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all these purposes, the QSVD is the most important for processing the quaternion matrices.
Due to the noncommutative multiplication of quaternion, it is still a great challenging topic
to deal with the quaternion matrices. To our best knowledge, there are three kinds of meth-
ods to achieve the QSVD. The first QSVD is used in the Quaternion toolbox for Matlab
(QTFM) developed by Sangwine and Bihan in 2005 [32]. The codes for QTFM are based on
the quaternion arithmetic operations. They are less efficient for large-scale matrices. The
second QSVD is to use the real structure-preserving QSVD method via the real counterparts
of quaternion matrices [22]. The third QSVD keeps the real structure-preserving which is
developed on the base of the second QSVD by Jia [16]. These two real structure-preserving
decompositions maintain the structure and sacrifice simplicity. We consider the complex
adjoint matrices of the quaternion matrices [21, 33]. This idea is helpful for us to keep
the structure of the matrix decomposition so that a more efficient structure can be substi-
tuted into the quaternion operation. A new decomposition is considered to be the potential
replacement of the QSVD.

Inspired by recent developments, this paper presents the UTV decompositions of quater-
nion matrices. Given a matrix A ∈ Cm×n, the UTV algorithm computes a decomposition
A = UTV ∗, where U and V have orthonormal columns, and T is triangular (either upper
or lower triangular) [35, 36]. There are two methods that depend on the randomized algo-
rithms to form the UTV decomposition. The first one combines the randomized algorithm
with the rank-revealing QR algorithm to form the UTV decomposition. The randomized
rank revealing UTV is fast and stable [7]. The second one diagonalizes the block matrix on
the diagonal block. We graft this technology onto the quaternion matrices to replace the
QSVD. The first one is called the CoR-QUTV algorithm and the second one is called the
BlockQUTV algorithm. Then we analyze the errors of our QUTV decomposition and the
numerical experiments show that the QUTV decomposition is both time-saving and accu-
rate. The rank-revealing property of CoR-QUTV algorithm makes a great contribution to
quaternion matrix optimization.

The paper is organized as follows. In Section 2, we provide some preliminary results
about quaternion matrices, the quaternion SVD, the randomized SVD technology, and the
UTV decomposition. The quaternion UTV decomposition will be studied in Section 3. In
Section 4, the theoretical analysis is provided for the approximation errors. We test our
algorithms with some numerical examples in quaternion matrix optimization and show their
efficiency in Section 5.

2 Preliminaries

In this section, we will introduce the knowledge of quaternion matrices and quaternion
SVD decomposition for quaternion matrix optimization. The randomized SVD and UTV
decompositions will also be mentioned, and then we will reveal the relationship between
them.

2.1 QSVD in Quaternion Matrix Optimization

According to the standard notation in [15, 29, 41], the quaternion field Q is an associative
but noncommutative algebra over the real field R. Any quaternion q ∈ Q is given by

q = q0 + q1i+ q2j+ q3k,

where q0, q1, q2, q3 ∈ R and i,j,k symbols satisfying the multiplication table formed by i2 =
j2 = k2 = i j k = −1. The conjugate and norm of q are defined by q∗ = q0 − q1i− q2j− q3k
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and |q| =
√
q∗q =

√
q20 + q21 + q22 + q23 , respectively. Similarly, for any quaternion matrices

P = P0 + P1i+ P2j+ P3k ∈ Qm×n,

Q = Q0 +Q1i+Q2j+Q3k ∈ Qm×n,

S = S0 + S1i+ S2j+ S3k ∈ Qn×l.

Denote the conjugate of the quaternion matrix

P ∗ = P⊤
0 − P⊤

1 i− P⊤
2 j− P⊤

3 k ∈ Qn×m

and the transpose of quaternion matrix P ,

P⊤ = P⊤
0 + P⊤

1 i+ P⊤
2 j+ P⊤

3 k ∈ Qn×m.

The sum of P and Q is

P +Q = (P0 +Q0) + (P1 +Q1)i+ (P2 +Q2)j+ (P3 +Q3)k ∈ Qm×n,

and the multiplication of Q and S is given by

(Q0S0 −Q1S1 −Q2S2 −Q3S3) + (Q0S1 +Q1S0 +Q2S3 −Q3S2)i

(Q0S2 −Q1S3 +Q2S0 +Q3S1)j+ (Q0S3 +Q1S2 −Q2S1 +Q3S0)k.

An alternative way to define quaternions is to consider the subset of the ring M(2,C). For
Q = Qc1 + Qc2j ∈ Qm×n, where Qc1 = Q0 + Q1i , Qc2 = Q2 + Q3i ∈ Cm×n, we call the
2m× 2n complex matrix [42]

χQ =

(
Qc1 Qc2
−Qc2 Qc1

)
the complex adjoint matrix or adjoint of Q, symbolized χQ. Note that χQ has a special
complex algebraic structure that is preserved under the following operations,

χk1P+k2Q = k1χP + k2χQ (k1, k2 ∈ C), χQ∗ = χ∗
Q, χQS = χQχS .

Let A be an n× n quaternion matrix, and χA be the complex adjoint matrix of A. We can
define the determinant of A as det(A) = [det(χA)]

1
2 .

Let A ∈ Qm×n. A† is denoted as the Moore–Penrose inverse or the pseudo-inverse of A
if X = A† satisfies the following four equations,

AXA = A, XAX = X, (AX)∗ = AX, (XA)∗ = XA.

We will define the quaternion random Gaussian matrices [24] Φ ∈ Qm×n as

Φ = Φ0 +Φ1i+Φ2j+Φ3k, (2.1)

where the entries of Φ0,Φ1,Φ2,Φ3 are random and independently drawn from the N (0,1)-
normal distribution.

The quaternion SVD decomposition (QSVD) and singular values of dual quaternion
matrices and their low-rank approximations can be found in [41, 23]. The algorithm of
QSVD is computed by a complex adjoint matrix presented in [4].
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Theorem 2.1 (QSVD [41]). Let A ∈ Qm×n be of rank r. Then there exist unitary quater-
nion matrices U ∈ Qm×m and V ∈ Qn×n such that

U∗AV =

(
Σ 0
0 0

)
(2.2)

where Σ = diag(σ1, σ2, . . . , σr) ∈ Rm×n and σ1 ≥ σ2 ≥ . . . ≥ σr ≥ 0 with σk denoting the
k-th largest singular value of A and r = min{m,n}.

