convex functions are CN funtions. For examples, the multi-convex
function f(x) = x1x2 . . . xn is a CN function by Proposition 2.8. The DC-function is a CN
function. Therefore, CN functions cover a wide range of nonconvex functions.

The above examples show that some nonsmooth, nonconvex or discontinuous functions
are CN funtions. So, such nonsmooth and nonconvex optimization problems in machine
learning can be converted to differentiable CN optimization problems. For example, the
sparse optimization problem, min

x∈Rn
h(x) + λ∥x∥0, where ∥x∥0 is 0-norm and h(x) is convex.

Hence, it is worthwhile to study CN optimization theory, as shown in Section 3.

3 Unconstrained Optimization Problem of a CN function

Throughout this section, it is assumed that f is a CN function with f = [g : g1, g2, . . . , gr].
So, f(x) is not necessarily differentiable on x ∈ Rn. This paper is concerned with an
unconstrained optimization problem with a CN function:

(CNO) min f(x)

s.t. x ∈ Rn,
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where f : Rn → R is a CN function. (CNO) is called a CN optimization problem. An
application of a CN form of f brings us the following constrained optimization problem:

(CNP) min g(x,y)

s.t. gi(x,y) = 0, i = 1, 2, ..., r,

x ∈ Rn,y ∈ Rm.

By Definition 2.1, it is clear

min
x∈Rn

f(x) = min
(x,y)∈X(f)

g(x,y).

Example 3.1. Consider an unconstrained optimization problem

(EX3.1) min f(x1) = |x1 − 1|0.5 + |x2
1 − x1|0 + x2

1 s.t. x1 ∈ R,

where f(x1) is a CN function. A CN form of f is defined by

f(x1) = [g(x,y) = y1 + y6 + x2
1 : y41 − y2, (x1 − 1)2 − y2, y

2
3 − y1, x

2
1 − x1 − y4,

(y4 + y6 − 1)2 − y5, y
2
4 + (y6 − 1)2 − y5, y

2
6 − y6],

where x = x1,y = (y1, y2, y3, y4, y5, y6)
⊤ ∈ R6 and

X(f) = {(x,y) | y41 − y2 = 0, (x1 − 1)2 − y2 = 0, y23 − y1 = 0, x2
1 − x1 − y4 = 0,

(y4 + y6 − 1)2 − y5 = 0, y24 + (y6 − 1)2 − y5 = 0, y26 − y6 = 0}.

X(f) is equivalent to

X(f) = {(x,y)|y1 = |x1 − 1|0.5, y1 = y23 ≥ 0, (x2
1 − x1)(y6 − 1) = 0, y6 ∈ {0, 1}}.

If x1 = 0, then y1 = 1 and y6 ∈ {0, 1}. So, f(x1) = 1 = min
y

g(x,y) = y1 + y6 + x2
1.

If x1 = 1, then y1 = 0 and y6 ∈ {0, 1}. So, f(x1) = 1 = min
y

g(x,y) = y1 + y6 + x2
1.

If x2
1 − x1 ̸= 0, then y1 = |x1 − 1|0.5 and y6 = 1. So,

f(x1) = |x1 − 1|0.5 + 1 + x2
1 = min

y
g(x,y) = y1 + y6 + x2

1.

Hence, (EX3.1) is equivalent to

(MEX3.1) min g(x,y) = y1 + y6 + x2
1

s.t. (x,y) ∈ X(f) = {(x,y)|y41 − y2 = 0, (x1 − 1)2 − y2 = 0, x2
1 − x1 − y4 = 0,

y23 − y1 = 0, (y4 + y6 − 1)2 − y5 = 0, y24 + (y6 − 1)2 − y5 = 0, y26 − y6 = 0},

where x = x1,y = (y1, y2, y3, y4, y5, y6)
⊤ ∈ R6. x∗

1 = 0 and x∗
1 = 1 are global optimal

solutions to (EX3.1) with f(x∗
1) = 1. f(x1) is not subdifferentiable at x∗

1 = 0 and x∗
1 = 1.

(x∗,y∗) = (0, 1, 1, 1, 0, 1, 0) and (x∗,y∗) = (1, 0, 0, 0, 0, 1, 0) are global optimal solutions to
(MEX3.1) with g(x∗,y∗) = 1.

Example 3.1 shows that the optimal condition ∇f(x∗) = 0 of (CNO) cannot hold true
if x∗ is an optimal solution to (CNO) when f(x) is not subdifferentiable at x∗. Hence, it is
valuable to study the optimal condition of an optimal solution to (CNP) as follows.



84 M. JIANG, Z. MENG, C. DANG AND R. SHEN

For a fixed (x,y), a linear programming problem (CNP)(x,y) is defined as follows, where
d = (d1,d2) ∈ Rn ×Rm is variable.

(CNP)(x,y) min ∇g(x,y)Td

s.t. ∇gi(x,y)
Td ≤ 0, i = 1, 2, ..., r,

d ∈ Rn ×Rm.

Let I = {1, 2, . . . , r} and

g(x,y) = (g1(x,y), g2(x,y), . . . , gr(x,y))
T.

When f(x) is not differentiable on x ∈ Rn, it is not easy to determine whether x is a local
optimal solution to (CNO). So, it is very difficult to judge the global optimality to (CNP).
So the following conclusions about how to judge the global optimality to (CNP) and (CNO)
become important.

Theorem 3.2. Let (x∗,y∗) ∈ X(f). If there is an optimal solution d∗ to (CNP)(x∗,y∗)
such that ∇g(x∗,y∗)Td∗ ≥ 0, then (x∗,y∗) is an optimal solution to (CNP), x∗ is an
optimal solution to (CNO) and there is u∗ = (u∗

1, u
∗
2, . . . , u

∗
r)

T ≥ 0 such that

∇g(x∗,y∗) +∇g(x∗,y∗)Tu∗ = 0. (3.1)

Proof. For any (x,y) ∈ X(f), we have

g(x,y)− g(x∗,y∗) ≥ ∇g(x∗,y∗)T[(x,y)− (x∗,y∗)],

0 = gi(x,y)− gi(x
∗,y∗) ≥ ∇gi(x

∗,y∗)T[(x,y)− (x∗,y∗)], i = 1, 2, ..., r.

So, (x,y)− (x∗,y∗) is a feasible solution to (CNP)(x∗,y∗). Then

f(x)− f(x∗) = g(x,y)− g(x∗,y∗)

≥ ∇g(x∗,y∗)T[(x,y)− (x∗,y∗)]

≥ ∇g(x∗,y∗)Td∗ ≥ 0.

Hence, (x∗,y∗) is an optimal solution to (CNP) and x∗ is an optimal solution to (CNO).
Because (CNP)(x∗,y∗) is a linear programming problem, (CNP)(x∗,y∗) can be rewritten
as

(CNP)(x∗,y∗) max −∇g(x∗,y∗)Td

s.t. ∇gi(x
∗,y∗)Td ≤ 0, i = 1, 2, ..., r,

d ∈ Rn ×Rm.

The dual problem (DCNP)(x∗,y∗) of (CNP)(x∗,y∗) is defined as follows:

(DCNP)(x∗,y∗) min

r∑
i=1

0 · ui

s.t. −
r∑

i=1

ui∇gi(x
∗,y∗) = ∇g(x∗,y∗)

ui ≥ 0, i = 1, 2, ..., r;

where (u1, u2, . . . , ur) is dual variable. By the strong duality theorem of linear programming,
there is an optimal solution u∗ = (u∗

1, u
∗
2, . . . , u

∗
r)

T ≥ 0 to (DCNP)(x∗,y∗) such that

0 ≤ −∇g(x∗,y∗)Td∗ ≤ 0.

Hence, (3.1) is true.
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Corollary 3.3. Suppose that (x∗,y∗) ∈ X(f). Consider the problem,

(CNPP)(x∗,y∗) min ∇g(x∗,y∗)T[(x,y)− (x∗,y∗)]

s.t. ∇gi(x
∗,y∗)T[(x,y)− (x∗,y∗)] ≤ 0, i = 1, 2, ..., r,

(x,y) ∈ X(f).

If (x∗,y∗) is an optimal solution to (CNPP)(x∗,y∗), then (x∗,y∗) is an optimal solution to
(CNP) and x∗ is an optimal solution to (CNO), i.e. if (x∗,y∗) is not an optimal solution
to (CNP), then there is an (x,y) ∈ X(f) such that ∇g(x∗,y∗)T[(x,y)− (x∗,y∗)] < 0.

Corollary 3.3 is very useful though (CNPP)(x∗,y∗) is not a linear programming problem.
Theorem 3.4 tells us that x∗ is an optimal solution to (CNO) if the optimal condition (3.1)
holds for u∗ ≥ 0.

By Theorem 3.2, the following conclusions are clear.

Theorem 3.4. Let (x∗,y∗) ∈ X(f). If there is u∗ = (u∗
1, u

∗
2, . . . , u

∗
r)

T ≥ 0 such that (3.1)
holds, then (x∗,y∗) is an optimal solution to (CNP) and x∗ is an optimal solution to (CNO).

Proof. Let any (x,y) ∈ X(f). Since g(x,y) and gi(x,y)(i = 1, 2, ..., r) are convex, we have

g(x,y)− g(x∗,y∗) ≥ ∇g(x∗,y∗)T[(x,y)− (x∗,y∗)],

gi(x,y)− gi(x
∗,y∗) ≥ ∇gi(x

∗,y∗)T[(x,y)− (x∗,y∗)], i = 1, 2, ..., r.

From the above inequalities, we have

g(x,y) +

r∑
i=1

u∗
i gi(x,y) ≥ g(x∗,y∗) +∇g(x∗,y∗)T[(x,y)− (x∗,y∗)]

+

r∑
i=1

u∗
i∇gi(x

∗,y∗)T[(x,y)− (x∗,y∗)].

Hence,

g(x,y) ≥ g(x,y) +

r∑
i=1

u∗
i gi(x,y) ≥ g(x∗,y∗),

and x∗ is an optimal solution to (CNO).

Theorem 3.5. Suppose that (x∗,y∗) ∈ X(f). If ∇g(x∗,y∗) = 0, then x∗ is an optimal
solution to (CNO).

Proof. Let any (x,y) ∈ X(f). We have

g(x,y)− g(x∗,y∗) ≥ ∇g(x∗,y∗)T[(x,y)− (x∗,y∗)] = 0.

Hence, x∗ is an optimal solution to (CNO).