Furthermore, through complex adjoint of QSVD: χ∗
UχAχV = χΣ, where χU and χV are

complex orthogonal matrices and χΣ = diag(σ1, σ1, σ2, σ2, . . . , σr, σr).
Given a quaternion matrix A ∈ Qm×n, where m ≥ n, the QSVD [4] can also be defined

as:
A = UAΣAV

∗
A

=
(
Uk U0

)(Σk O
O Σ0

)(
V ∗
k

V ∗
0

)
(2.3)

where Uk ∈ Qm×k, Vk ∈ Qn×k are, respectively, sub-matrices of UA ∈ Qm×n and VA ∈
Qn×n by taking their first k columns, and U0 ∈ Qm×(n−k), V0 ∈ Qn×(n−k). Σk ∈ Rk×k
and Σ0 ∈ R(n−k)×(n−k) are diagonal matrices containing the singular values, i.e., Σk =
diag(σ1, σ2, . . . , σk) and Σ0 = diag(σk+1, σk+2, . . . , σn). A can be written as A = Ak + A0,
where Ak = UkΣkV

∗
k , and A0 = U0Σ0V

∗
0 . The QSVD constructs the optimal rank-k

approximation Ak to A.
The spectral norm (2-norm) of a quaternion vector x = [xi] ∈ Qn is ∥x∥2 :=

√
Σi|xi|2.

The 2-norm of a quaternion matrix A = [aij ] ∈ Qm×n is ∥A∥2 = maxi σi(A), where σi(A)

is singular value of A. The Frobenius norm of A is ∥A∥F = (Σi,j |aij |2)
1
2 = [tr(A∗A)]

1
2 .

The nuclear norm of A is ∥A∥∗ =
∑
i σi. As a result, spectral and Frobenius norms of a

quaternion matrix can be represented by the ones of complex adjoint matrices as

∥A∥2 = ∥χA∥2, ∥A∥2F =
1

2
∥χA∥2F . (2.4)

Moreover, for consistent quaternion matrices A and B, it is obvious that [10]

∥AB∥F ≤ ∥A∥2∥B∥F , ∥AB∥F ≤ ∥A∥F ∥B∥2. (2.5)

2.2 Randomized SVD and UTV Decompositions

This section will summarise the most important results [14, 25, 31] on randomized algorithms
for constructing the orthogonal subspace of a given matrix. To be precise, let A ∈ Cm×n

and a target rank k satisfy 1 ≤ k < min{m,n}, and suppose that we seek to find an m× k
orthogonal matrix Q such that

∥A−QQ∗A∥2 ≈ min
rank(X)≤k

∥A−X∥2. (2.6)

Generally, the columns of Q should approximately be formed by the right singular subspace
of A. This is ideal for the subspace iteration (see Demmel [8]), particularly when started
by a Gaussian random matrix [14, 31]. The objective matrix of the projection space can be
obtained through the power iterations, and we can achieve the following randomized SVD
(RSVD) framework [14],

1. Draw a Gaussian random n× k matrix G (G = randn(n, k)).
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2. Form a m× k matrix Y via Y = (AA∗)qAG.

3. Construct a matrix Q whose columns form an orthonormal basis for the range of Y
( [Q,∼] = qr(Y )).

4. Compute the low rank approximation Â = Q∗A.

5. Compute the full SVD of Â = Û ŜV̂ ∗([Û , Ŝ, V̂ ] = svd(Q∗A)).

6. Achieve the approximate low rank SVD of A by U = QÛ(:, 1 : k), S = Ŝ(1 : k, 1 : k)

and V = V̂ (:, 1 : k).

These are standard schemes to obtain the low-rank SVD factors by randomized algorithms.
We can observe that applying A∗ and A alternatively to a tall thin matrix with k columns
can achieve the matrix Y in Step 2. In some cases, orthogonalization is used to reduce the
computational error caused by the floating point arithmetic. It is demonstrated that taking
just a few steps of power iteration (q = 0,1 or 2) is enough by using a Gaussian random
matrix as the starting point in [14, 31].

Remark 2.2 (Oversampling). To analyze the power iteration with a Gaussian random
matrix, it is common to select several “extra” samples. In fact, we will choose a small
integer p representing the amount of oversampling samples, actully p = 5 or p = 10, and
starts with a Gaussian matrix of size n × (k + p). This constructs an orthonormal matrix
Q of size m× (k + p). Then the error ∥A−QQ∗A∥2 is close to the minimal error in rank-k
approximation in both spectral and Frobenius norms [14] with probability almost 1. The
oversampling trick will reduce the error of choosing the wrong columns. We can promote
the accuracy of the randomized algorithms.

Given a matrix A of size m× n, we can use the random sampling technique to compute
an approximate rank-k SVD which named as randomized SVD (RSVD). We denote the
orthonormal matrix Q which was constructed by a randomized range finder to compute the
error matrix E = A−QQ∗A.

The UTV decomposition [35, 36] is a compromise between the SVD and the QR with
Column Pivoting (QRCP), which has the virtues of both. For the matrix A ∈ Cm×n, it
takes the form

A = UTV ∗, (2.7)

where U ∈ Cm×m and V ∈ Cn×n are unitary matrices and T ∈ Rm×n is triangular. If T
is upper triangular, then the decomposition is called a rank-revealing URV decomposition
[35],

A = U

(
T11 T12
O T22

)
V ∗, (2.8)

where T11 is k × k nonsingular, T11 and T22 are upper triangular,

σmin(T11) = O(σk(A)), ∥[T⊤
12 T⊤

22]
⊤∥2 = O(σk+1(A)). (2.9)

If T is lower triangular, then the decomposition is called a rank-revealing ULV decomposition
[36],

A = U

(
T11 O
T21 T22

)
V ∗, (2.10)

where T11 is k × k nonsingular, T11 and T22 are lower triangular and

σmin(T11) = O(σk(A)), ∥[T⊤
12 T⊤

22]
⊤∥2 = O(σk+1(A)). (2.11)
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The URV and ULV decompositions are collectively referred to as the UTV decomposition.
Generally speaking, the upper and lower triangular forms are obtained through the left and
right orthogonal transformations of the matrix A. When A is approximately of rank k,
the decomposition is rank revealing. The rank-revealing UTV decomposition will reveal the
numerical rank in the triangular sub-matrix T11 ∈ Ck×k.

Theorem 2.3 (UTV Decomposition [35, 36]). Let A ∈ Cm×n. There is a decomposition
A = UTV ∗, where U ∈ Cm×m, V ∈ Cn×n are unitary matrices and T ∈ Cm×n is triangular
with sub-matrix T11 ∈ Ck×k which is rank revealing, where 0 ≤ k ≤ min{m,n}.

The UTV decomposition has a variety of presentation forms, such as the QR decompo-
sition with column pivoting, the SVD decomposition, and so on. How to view the flexible
decomposition depends on how to understand matrices U , T , and V . The most impor-
tant characteristic of the UTV decomposition in this paper is rank revealing combining the
randomized algorithms with the UTV decomposition generates many efficient algorithms.
According to the above analysis, the UTV decomposition will take advantage of the prin-
cipal component analysis. The UTV decompositions of the tensor and the dual matrix can
be found in [5, 40].

3 Quaternion Matrix UTV Decomposition

In this section, we will develop the quaternion matrix UTV (QUTV) decomposition and
present some QUTV algorithms based on different ideas.

Theorem 3.1 (QUTV Decomposition). Let A ∈ Qm×n. There is a decomposition A =
UTV ∗, where U ∈ Qm×m, V ∈ Qn×n are quaternion unitary matrices and T ∈ Qm×n is
triangular with sub-matrix T11 ∈ Qk×k, where 0 ≤ k ≤ min{m,n}. The diagonals of T are
real.

Proof. Here we only prove the upper triangular form as a description. Following Stewart
[35, 36] and Bunse [1], there exist quaternion unitary matrices U ∈ Qm×m, V ∈ Qn×n such
that

U∗AV =

(
λ α
0 B

)
, (3.1)

where λ ∈ R, α ∈ Q1×(n−1) and B ∈ Q(m−1)×(n−1). Then we can get the QUTV decompo-
sition by the mathematical induction.

Consider the scheme of the QSVD [4] and quaternion QR algorithm [1], we can use
the complex adjoint matrix χA ∈ C2m×2n to compute the quaternion matrix A ∈ Qm×n.
Given a quaternion matrix A ∈ Qm×n, we will take the upper triangular form as our QUTV
decomposition:

A = U

(
T11 T12
O T22

)
V ∗. (3.2)

If there is a well-defined gap in the singular value spectrum of A, i.e., σk ≫ σk+1, then the
QUTV decompositions are said to be rank-revealing in the sense that the numerical rank k
is revealed.

The scheme of randomized algorithms is suitable for the construction of the QUTV
decomposition.
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3.1 Compressed Randomized Quaternion UTV Algorithm

In this section, we present a rank-revealing decomposition algorithm powered by the ran-
domized sampling schemes named compressed randomized quaternion UTV (CoR-QUTV)
decomposition, which computes a low-rank approximation of a given quaternion matrix. For

Algorithm 1: Two-Sided Randomized Quaternion SVD (TSR-QSVD)

Input: Quaternion matrix A ∈ Qm×n, integers k
Output: Quaternion matrix UTV decomposition

1 Draw quaternion random Gaussian matrices Φ1 ∈ Qn×k and Φ2 ∈ Qm×k

2 Compute Y1 = AΦ1 and Y2 = A∗Φ2 in a single pass through A
3 Compute quaternion QR decompositions Y1 = Q1R1, Y2 = Q2R2

4 Compute Bapprox = Q∗
1Y1(Q

∗
2Φ1)

†

5 Compute QSVD Bapprox = Ũ Σ̃Ṽ ∗

6 A ≈ (Q1Ũ)Σ̃(Q2Ṽ )∗

the matrix A ∈ Qm×n, we choose a more efficient randomized algorithm as Algorithm 1. It
will be considered as a two-sided randomized QSVD (TSR-QSVD) to approximate A which
can be expressed as

A ≈ Q1Q
∗
1AQ2Q

∗
2. (3.3)

In Algorithm 1, Q1Ũ ∈ Qm×k and Q2Ṽ ∈ Qn×k are approximations to the left and right
singular subspaces of A, respectively. The Q1, Q2 will be obtained by the orthonormal
basis of R(A) and R(A∗). Σ̃ ∈ Rk×k contains an approximation to the first k singular
values of A, and Bapprox is an approximation to B = Q∗

1AQ2. TSR-QSVD is a randomized
algorithm of the QSVD. Neither theoretical error analysis nor numerical test is provided in
[14]. Numerical instability will also be found in subsequent numerical examples. However,
the biggest advantage of TSR-QSVD is very time-saving, which can instantly compress a
m×n quaternion matrix to a k×k quaternion matrix. Following the idea of rank-revealing,
we will produce a suitable QUTV decomposition by combining the previous compression
techniques.

Algorithm 2: Compressed Randomized Quaternion UTV (CoR-QUTV)

Input: Quaternion matrix A ∈ Qm×n, integers k
Output: Quaternion matrix UTV decomposition

1 Draw a random quaternion Guassian matrices Φ1 ∈ Qn×k
2 Compute C1 = AΦ1

3 Compute C2 = A∗C1

4 Compute quaternion QR decompositions C1 = Q1R1, C2 = Q2R2

5 Compute D = Q∗
1AQ2

6 Compute the quaternion QR decomposition with column pivoting D = Q̃R̃P̃ ∗

7 Form the CoR-QUTVdecomposition to approximate A

ÂCoR = UTV ∗;U = Q1Q̃, T = R̃, V = Q2P̃

Given the matrix A ∈ Qm×n and an integer 0 ≤ k < min{m,n}, the CoR-QUTV
decomposition will be computed as follows: Draw a quaternion random Gaussian matrix
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Φ ∈ Qn×k. Then we compute the quaternion product

C1 = AΦ (3.4)

where C1 ∈ Qm×k is, in fact, a projection onto the subspace spanned by the columns of A.
With C1, we can form C2 ∈ Qn×k by

C2 = A∗C1 (3.5)

where C2 is, in fact, a projection onto the subspace spanned by the columns of A∗. With
the help of quaternion QR decomposition, we factor C1 and C2 as

C1 = Q1R1, and C2 = Q2R2 (3.6)

where Q1 and Q2 are approximate basis for the range spaces R(A) and R(A∗), respectively.
Now we compress A through left and right multiplications by the orthonormal basis obtained,
constructing the matrix D ∈ Qk×k

D = Q∗
1AQ2. (3.7)

Computing the quaternion QR decomposition with column pivoting of D

D = Q̃R̃P̃ ∗. (3.8)

Finally, we achieve the CoR-QUTV decomposition of A

ÂCoR = UTV ∗, (3.9)

where U = Q1Q̃ ∈ Qm×k and V = Q2P̃ ∈ Qn×k form the approximations of the k leading
left and right singular vectors of A, respectively, and T = R̃ ∈ Qk×k is upper triangular
with diagonals approximating the first k singular values of A. The CoR-QUTV algorithm
is presented in Algorithm 2. Through the process of Algorithm 2, we can notice that after
obtaining the compression quaternion matrix D which is similar to Algorithm 1.