Example 3.6. Consider the optimization problem:

(EX3.2) min f(x) = |x| 13
s.t. x ∈ R1,
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where f(x) = |x| 13 is a nonsmooth and nonconvex function. The CN optimization of (EX3.2)
is defined by

(MEX3.2) min g(x, y1, y2, y3) = y3

s.t. g1(x, y1, y2, y3) = y63 − y2 = 0,

g2(x, y1, y2, y3) = x2 − y2 = 0,

g3(x, y1, y2, y3) = y21 − y3 = 0,

x, y1, y2, y3 ∈ R1.

So, (3.1) at (x, y1, y2, y3) = (0, 0, 0, 0) holds by

∇g(0, 0, 0, 0) + u1∇g1(0, 0, 0, 0) + u2∇g2(0, 0, 0, 0) + u3∇g3(0, 0, 0, 0) = 0,

where (u1, u2, u3) = (0, 0, 1).

Example 3.6 shows that the optimal condition in Theorem 3.2 holds. If the optimal
condition in Theorem 3.2 or Theorem 3.4 does not hold, the global optimal solution to
(CNP) is judged by solving a linear programming problem (CNP0)(x,y). For a fixed (x,y),
the linear programming problem (CNP0)(x,y) of (CNP) is defined by

(CNP0)(x,y) min ∇g(x,y)Td

s.t. ∇gi(x,y)
Td = 0, i = 1, 2, ..., r,

d ∈ Rn ×Rm.

Let two feasible sets (or tangent cone) at a fixed (x∗,y∗) be defined respectively by

T (x∗,y∗) = {(x,y) ∈ Rn ×Rm | ∇gi(x
∗,y∗)T[(x,y)− (x∗,y∗)] ≤ 0, i = 1, 2, ..., r}

and

T0(x
∗,y∗) = {(x,y) ∈ Rn ×Rm | ∇gi(x

∗,y∗)T[(x,y)− (x∗,y∗)] = 0, i = 1, 2, ..., r}.

It is clear that T0(x
∗,y∗) ⊂ T (x∗,y∗) and X(f) ⊂ T (x∗,y∗) for each (x∗,y∗) ∈ X(f).

Define

Kg(x
∗,y∗) = {(x,y) ∈ Rn ×Rm | ∇g(x∗,y∗)T[(x,y)− (x∗,y∗)] < 0}.

We have the following Lemmas.

Lemma 3.7. Let (x∗,y∗) ∈ X(f). If

X(f) ∩Kg(x
∗,y∗) = ∅ (3.2)

holds, then g(x∗,y∗) ≤ g(x,y) for all (x,y) ∈ X(f), i.e. (x∗,y∗) is an optimal solution to
(CNP) and x∗ is an optimal solution to (CNO).

Lemma 3.8. Let (x∗,y∗) ∈ X(f). If

X(f) ∩Kg(x
∗,y∗) ∩ T (x∗,y∗)\T0(x

∗,y∗) = ∅ (3.3)

holds, then g(x∗,y∗) ≤ g(x,y) for all (x,y) ∈ X(f) ∩ T (x∗,y∗)\T0(x
∗,y∗).
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For (x∗,y∗) ∈ X(f), let

X(f) ⊂ T0(x
∗,y∗). (3.4)

It is clear that the condition (3.3) holds when the condition (3.4) is true. The condition
(3.3) means if for (x∗,y∗) ∈ X(f) there is no (x,y) ∈ X(f) ∩ T (x∗,y∗)\T0(x

∗,y∗) such
that g(x,y) < g(x∗,y∗) holds. In other words, if the optimal condition (3.3) does not holds,
(x∗,y∗) is not an optimal solution to (CNP).

The following conclusion is easily proved.

Theorem 3.9. Suppose the condition (3.3) or (3.4) holds for (x∗,y∗) ∈ X(f). If there
is an optimal solution d∗ to (CNP0)(x∗,y∗) such that ∇g(x∗,y∗)Td∗ ≥ 0, then (x∗,y∗)
is an optimal solution to (CNP), x∗ is an optimal solution to (CNO) and there is u∗ =
(u∗

1, u
∗
2, . . . , u

∗
r)

T ∈ Rr such that

∇g(x∗,y∗) +∇g(x∗,y∗)Tu∗ = 0. (3.5)

Proof. For any (x,y) ∈ X(f), if (3.4) holds, (x,y) − (x∗,y∗) is a feasible solution to
(CNP0)(x∗,y∗). So, we have

g(x,y)− g(x∗,y∗) ≥ ∇g(x∗,y∗)T[(x,y)− (x∗,y∗)] ≥ ∇g(x∗,y∗)Td∗ ≥ 0.

If (3.3) holds, for (x,y) ∈ T (x∗,y∗)\T0(x
∗,y∗), we have g(x,y) ≥ g(x∗,y∗) by Lemma

3.8. For (x,y) ∈ T0(x
∗,y∗), we have g(x,y) ≥ g(x∗,y∗) too. Hence, (x∗,y∗) is an optimal

solution to (CNP) and x∗ is an optimal solution to (CNO). Because (CNP0)(x∗,y∗) is linear
programming, (CNP0)(x∗,y∗) can be rewritten as

(CNP0)(x∗,y∗) max −∇g(x∗,y∗)Td

s.t. ∇gi(x
∗,y∗)Td = 0, i = 1, 2, . . . , r,

d ∈ Rn ×Rm.

Then, the dual problem (DCNP0)(x∗,y∗) of (CNP0)(x∗,y∗) is defined as follows.

(DCNP0)(x∗,y∗) min

r∑
i=1

0 · ui

s.t. −
r∑

i=1

ui∇gi(x
∗,y∗) = ∇g(x∗,y∗)

ui ∈ R1, i = 1, 2, . . . , r,

where (u1, u2, . . . , ur) is dual variable. By the strong duality theorem of linear programming,
there is an optimal solution u∗ = (u∗

1, u
∗
2, . . . , u

∗
r)

T ∈ Rr to (DCNP0)(x∗,y∗) such that

0 ≤ −∇g(x∗,y∗)Td∗ ≤ 0.

Hence, (3.5) is true.

By Theorem 3.9, we have the following conclusion.

Theorem 3.10. Suppose that (3.3) or (3.4) holds for (x∗,y∗) ∈ X(f). If there is u∗ =
(u∗

1, u
∗
2, . . . , u

∗
r)

T such that (3.5) holds, then (x∗,y∗) is an optimal solution to (CNP) and
x∗ is an optimal solution to (CNO).



88 M. JIANG, Z. MENG, C. DANG AND R. SHEN

Proof. Because (3.5) holds for u∗ = (u∗
1, u

∗
2, . . . , u

∗
r)

T, u∗ is a feasible solution to linear
programming (DCNP0)(x∗,y∗). It is clear that d = 0 is a feasible solution to linear pro-
gramming (CNP0)(x∗,y∗). By the strong duality theorem, there is an optimal solution d∗

to (CNP0)(x∗,y∗) such that ∇g(x∗,y∗)Td∗ ≥ 0 and (3.5) holds. Hence, by Theorem 3.9,
(x∗,y∗) is an optimal solution to (CNP) and x∗ is an optimal solution to (CNO).

When the conditions (3.3) and (3.4) do not hold, Theorem 3.9 and Theorem 3.10 can be
combined into the following conclusion.

Theorem 3.11. Let (x∗,y∗) ∈ X(f). Then there is an optimal solution d∗ to (CNP0)(x∗,y∗)
such that ∇g(x∗,y∗)Td∗ ≥ 0 if and only if there is u∗ = (u∗

1, u
∗
2, . . . , u

∗
r)

T such that (3.5)
holds.

Theorem 3.11 means that x∗ doesn’t have to be an optimal solution to (CNO) if there is
an optimal solution d∗ to (CNP0)(x∗,y∗) such that ∇g(x∗,y∗)Td∗ ≥ 0 for (x∗,y∗) ∈ X(f).

Example 3.12. Consider the optimization problem:

(EX3.3) min f(x) =
√
|x2 − x|

s.t. x ∈ R1,

where f(x) =
√
|x2 − x| is a nonconvex function. x∗ = 1 and x∗ = 0 are optimal solutions

to (EX3.3). The CN optimization of (EX3.3) is defined by

(MEX3.3) min g(x,y) = y1

s.t. g1(x,y) = y41 − y2 = 0, g2(x,y) = y23 − y2 = 0,

g3(x,y) = x2 − x− y3 = 0, g4(x,y) = y24 − y1 = 0,

where (x∗,y∗) = (1, 0, 0, 0, 0), (x∗,y∗) = (0, 0, 0, 0, 0) and (x∗,y∗) = ( 12 ,
1
2 ,

1
16 ,−

1
4 ,
√

1
2 ) are

its CN points. When (x∗,y∗) = (1, 0, 0, 0, 0) and (u∗
1, u

∗
2, u

∗
3, u

∗
4) = (0, 0, 0, 1), the optimal

condition (3.1) holds. When (x∗,y∗) = (0, 0, 0, 0, 0) and (u∗
1, u

∗
2, u

∗
3, u

∗
4) = (0, 0, 0, 1), the

optimal condition (3.1) holds. When (x∗,y∗) = ( 12 ,
1
2 ,

1
16 ,−

1
4 ,
√

1
2 ) and (u∗

1, u
∗
2, u

∗
3, u

∗
4) =

(− 1
2 ,

1
2 ,

1
16 , 0), the optimal condition (3.5) holds. By Theorem 3.4, (x∗,y∗) = (1, 0, 0, 0, 0)

and (x∗,y∗) = (0, 0, 0, 0, 0) are optimal solutions to (MEX3.3). But, (x∗,y∗) =

( 12 ,
1
2 ,

1
16 ,−

1
4 ,
√

1
2 ) is not an local optimal solution to (MEX3.3). In fact, a stationary point

x = 1
2 of (EX3.3) is not an local optimal solution to (EX3.3).

Example 3.13. Consider the optimization problem (EX3.1) in Example 3.1. (x∗,y∗) =
(0, 1, 1, 1, 0, 1, 0) and (x∗,y∗) = (1, 0, 0, 0, 0, 1, 0) are global optimal solutions to (MEX3.1).
When (x∗,y∗) = (0, 1, 1, 1, 0, 1, 0) and (u∗

1, u
∗
2, . . . , u

∗
7) = (− 1

4 ,
1
4 , 0,−

1
2 ,

1
4 ,−

1
4 , 1), the op-

timal condition (3.5) holds. When (x∗,y∗) = (1, 0, 0, 0, 0, 1, 0) and (u∗
1, u

∗
2, . . . , u

∗
7) =

(1,−1, 1,−2, 1,−1, 1), the optimal condition (3.5) holds.