According to the same approach idea of (2.6), we can still adopt the q steps of a power
iteration to reduce errors and improve the accuracy of the QUTV decomposition in these
circumstances. Given the quaternion matrix A ∈ Qm×n, and integers 0 ≤ k ≤ min(m,n)
and q, the resulting algorithm is described in Algorithm 3.

3.2 Block Randomized Quaternion UTV Algorithm

In this section, we focus on observing the structure of T and provide a block algorithm to
obtain the QUTV decomposition. Given a quaternion matrix A ∈ Qm×n and a block size k,
we seek two unitary matrices U ∈ Qm×m and V ∈ Qn×n, respectively, such that the matrix

T = U∗AV (3.10)

has a diagonal leading k × k block like T11 in (3.2), and the entries beneath T11 are all
zeroed out. For simplicity, we assume that m ≥ n and n = sk, and we work with a block
size k. Each four part of the quaternion matrix A can be partitioned into s blocks of k
columns each. Algorithm 5 will iterate over s steps, where the i-th block of k columns at
the i-th step is driven to upper triangular form by the left and the right multiplications
of quaternion unitary matrices. We will represent such a multi-step iteration through a
sequence of quaternion unitary matrices.
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Algorithm 3: CoR-QUTV with Power Method

Input: Quaternion matrix A ∈ Qm×n, integers k and q
Output: Quaternion UTV decomposition

1 Draw a random quaternion Guassian matrices C2 ∈ Qn×k
2 for step = 1 : q + 1 do
3 Compute C1 = AC2

4 Compute C2 = A∗C1

5 Compute quaternion QR decompositions C1 = Q1R1, C2 = Q2R2

6 Compute D = Q∗
1AQ2 or Dapprox = Q∗

1C1(Q
∗
2C2)

†

7 Compute a quaternion QR decomposition with column pivoting D = Q̃R̃P̃ ∗ or

Dapprox = Q̃R̃P̃ ∗

8 Form the CoR-QUTV decomposition to approximate A

ÂCoR = UTV ∗;U = Q1Q̃, T = R̃, V = Q2P̃


U = U (1)U (2) · · ·U (s),

V = V (1)V (2) · · ·V (s),

A(0) = A,A(i) = (U (i))∗A(i−1)V (i), i = 1, 2, . . . , s and T = A(s).

(3.11)

Algorithm 4: stepQUTV

Input: Quaternion matrix A ∈ Qm×n, integers k and q
Output: Quaternion UTV decomposition

1 Draw a random quaternion Guassian matrices G ∈ Qm×k

2 Compute Y = (A∗A)qA∗G
3 Compute quaternion QR decompositions Y = V R
4 Compute D = AV (:, 1 : k)
5 Compute QSVD D = UDW ∗

6 Form the stepQUTV decompostion Ã = UTV ∗;U = U, T = [D,U∗ ∗A ∗ V (:, k + 1 :
end)], V = [V (:, 1 : k) ∗W,V (:, k + 1 : end)]

To illustrate how to perform the QUTV decomposition, we show the operation steps of
the framework (3.11) by explaining the computational process of the first block in detail in
Algorithm 4. First of all, let us partition U and V so that

U =
(
U1 U2

)
and V =

(
V1 V2

)
, (3.12)

where U1 and V1 each contain k columns. Then, set Tij = U∗
i AVj for i, j = 1, 2 so that

U∗AV =

(
T11 T12
T21 T22

)
. (3.13)

Then we obtain the identity

A = AV V ∗ =
(
AV1 AV2

)
V ∗, (3.14)
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where the partitioning V =
(
V1 V2

)
is such that V1 holds the first k columns of V . We

now perform a full QSVD on the matrix AV1 ∈ Qm×k so that

AV1 = UDV̂ ∗. (3.15)

Inserting into (3.14), we have the identity

A =
(
UDV̂ ∗ AV2

)
V ∗. (3.16)

Extract the factor U to the left to get

A = U
(
DV̂ ∗ U∗AV2

)
V ∗. (3.17)

Finally, extract the factor V̂ to the right to obtain the factorization

A = U
(
D U∗AV2

)
V∗, with V = V

(
V̂ O
O In−b

)
, (3.18)

we seek the QUTV decomposition A = UTV ∗ with

T =

(
T11 T12
T21 T22

)
=

(
D(1 : k, 1 : k) U∗

1AV2
O U∗

2AV2

)
. (3.19)

The computation steps of the quaternion unitary matrix U are exactly analogous to the
calculation steps of the quaternion unitary matrix V in (3.19). Algorithm 4 achieves the
step in (3.11) with power iteration of q steps.

Algorithm 5 is obtained by applying the single-step Algorithm 4 repeatedly, to drive A
to upper triangular form one block of k columns at a time. At the start of the process, we
initialize the output matrices T , U , and V by setting

T = A, U = Im, V = In. (3.20)

In the first step of the iteration, we use Algorithm 4 to create two quaternion unitary
matrices U (1) and V (1) and then update T , U , and V accordingly:

T ← (U (1))∗TV (1), U ← UU (1), V ← V V (1). (3.21)

This leads to the matrix T , whose first k columns will be driven to the upper triangular.
For the second step, the quaternion matrices U (2) and V (2) form by Algorithm 4 to the
remainder matrix T ((b + 1) : m, (b + 1) : n) and then updating T , U , and V accordingly.
The process will drive T to an upper triangular form k columns by k columns.

This Block-QUTV algorithm takes advantage of a randomized algorithm (RSVD) in
a small block, and the QUTV decomposition ensures that the randomized algorithm can
effectively execute on the diagonal block. All singular values can be approximated with less
computation. The structure of the QUTV decomposition fully plays to its strengths for
reducing the computation.