Example 3.13 shows that the optimal condition (3.5) of CN optimization may be obtained
for an optimal solution to (CNP) when f is not subdifferentiable. The optimal condition
(3.5) holds at (x∗,y∗) ∈ X(f), if x∗ is an optimal solution to (CNO).

Next, the relationship between the problem (CNP) and the local optimal solution to
(CNO) is discussed.
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Theorem 3.14. Suppose that (x∗,y∗) ∈ X(f) is a local optimal solution to (CNP). Then

(i) ∇g(x∗,y∗)Td ≥ 0 for d ∈ T0(x
∗,y∗).

(ii) If ∇gi(x
∗,y∗)(i = 1, 2, ..., r) is linearly independent, then there are u∗

1, u
∗
2, . . . , u

∗
r such

that

∇g(x∗,y∗) +

r∑
i=1

u∗
i∇gi(x

∗,y∗) = 0.

Furthermore, x∗ is a global optimal solution to (CNO) if u∗
1, u

∗
2, . . . , u

∗
r ≥ 0.

Theorem 3.14 means that there is no feasible direction d of X(f) at (x∗,y∗) such that
∇g(x∗,y∗)Td < 0 if (x∗,y∗) is a local optimal solution to (CNP). In other words, if there
is a feasible direction d of X(f) at (x∗,y∗) such that ∇g(x∗,y∗)Td < 0, then (x∗,y∗) is
not a local optimal solution to (CNP).

Theorem 3.15. Suppose that f is an exact CN function and continuous on Rn. If (x∗,y∗) ∈
X(f) is a local optimal solution to (CNP), then x∗ is a local optimal solution to (CNO).

Proof. Suppose that x∗ is not a local optimal solution to (CNO). Let a monotonically
decreasing sequence εk → 0 as k → +∞. For each neighborhood B(x∗, εk) of x

∗,k = 1, 2, . . . ,
there is a xk such that

f(xk) < f(x∗).

It is clear that xk → x∗ as k → +∞. There is yk ∈ Rm such that (xk,yk) ∈ X(f) and
yk → y∗ because the function f is continuous. Because (x∗,y∗) ∈ X(f) is a local optimal
solution to (CNP), there is k′ > 0 such that

f(x∗) = g(x∗,y∗) ≤ g(xk,yk) = f(xk), ∀k > k′.

A contradiction occurs.

Theorem 3.16. Suppose that (x∗,y∗) ∈ X(f). If x∗ is a local optimal solution to (CNO),
then (x∗,y∗) is a local optimal solution to (CNP).

Proof. Suppose that (x∗,y∗) is not a local optimal solution to (CNP). Let a monotonically
decreasing sequence εk → 0 as k → +∞. For each neighborhood B(x∗,y∗, εk) of (x

∗,y∗),
k = 1, 2, . . . , there is a (xk,yk) ∈ B(x∗,y∗, εk) ∩X(f) such that

f(xk) = g(xk,yk) < g(x∗,y∗) = f(x∗).

It is clear that (xk,yk) → (x∗,y∗) as k → +∞. Because x∗ is a local optimal solution to
(CNO), there is k′ > 0 such that

g(x∗,y∗) = f(x∗) ≤ f(xk) = g(xk,yk), ∀k > k′.

A contradiction occurs.
Theorem 3.15 and Theorem 3.16 tell us that a local optimal solution x∗ to (CNO)

is equivalent to a local optimal solution (x∗,y∗) to (CNP) if the exact CN function f is
continuous. The optimal solution to (CNO) can be obtained by solving the local optimal
solution or the global optimal solution to (CNP).



90 M. JIANG, Z. MENG, C. DANG AND R. SHEN

4 Lagrange Duality of (CNP)

The advantage that the gap between the optimal objective function value of the Lagrangian
dual problem of the convex optimization problem and the optimal objective function value
of the original problem is zero makes the utilization of the dual problem of convex opti-
mization important in getting the global optimal solution. So, next the dual problem of CN
optimization is studied.

For any (x,y) ∈ Rn ×Rm,u ∈ Rr, a Lagrange function of (CNP) is defined by

L(x,y;u) = g(x,y) + uTg(x,y). (4.1)

Let a dual function of L(x,y;u) on u ∈ Rr be defined by

θ(u) = min{L(x,y;u)|(x,y) ∈ Rn ×Rm}. (4.2)

Let Rr
+ = {u ∈ Rr|u ≥ 0}. For any (x,y) ∈ Rn × Rm and u ∈ Rr

+, a proper Lagrange
function of (CNP) is defined by

L+(x,y;u) = g(x,y) + uTg(x,y). (4.3)

Let a proper dual function of L+(x,y;u) on u ∈ Rr
+ be defined by

θ+(u) = min{L+(x,y;u)|(x,y) ∈ Rn ×Rm}. (4.4)

The following conclusions are clear.

Proposition 4.1. If u ∈ Rr
+, then L(x,y;u) = L+(x,y;u) and θ(u) = θ+(u).

Proposition 4.2. If (x∗,y∗;u∗) is a saddle point of L(x,y;u) with u∗ ∈ Rr
+, then

(x∗,y∗;u∗) is a proper saddle point of L+(x,y;u).

A dual optimization problem of (CNP) is defined by

(DLCNP) max θ(u) s.t. u ∈ Rr.

It is clear that θ(u) is a concave function on Rr.
A proper dual optimization problem of (CNP) is defined by

(PDLCNP) max θ+(u) s.t. u ∈ Rr
+.

It is clear that θ+(u) is a concave function on Rr
+. By (4.1-4.4), the following weak duality

is clear.

Proposition 4.3. (i) For all (x,y) ∈ Rn ×Rm and u ∈ Rr, L(x,y;u) ≥ θ(u).

(ii) For all (x,y) ∈ X(f) and u ∈ Rr, g(x,y) ≥ θ(u).

(iii) For all (x,y) ∈ Rn ×Rm and u ∈ Rr
+, L+(x,y;u) ≥ θ+(u).

(iv) For all (x,y) ∈ X(f) and u ∈ Rr
+, g(x,y) ≥ θ+(u).

The following strong duality theorem is proved.
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Theorem 4.4. (i) If L(x∗,y∗,u∗) = θ(u∗) at (x∗,y∗) ∈ Rn ×Rm and u∗ ∈ Rr, then

∇L(x∗,y∗;u∗) = ∇g(x∗,y∗) +∇g(x∗,y∗)Tu∗ = 0. (4.5)

(ii) If g(x∗,y∗) = θ(u∗) at (x∗,y∗) ∈ X(f) and u∗ ∈ Rr. Then (4.5) holds, (x∗,y∗) is
an optimal solution to (CNP) and u∗ is an optimal solution to (DLCNP).

(iii) Suppose that (x∗,y∗) ∈ Rn ×Rm and u∗ ∈ Rr
+. Then

∇L+(x
∗,y∗;u∗) = ∇g(x∗,y∗) +∇g(x∗,y∗)Tu∗ = 0 (4.6)

holds if and only if L+(x
∗,y∗,u∗) = θ+(u

∗).

(iv) Suppose that (x∗,y∗) ∈ X(f) and u∗ ∈ Rr
+. Then (4.6) holds if and only if g(x∗,y∗) =

θ+(u
∗). Furthermore, (x∗,y∗) is an optimal solution to (CNP) and u∗ is an optimal

solution to (PDLCNP).

Proof. (i) Because for fixed u∗,

θ(u∗) = min{L(x,y;u∗)|(x,y) ∈ Rn ×Rm} = L(x∗,y∗,u∗),

(x∗,y∗) is an optimal solution to min{L(x,y;u∗)|(x,y) ∈ Rn × Rm}. Hence,
∇L(x∗,y∗,u∗) = 0.

(ii) If g(x∗,y∗) = θ(u∗) at (x∗,y∗) ∈ X(f) and u∗ ∈ Rr, g(x∗,y∗) = L(x∗,y∗;u∗) =
θ(u∗). So, ∇L(x∗,y∗,u∗) = 0 holds. For all (x,y) ∈ X(f), we have

g(x,y) ≥ L(x,y,u∗) ≥ L(x∗,y∗;u∗) = g(x∗,y∗).

Let ū be an optimal solution to (DLCNP). We have

g(x∗,y∗) ≥ L(x∗,y∗, ū) ≥ θ(ū) ≥ θ(u∗) = g(x∗,y∗).

Hence, (x∗,y∗) is an optimal solution to (CNP) and u∗ is an optimal solution to (DLCNP).
(iii) Because for fixed u∗,

θ+(u
∗) = min{L+(x,y;u

∗)|(x,y) ∈ Rn ×Rm} = L+(x
∗,y∗,u∗),

then (x∗,y∗) is an optimal solution to min{L+(x,y;u
∗)|(x,y) ∈ Rn × Rm}. Hence,

∇L+(x
∗,y∗,u∗) = 0.

Now, let us prove, if (4.6) is true, L+(x
∗,y∗;u∗) = θ+(u

∗). Because for a fixed u∗,
L+(x,y;u

∗) is convex on (x,y), (x∗,y∗) is an optimal solution to min{L+(x,y;u
∗)|(x,y) ∈

Rn ×Rm}. Hence,

θ+(u
∗) = L+(x

∗,y∗;u∗).

(iv) For (x∗,y∗) ∈ X(f) and u∗ ∈ Rr
+, if (4.6) holds, g(x

∗,y∗) = θ+(u
∗) is true by (iii).

On the other hand, if g(x∗,y∗) = θ+(u
∗), then (4.6) holds, (x∗,y∗) is an optimal solution

to (CNP) and u∗ is an optimal solution to (PDLCNP), similar to the proof of (ii) .

By Theorem 4.4, the gap between the optimal objective value of the proper Lagrangian
dual problem of (CNP) and the optimal objective value of the original problem (CNP)
may be zero. When a Lagrange function L(x,y;u∗) is convex on (x,y) at u∗ ∈ Rr, the
conclusion of zero gap holds by the proof of Theorem 4.4 (iii) and (iv). Theorem 4.4 tells us
that there is not any CN form of f such that the conclusion of Theorem 4.4 is true if there
is not any optimal solution to (CNP).
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Corollary 4.5. (i) Suppose that for (x∗,y∗) ∈ Rn ×Rm and u∗ ∈ Rr, a Lagrange func-
tion L(x,y;u∗) is convex on (x,y) at u∗ ∈ Rr. If (4.5) holds, then L(x∗,y∗,u∗) =
θ(u∗).

(ii) Suppose that for (x∗,y∗) ∈ X(f) and u∗ ∈ Rr, a Lagrange function L(x,y;u∗) is
convex on (x,y) at u∗ ∈ Rr. If (4.5) hold, then g(x∗,y∗) = θ(u∗).