4 Error Analysis for Randomized UTV Algorithms

In this section, we will provide the error analysis of the CoR-QUTV and the Block-QUTV.
Our analysis is established based on the framework of [18, 26].
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Algorithm 5: Block-QUTV

Input: Quaternion matrix A ∈ Qm×n, integers k and q
Output: Quaternion UTV decomposition

1 Given T = A, U = Im and V = In
2 for i = 1 : ceil(n/k) do
3 Compute I1 = 1 : k(i− 1)
4 Compute I2 = k(i− 1) + 1 : m
5 Compute J2 = k(i− 1) + 1 : n
6 if length(J2) > k then
7 Compute the stepQUTV decomposition

[UU, TT, V V ] = stepQUTV (T (I2, J2), k, q)

8 else
9 Compute the QSVD [UU, TT, V V ] = QSV D(T (I2, J2))

10 Compute U(:, I2) = U(:, I2) ∗ UU
11 Compute V (:, J2) = V (:, J2) ∗ V V
12 Compute T (I2, J2) = TT, T (I1, J2) = T (I1, J2) ∗ V V

4.1 Error Analysis of CoR-QUTV Algorithm

We will prove that the CoR-QUTV by Algorithm 2 is rank revealing and prove the upper
bound in terms of the spectral and Frobenius norms.

4.1.1 Rank Revealing Property

In the CoR-QUTV algorithm, the T factor is formed by the QRCP of D. The QRCP is
numerically stable and D is compressed by A. We can analyze the factor T by (3.8) and
rewrite D as

DP̃ = Q̃R̃ = Q̃

(
R̃11 R̃12

O R̃22

)
. (4.1)

We need some properties [38] of the singular values of D to complete the rank-revealing
property.

Theorem 4.1. Let the matrix A ∈ Qm×n have an SVD as defined in (2.3), and D =
Q∗

1AQ2 ∈ Ql×l for any Q∗
1Q1 = Q∗

2Q2 = Il. Then for j = 1, 2, . . . , l, we have

σj(D) ≤ σj . (4.2)

Proof. Using the complex adjoint matrix of quaternion, we can have that χD = χ∗
Q1
χAχQ2

where χ∗
Q1
χQ1

= χ∗
Q2
χQ2

= I2l, and any singular value of A will appear twice in those of
χA. The proof is similar to the case in the complex field C in [38].

Thus, for D = Q∗
1AQ2 obtained from CoR-QUTV algorithm, if further there exist poly-

nomials p1(m,n), p2(m,n) such that

σk
p1(m,n)

≤ σmin(R̃11) ≤ σk(D) ≤ σk, (4.3)

∥A−Q1DQ
∗
2∥ζ ≤ p2(m,n)σk+1, ζ = 2, F, (4.4)
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then we say Q1DQ
∗
2 is a rank-revealing approximation to A. Here we will reduce to handle

with the relation of σk(D) and the random quaternion Gaussian matrix Φ ∈ Qn×l. Con-
sidering the oversampling operation for the randomized algorithm mentioned in remark 2.2,
the following proofs are based on the oversampled randomized algorithm. First, we assume
that the sample size parameter l satisfies

2 ≤ p+ k ≤ l, (4.5)

where p is called an oversampling parameter [14]. Since Φ has affection on the right singular
vectors V of A (3.4), i.e., we have

Φ̃ = V ∗
AΦ =

(
Φ̃∗

1 Φ̃∗
2

)
, (4.6)

where Φ̃1 and Φ̃2 have l− p and n− l+ p rows, respectively. The following theorem using a
similar technique from [19] bounds σk(D).

Theorem 4.2. Suppose that the quaternion matrix A has an SVD defined in (2.3), 2 ≤
p+ k ≤ l and the matrix D is formed by Algorithm 2. Moreover, suppose that Φ̃1 is of full
row rank, then we have

σk ≥ σk(D) ≥ σk√
1 + ∥Φ̃2∥22∥Φ̃

†
1∥22(

σl−p+1

σk
)4

(4.7)

and when the quaternion matrix D is formed by Algorithm 2, where Φ†
1 is formed by χ†

Φ1
,

i.e., the power method is used in Algorithm 3, we have

σk ≥ σk(D) ≥ σk√
1 + ∥Φ̃2∥22∥Φ̃

†
1∥22(

σl−p+1

σk
)4q+4

. (4.8)

Here we introduce the property of Φ in [24].

Theorem 4.3. [24] For t ≥ 1, the quaternion random matrix Φ ∈ Qm×n with n −m ≥ 1.
and fixed quaternion matrix S, T . Then E∥SΦT∥2 ≤ 3(∥S∥2∥T∥F + ∥T∥2∥S∥F ){

P{∥Φ†∥2F > 3m
4(n−m+1) t} ≤ t

−2(n−m),

P{∥Φ†∥2 > e
√
4n+2

4(n−m+1) t} ≤
π−3

4(n−m+1)(2n−2m+3) t
−4(n−m+1),

(4.9)

and {
E∥Φ†∥2F = m

4(n−m)+2 ,

E∥Φ†∥2 ≤ e
√
4n+2

2(n−m)+2 .
(4.10)

Finally, since the random quaternion matrix Φ has the entries of the standard Gaussian
distribution, the lower bound of the expectation on the k-th singular value of CoR-QUTV
will be given in the following theorem, using Theorem 4.3 and a similar argument from [19].

Theorem 4.4. With the notation of Theorem 4.2, and γk =
σl−p+1

σk
, for Algorithm 2, we

have the expectation

E(σk(D)) ≥ σk√
1 + ν2γ4k

,

and for Algorithm 3, we have the power method estimation for the expectation

E(σk(D)) ≥ σk√
1 + ν2γ4q+4

k

,

where ν = ν1ν2, ν1 = 3
√
n− l + p+ 3

√
l and ν2 = e

√
4l+2

2(p+1) .
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Now we have completed the rank-revealing property of the CoR-QUTV algorithm.

4.1.2 Approximation Error

Our CoR-QUTV algorithm obviously provides a low-rank approximation of the quater-
nion matrix A. Utilizing the low-rank decomposition A = Ak + A0 from (2.3) and the
oversampling from the randomized algorithm mentioned in remark 2.2, the errors of these
approximations can be restricted by the Frobenius and spectral norms. First, we state a
theorem from [24].

Theorem 4.5. Let the quaternion matrix A have the SVD in (2.3), and Q1 ∈ Qm×k and
Q2 ∈ Qn×k be quaternion matrices with orthonormal columns constructed by means of the
CoR-QUTV, where 1 ≤ k ≤ l. Let Dk be the best rank-k of D = Q∗

1AQ2, and due to the

CoR-QUTV algorithm, we have ÂCoR = Q1DQ
∗
2 by (3.9). Then, for ζ = 2, F , we have

∥A− ÂCoR∥ζ ≤∥A−Q1DkQ
∗
2∥ζ

≤∥A0∥ζ + ∥Ak −Q1Q
∗
1Ak∥F + ∥Ak −AkQ2Q

∗
2∥F .

(4.11)

Proof. It is a similar deduction to [18].

Having stated the connection between the CoR-QUTV and the real CoR-UTV, we now
obtain upper bounds for the CoR-QUTV-based low-rank approximation error, based on
similar techniques from [19].

Theorem 4.6. Let the quaternion matrix A have the SVD as defined in (2.3), 2 ≤ p+k ≤ l,
and ÂCoR is computed by the CoR-QUTV by Algorithm 2. Furthermore, assume that Φ̃1 is
of full row rank. Then, for ζ = 2, F , we have

∥A− ÂCoR∥ζ ≤ ∥A0∥ζ +

√
α2∥Φ̃2∥22∥Φ̃

†
1∥22

1 + β2∥Φ̃2∥22∥Φ̃
†
1∥22

+

√
η2∥Φ̃2∥22∥Φ̃

†
1∥22

1 + τ2∥Φ̃2∥22∥Φ̃
†
1∥22

(4.12)

where α =
√
2k

σ2
l−p+1

σk
, β =

σ2
l−p+1

σ1σk
, η =

√
2kσl−p+1 and τ =

σl−p+1

σ1
. When the power

iteration is used by Algorithm 3, α =
√
2k

σ2
l−p+1

σk
(
σl−p+1

σk
)2q, β =

σ2
l−p+1

σ1σk
(
σl−p+1

σk
)2q, η =

σk

σl−p+1
α and τ = 1

σl−p+1
β.

The random quaternion Gaussian matrix Φ has the standard Gaussian distribution in
each real or imaginary part, we present the average error bounds on the CoR-QUTV-based
low-rank approximation by the following theorem.

Theorem 4.7. With the notation of Theorem 4.6, and γk =
σl−p+1

σk
, for the CoR-QUTV by

Algorithm 2, we have the expectation

E∥A− ÂCoR∥ζ ≤ ∥A0∥ζ +
√
2kνσl−p+1, (4.13)

and when the power method is used by Algorithm 3, we estimate the expectation

E∥A− ÂCoR∥ζ ≤ ∥A0∥ζ +
√
2kνσl−p+1γ

2q
k , (4.14)

where ν is defined in Theorem 4.4.

The discussion on the low-rank approximation error bounds for the CoR-QUTV algo-
rithm is completed.
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4.2 Error Analysis of Block-QUTV Algorithm

In this section, we will explore the connection between the Block-QUTV and the RSVD.
The stepQUTV by Algorithm 4, which is the single step of Block-QUTV by Algorithm 5,
can be demonstrated as the quaternion RSVD algorithm. This means that the error analysis
of the quaternion RSVD algorithm in [24] is available in the stepQUTV algorithm.

Theorem 4.8. Let the quaternion matrix A ∈ Qm×n, k satisfy 1 ≤ k ≤ min{m,n}, and
q = 0, 1 or 2. Let the random quaternion Gaussian matrix G ∈ Qm×k , and let U, T and V
be the factors in the factorization A = UTV ∗ built in Algorithm 4, partitioned as in (3.12)
and (3.13). We have the following results,

1. Let the quaternion sampling matrix Y = (A∗A)qA∗G, and let Q ∈ Qn×k be a quater-
nion matrix with orthonormal columns constructed by the column space of Y . Then,
the error ∥A−AQQ∗∥ζ precisely equals the error caused by the quaternion RSVD with
q steps of power iteration, as analyzed in [24]. For ζ = 2, F , it holds that

∥A−AQQ∗∥ζ = ∥A− U1T11V
∗
1 ∥ζ =

∥∥∥∥(T12T22

)∥∥∥∥
ζ

. (4.15)

2. Let the quaternion sampling matrix Z = AY = (AA∗)q+1G and let W ∈ Qm×k be a
quaternion matrix with orthonormal columns constructed by the column space of Z. If
the rank of A is at least k, then

∥A−WW ∗A∥ζ = ∥A− U1(T11V
∗
1 + T12V

∗
2 )∥ζ = ∥T22∥ζ , ζ = 2, F. (4.16)

In part (2), we can observe that the term ∥A−WW ∗A∥ζ is the error resulting from quater-
nion RSVD with “q + 1

2” steps of power iteration.

Proof. The quaternion A can be represented as:

A = UTV ∗ =
(
U1 U2

)(T11 T12
O T22

)(
V ∗
1

V ∗
2

)
= U1T11V

∗
1 + U1T12V

∗
2 + U2T22V

∗
2 , (4.17)

where U1 and V1 have k columns each, and T11 ∈ Qk×k. With the help of (4.17), we can

find that QQ∗ = V1V
∗
1 in the claim (1) and, x̂TLS = −V12V †

22. in the claim (2). We can
prove the conclusion as follows,

1. With the help of Section 3.2, we can find that

QQ∗ = V1V∗
1 = (V1V

∗
small)(V1V

∗
small)

∗ = V1(V
∗
smallVsmall)V

∗
1 = V1V

∗
1 . (4.18)

Then using (4.17), we have

AQQ∗ = AV1V
∗
1 = U1T11V

∗
1 . (4.19)

The first identity in (4.15) follows from (4.19) immediately. The second identity holds

since (4.17) implies that A− U1T11V
∗ = U1T12V

∗ + U2T22V
∗
2 = U

(
T12
T22

)
V ∗
2 , with U

being unitary and V2 being orthonormal.
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2. We will prove two quaternion matrices AV1 and Z whose sizes are m × k have the
same column spaces with probability 1. We know that V1 is formed by the quaternion
QR factorization of Y , there must be some R ∈ Qk×k which is upper triangular, such
that V1R = Y . The assumption that A has rank at least k implies that R is invertible
with probability 1. Consequently, AV1 = AY R−1 = ZR−1, since Z = AY . With
the definition of U that U1U∗

1 = WW ∗. Since U1 = U1Usmall, where Usmall is unitary
quaternion matrix, and using (4.17), we have

WW ∗A = U1U∗
1A = U1U

∗
1A = U1T11V

∗
1 + U1T12V

∗
2 , (4.20)

which completes the first identity in (4.16). The second identity holds since (4.17)
implies that A− U1(T11V

∗
1 + T12V

∗
2 ) = U2T22V

∗
2 , with U2 and V2 being orthonormal.