An augmented Lagrange penalty function of (CNP) is define by

A(x,y;u, ρ) = g(x,y) + uTg(x,y) + ρ

r∑
i=1

gi(x,y)
2, (x,y) ∈ Rn ×Rm,u ∈ Rr,(4.7)

where ρ > 0 is a penalty parameter. A proper augmented Lagrange penalty function of
(CNP) is defined by

A+(x,y;u, ρ) = g(x,y) + uTg(x,y) + ρ

r∑
i=1

gi(x,y)
2, (x,y) ∈ Rn ×Rm,u ∈ Rr

+,(4.8)

where ρ > 0 is a penalty parameter.

Theorem 4.6. (i) If (x∗,y∗) ∈ X(f) is an optimal solution to min
(x,y)

L(x,y;u∗) at u∗ ∈

Rr, then (x∗,y∗) is an optimal solution to min
(x,y)

A(x,y;u∗, ρ) for all ρ > 0.

(ii) Let (x∗,y∗) ∈ X(f) and u∗ ∈ Rr
+. Then (4.6) holds if and only if (x∗,y∗) is an

optimal solution to min
(x,y)

A+(x,y;u
∗, ρ) for all ρ > 0.

Proof. (i) For any (x,y) ∈ Rn ×Rm, we have

A(x,y;u∗, ρ) = g(x,y) +

r∑
i=1

u∗
i gi(x,y) + ρ

r∑
i=1

gi(x,y)
2

≥ L(x,y;u∗,v∗) + ρ

r∑
i=1

gi(x,y)
2

≥ L(x∗,y∗;u∗) = A(x∗,y∗;u∗, ρ).

Hence, (x∗,y∗) is an optimal solution to min
(x,y)

A(x,y;u∗, ρ) for all ρ > 0.

(ii) If (4.6) holds, let’s first prove that (x∗,y∗) is an optimal solution to min
(x,y)

A+(x,y;u
∗, ρ)

for all ρ > 0. Let any (x,y) ∈ Rn×Rm. Since g(x,y) and gi(x,y)(i = 1, 2, ..., r) are convex,
we have

g(x,y)− g(x∗,y∗) ≥ ∇g(x∗,y∗)T[(x,y)− (x∗,y∗)], (4.9)

gi(x,y)− gi(x
∗,y∗) ≥ ∇gi(x

∗,y∗)T[(x,y)− (x∗,y∗)], i = 1, 2, ..., r. (4.10)

From (4.9) and (4.10), we have

A+(x,y;u
∗, ρ) = g(x,y) +

r∑
i=1

u∗
i gi(x,y) + ρ

r∑
i=1

gi(x,y)
2

≥ g(x∗,y∗) + ρ

r∑
i=1

gi(x,y)
2

≥ g(x∗,y∗) = A+(x
∗,y∗;u∗, ρ).
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Hence, (x∗,y∗) is an optimal solution to min
(x,y)

A+(x,y;u
∗, ρ) for all ρ > 0.

If (x∗,y∗) is an optimal solution to min
(x,y)

A+(x,y;u
∗, ρ) for all ρ > 0, it is clear that

∇A+(x
∗,y∗;u∗, ρ) = ∇g(x∗,y∗) +

r∑
i=1

u∗
i∇gi(x

∗,y∗) + ρ

r∑
i=1

2gi(x
∗,y∗)∇gi(x

∗,y∗),

= ∇L+(x
∗,y∗;u∗) = 0.

Theorems 4.4 and 4.6 mean that g(x∗,y∗) = θ(u∗) or g(x∗,y∗) = θ+(u
∗) does not hold,

if there is not (x∗,y∗) ∈ Rn ×Rm and u∗ ∈ Rr
+ such that (4.5) or (4.6) holds. This means

that (4.5) or (4.6) is the necessary condition, if there is an global optimal solution to (CNP)
by Theorem 4.4.

In order to find a solution to (CNO), by Theorem 4.6, the augmented Lagrange penalty
optimization problem defined as the following is applied:

(CNP)(u, ρ) min A(x,y;u, ρ),

s.t. (x,y) ∈ Rn ×Rm.

To solve the problem (CNP)(u, ρ), an algorithm of augmented Lagrange penalty function
of (CNP)(which is called ALPF Algorithm) is proposed.

ALPF Algorithm.

Step 1: Let ϵ > 0, ρ1 > 0, N > 1, (x1,y1) ∈ Rn ×Rm, u1 ∈ Rr and k = 1.

Step 2: Find (xk,yk) ∈ Rn × Rm to the problem min
(x,y)

A(x,y,uk, ρk) such that

∇A(xk,yk;uk, ρk) = 0, and go to Step 3.

Step 3: If (xk,yk) ∈ X(f) and L(x,y,uk) is convex on (x,y), then stop and xk is an
optimal solution to (CNO). Otherwise, go to Step 4.

Step 4: If |A(xk,yk,uk, ρk) − g(xk,yk)| < ϵ and ∥g(xk,yk)∥ < ϵ, then stop and xk is an
approximate solution to (CNO). Otherwise, let uk+1 = uk + 2ρkg(x

k,yk), ρk+1 =
Nρk, k := k + 1 and go to Step 2.