5 Numerical Examples for Quaternion Matrix Optimization

In this section, we give some examples to test the features of our quaternion UTV algorithms
in quaternion matrix optimization. The following numerical examples are performed via
MATLAB R2020a with machine precision u = 2.22e− 16 in a laptop with an Intel Core i5
CPU at 1.4 GHz and memory of 16 GB.

5.1 Low-Rank Approximation

Here we consider the quaternion matrix rank-k approximation problem:

min
rank(Â)≤k

∥A− Â∥ζ . (5.1)

Since both QUTV algorithms compute a rank-k approximation of a given quaternion matrix,
we should investigate how accurate this approximation is. To make a fair comparison, we
construct a rank-k approximation Âout to A by each algorithm, and calculate the error:

ek = ∥A− Âout∥ζ (5.2)

where ζ = F for the Frobenius-norm error, and ζ = 2 for the spectral-norm error.
We construct our test quaternion matrix A ∈ Qn×n as A = UΣV ∗, where U ,V are

quaternion Householder matrices taking the form U = I − 2uu∗, V = I − 2vv∗, u, v are
quaternion unit vectors, and Σ = diag(σ1, σ2, . . . , σn) is a real n × n diagonal matrix. Set
n = 1000 and we consider singular values with different decaying rates as

1. σ1 = 1, σi+1/σi = 0.9, for i = 1, 2, . . . , n− 1,

2. σ1 = 1, σi+1/σi = 0.1, for i = 1, 2, . . . , n− 1,

where in Case 1, for the threshold singular value σ327 > 10−16 > σ328, the numerical rank
of the matrix is 327, while in Case 2, for the threshold θ = 10−15, the numerical rank of
the matrix is 16. For all of the randomized algorithms, we run the experiment without
the power method q = 0 and with the power method q = 2. For all of the randomized
algorithms considered, the results presented are averaged over 5 trials. For TSR-QSVD and
CoR-QUTV, we set the oversampling parameter p = k. For QRSVD and Block-QUTV,
we set the oversampling parameter p = 5. For all cases in Figure 1, CoR-QUTV strongly
reveals the numerical rank k, as do the QSVD, QRSVD, TSR-QSVD and Block-QUTV.



200 R. XU AND Y. WEI

0 50 100 150 200 250 300
k

0

0.2

0.4

0.6

0.8

1

1.2

M
a

g
n

itu
d

e

QSVD
QRSVD-0
QRSVD-2
TSRQSVD
CoRQUTV-0
CoRQUTV-2
BlockQUTV-0
BlockQUTV-2

0 5 10 15 20 25 30
k

0

0.2

0.4

0.6

0.8

1

1.2

M
a
g
n
itu

d
e

QSVD
QRSVD-0
QRSVD-2
TSRQSVD
CoRQUTV-0
CoRQUTV-2
BlockQUTV-0
BlockQUTV-2

Figure 1: Comparison of singular values for quaternion SVD (QSVD), quaternion RSVD
(QRSVD) with power method (q = 0 and 2), TSRQSVD, CoRQUTV with power method
(q = 0 and 2), BlockQUTV with power method (q = 0 and 2). The left figures are the
comparison in Case 1, while the right ones correspond to Case 2.
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Figure 2: Comparison for quaternion SVD (QSVD), quaternion RSVD (QRSVD) without
power method (q = 0), and q = 2, TSRQSVD, CoRQUTV without power method (q =
0), and q = 2, BlockQUTV with no power method (q = 0), and q = 2 in Case 1. The
left figures are for the estimates of spectral-norm errors, while the right ones correspond to
Frobenius-norm errors.
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Figure 3: Comparison for quaternion SVD (QSVD), quaternion RSVD (QRSVD) without
power method (q = 0), and q = 2, TSRQSVD, CoRQUTV with no power method (q =
0), and q = 2, BlockQUTV without power method (q = 0), and q = 2 in Case 2. The
left figures are for the estimates of spectral-norm errors, while the right ones correspond to
Frobenius-norm errors.

We choose two algorithms as baseline. A rank-k approximation for the QSVD [41], is
computed as truncated svd and the rank-k QRSVD [24] is used for comparison. We choose
different k for the low-rank approximation in QRSVD, TSRQSVD and CoRQUTV. The
parameter k in BlockQUTV represents the size of block and we set the target rank k = 30
which can reduce the quantum of block and save the computing time in Case 2. In Figure
2, it represents the error in Case 1. The left figures are the the estimates of spectral-norm
errors, while the right ones correspond to Frobenius-norm errors. The computational times
of different factorization in Case 1 are listed in Table 1.

Table 1: Computational Times(s) of Different Factorization in Case (1)
k 100 120 140 160 180 200

QSVD 366.52 366.52 366.52 366.52 366.52 366.52
QRSVD (q=0) 16.37 16.28 16.57 17.06 17.92 23.57
QRSVD (q=2) 15.87 18.15 17.71 16.89 17.21 18.39
TSRQSVD 1.05 1.13 1.36 1.52 1.75 2.00

CoRQUTV (q=0) 1.29 1.03 1.17 1.36 1.54 1.77
CoRQUTV (q=2) 1.70 1.79 2.06 2.40 2.69 3.01
BlockQUTV (q=0) 28.62 26.90 26.84 23.13 21.33 23.94
BlockQUTV (q=2) 31.73 32.54 30.68 31.77 25.28 26.74

Figure 3, represents the error in Case 2. The left figures are the estimates of spectral-
norm errors, while the right ones correspond to Frobenius-norm errors.

In Table 2, the computational times of different factorizations in Case 2 are listed. We
make three observations: (1) CoRQUTV and BlockQUTV are both strongly reveal the
numerical rank in two cases. (2) The performance of CoRQUTV algorithm is better than
the TSRQSVD algorithm and the BlockQUTV algorithm show better performance than the
QRSVD algorithm. Both QUTV algorithms are becoming close to optimal performance of
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Table 2: Computational Times(s) of Different Factorization in Case (2)
k 2 4 6 8 10

QSVD 347.48 347.48 347.48 347.48 347.48
QRSVD (q=0) 15.53 14.80 16.71 14.84 17.92
QRSVD (q=2) 15.21 14.91 15.49 15.59 17.21
TSRQSVD 0.21 0.24 0.25 0.26 1.75

CoRQUTV (q=0) 0.20 0.21 0.25 0.24 1.54
CoRQUTV (q=2) 0.28 0.27 0.34 0.35 2.69
BlockQUTV (q=0) 1283.2 655.42 451.96 434.90 262.62
BlockQUTV (q=2) 1650.9 643.26 414.95 312.83 464.60

the QSVD. (3) TSRQSVD and CoRQUTV are faster than other algorithms. The costing
time of BlockQUTV algorithm decreases with the growth of k and it takes about the same
time as QRSVD in the proper range of k without losing accuracy.