Note: By Theorems 4.4 and 4.6, if (xk,yk) is an optimal solution to lim
(x,y)

A(x,y,uk, ρk),

A(xk,yk,uk, ρk) = g(xk,yk) and (xk,yk) ∈ X(f) for some k, then θ(uk) = g(xk,yk) and
xk is an optimal solution to (CNO). Hence, xk may be an approximate solution to (CNO)
if |A(xk,yk,uk, ρk) − g(xk,yk)| < ϵ and ∥g(xk,yk)∥ < ϵ hold. ALPF Algorithm may be
able to find an approximate global optimal solution to (CNO). Under some conditions, it is
proved that ALPF Algorithm can converge to a KKT point for ϵ = 0.

Let
S(π, g) = {(x,y) | π ≥ g(x,y)},

which is called a level set. If S(π, g) is bounded for any given π > 0, then S(π, g) is called
to be bounded.

Theorem 4.7. Let ϵ = 0. Suppose that a sequence of {(xk,yk)}, k = 1, 2, . . . , is obtained
by ALPF Algorithm. Let the sequence of {Hk(x

k,yk, ρk)}, k = 1, 2, . . . , be bounded and the
level set S(π, g) be bounded, where

Hk(x
k,yk, ρk) = g(xk,yk) + ρk

r∑
i=1

gi(x
k,yk)2.
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(i) If the algorithm stops in a finite number of steps k, then xk is a global optimal solution
to (CNO).

(ii) If the sequence {(xk,yk)} is an infinite sequence, then {(xk,yk)} is bounded and any
limit point (x∗,y∗) of the sequence belongs to X(f), and there exist η > 0 and λi,
i = 1, 2, . . . , r, such that

η∇g(x∗,y∗) +

r∑
i=1

λi∇gi(x
∗,y∗) = 0. (4.11)

If λi ≥ 0, i = 1, 2, . . . , r, then x∗ is an optimal solution to (CNO)

Proof. (i) The conclusion is clear by Theorem 4.4 and Corollary 4.5.
(ii) By ALPF algorithm, as k → +∞, since {Hk(x

k,yk, ρk)} is bounded, there must be
some π > 0 such that

π > Hk(x
k,yk, ρk)

= g(xk,yk) + ρk

r∑
i=1

gi(x
k,yk)2

≥ g(xk,yk).

{(xk,yk)} is bounded because the level set S(π, f) is bounded. Without loss of generality,
suppose (xk,yk) → (x∗,y∗). Since g is continuous, S(π, g) is closed. So, g(xk,yk) is
bounded and there is a σ > 0 such that g(xk,yk > −σ.

From the above inequality, we have that

r∑
i=1

gi(x
k,yk)2 ≤ 1

ρk
(π − g(xk,yk)) <

π + σ

ρk
.

We have
r∑

i=1

(gi(x
k,yk))2 → 0 as ρk → +∞. So, (x∗,y∗) ∈ X(f).

By ALPF algorithm, there is an infinite sequence {(xk,yk,uk, ρk)} such that
∇A(xk,yk,uk, ρk) = 0. We have

∇g(xk,yk) +

r∑
i=1

uk+1
i ∇gi(x

k,yk) = 0, (4.12)

where uk+1
i = uk

i + 2ρkgi(x
k,yk), i = 1, 2, ..., r. Let

γk = 1 +

r∑
i=1

(max{uk+1
i , 0}+max{−uk+1

i , 0}) > 0.

Let ηk = 1
γk

> 0, µk
i =

max{uk+1
i ,0}

γk
≥ 0, i = 1, 2, ..., r and νki =

max{−uk+1
i ,0}

γk
≥ 0, i =

1, 2, ..., r. Then,

ηk +

r∑
i=1

(µk
i + νki ) = 1. (4.13)
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Clearly, as k → ∞, we have ηk → η > 0, µk
i → µi, ν

k
i → νi, ∀i = 1, 2, ..., r. By (4.12) and

(4.13), we have

η∇g(x∗,y∗) +

r∑
i=1

(µi − νi)∇gi(x
∗,y∗) = 0. (4.14)

By (4.14), let λk = µk
i − νki → λ as k → +∞, and we have (4.11).

If (CNO) is a separable problem, such as

min
x

f(x) = f1(x1) + f2(x2) + · · ·+ fm(xm),

where x = (x1,x2, . . . ,xm) ∈ Rm1 × Rm2 × · · · × Rmm , by ALPF algorithm, we can solve
these subproblems min

xk

fk(xk) for k = 1, 2, . . . ,m one by one. The above idea has been

applied to literature [27, 46, 47]. It shows that CN optimization can solve some large-scale
optimization separable problems with special structures.

5 Conclusion

In this paper, a new concept, CN function, is proposed, which covers many nonconvex, non-
smooth functions, and even discontinuous nonconvex functions. Some sufficient conditions
of the global optimal solution are given for the unconstrained CN optimization problems.
Lagrange function and the proper Lagrange function of the CN function are defined, as well
as their dual problem and saddle point. Under some conditions, the strong duality theorem
is proved. Moreover, the augmented Lagrangian penalty function and the proper augmented
Lagrangian penalty function are introduced. It is shown that the optimal solution to the La-
grangian optimization problem is the optimal solution to the augmented Lagrangian penalty
optimization problem for all positive penalty parameters. An algorithm is also proposed to
solve the augmented Lagrangian penalty optimization problem, and its global convergence
is attained.

This paper provides a feasible method for solving nonsmooth or nonconvex unconstrained
optimization problems in theory, which shows its potential importance in solving nonsmooth
nonconvex optimization problems in many application fields.
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