5.2 Image Reconstruction

This section describes how to solve the robust principal component analysis (PCA) [2] prob-
lem using the proposed UTV method. Robust PCA represents an input low-rank quaternion
matrixM ∈ Qm×n by solving the low-rank matrix decomposition-based completion problem
which is formulated in the form of the following optimization problem,{

minimize ∥L∥∗ + λ∥S∥1
subject to L+ S =M,

(5.3)

where L is a low rank matrix, S is a sparse matrix and ∥L∥∗ is the nuclear norm. The efficient
method to solve (5.3) is the method of augmented Lagrange multipliers, which minimizes
the following augmented Lagrange function with variable L or S alternatively,

L(L, S, Y, µ) = ∥L∥∗ + λ∥S∥1 + ⟨Y,M − L− S⟩+
µ

2
∥M − L− S∥2F , (5.4)

where Y ∈ Qm×n is the Lagrange multiplier matrix, and µ > 0 is a penalty parameter.
The robust PCA solved by the augmented Lagrange multipliers (ALM) method is given
in Algorithm 6. In Algorithm 6, for any quaternion matrix A with an QSVD defined as
A = UAΣAV

∗
A, Dδ(A) refers to a singular value thresholding operator defined as Dδ(A) =

UASδ(ΣA)V
∗
A, where Sδ(x) = sgn(x)max(|x|−δ, 0) is a shrinkage operator [13], and λ, µ, Y0,

and S0 are initial values. The ALM method yields the optimal solution L∗ and S∗, however,

Algorithm 6: Robust PCA by Alternating Directions

Input: Matrix M,λ, µ, Y0 = S0 = 0, j = 0
Output: Low rank plus sparse matrix

1 while the algorithm does not converge do
2 Compute Lj+1 = Dµ−1(M − Sj + µ−1Yj)
3 Compute Sj+1 = Sλµ−1(M − Lj+1 + µ−1Yj)
4 Compute Yj+1 = Yj + µ(M − Lj+1 − Sj+1)

5 Return L∗ and S∗
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its serious bottleneck is computing a computationally demanding QSVD at each iteration to
approximate the low-rank component L of M . To address this issue, we thus, by retaining
the original objective function proposed, apply the QUTV algorithm as a surrogate to the
truncated QSVD to solve the robust PCA problem. We adopt the continuation technique,
which increases µ in each iteration. The proposed method which is called ALM-QUTV is
given in Algorithm 7. In Algorithm 7, for any matrix A having a QUTV decomposition
described in Section 3, Cδ(A) refers to a QUTV thresholding operator defined as,

Cδ(A) = U(:, 1 : r)T (1 : r, :)V ∗, (5.5)

where r is the number of diagonals of T greater than δ, and λ, µ0, µ̄, ρ, Y0, and S0 are initial
values.

Algorithm 7: Robust PCA by ALM-QUTV

Input: Matrix M,λ, µ, Y0 = S0 = 0, j = 0
Output: Low rank plus sparse matrix

1 while the algorithm does not converge do
2 Compute Lj+1 = Cµ−1(M − Sj + µ−1Yj)
3 Compute Sj+1 = Sλµ−1(M − Lj+1 + µ−1Yj)
4 Compute Yj+1 = Yj + µ(M − Lj+1 − Sj+1)

5 Return L∗ and S∗

We use standard test images with 512 × 512 pixels . This color image is characterized
by a 512× 512 pure quaternion matrix [34] A with entries Aij = Riji+Gijj +Bijk, where
Rij , Gij , Bij represent the red, green, and blue pixel values at the location (i, j) in the
image, respectively. The parameters µ = 0.02 in all algorithms. We set the approximation
error to be 7e − 4 and the maximum number of iterations is 300. Figure 4 shows that
the BlockQUTV algorithm a comparable visual effect effect as the QRSVD algorithm. The
CoRQUTV algorithm has the best visual effect on color image reconstruction.

To demonstrate the excellent performance of our proposed randomized QUTV algorithms
in image reconstruction, Table 3 provides an acceptable peak signal-to-noise ratio (PNSR)
to demonstrate the algorithm’s performance, where PSNR is represented by

PSNR(Âout, A) = 20 log10
3mn

∥Âout −A∥F
. (5.6)

where Âout represents the data restored by different algorithms, and m = n = 512 in this
case. In table 3, we can see that except for the second image, the randomized QUTV
algorithms have better restoration performance, with CoRQUTV generally having better
restoration performance than BlockQUTV. Table 4 shows the time required for different
algorithms in image reconstruction. It can be seen that although QUTV decomposition
has an advantage in speed in single rank-k approximation in previous experiments, it has
lost some accuracy and increased the number of iterations. However, overall, the QUTV
algorithm has a significant effect as an alternative to the QSVD algorithm.

5.3 Application in Signal Denoising

While solving the signal denoising optimization, we can still find the application of the QUTV
algorithm. First, we decompose the spatial signal into three dimensional vector signals.

https://sipi.usc.edu/database/database.php?volume=misc
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Figure 4: Comparison of low-rank image reconstruction. The first column is the original
image and the second column is the observed image. The 3rd to the 8th are the complete
results of QSVD, QRSVD, TSRQSVD, CoRQUTV, and BlockQUTV, respectively.
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Table 3: PSNR results for low-rank image reconstruction.
QSVD QRSVD TSRQSVD CoRQUTV BlockQUTV
94.23 94.23 -4.19 95.89 95.48
91.75 91.74 6.45 91.42 91.70
88.51 88.49 -2.42 96.77 90.08
79.08 79.05 1.81 90.72 82.93
72.15 72.14 -1.25 75.91 73.83
69.61 69.50 0.50 71.48 70.16
75.63 75.17 1.27 84.71 76.05
74.41 74.38 -15.00 83.05 75.17

Table 4: Time comparison for low-rank image reconstruction.
QSVD QRSVD TSRQSVD CoRQUTV BlockQUTV
3279.26 72.17 28.03 49.83 80.03
3459.61 129.13 46.13 55.8 91.43
3782.48 29.73 36.81 52.53 43.79
3387.73 53.75 42.85 52.72 55.45
3569.16 32.13 39.83 54.71 38.77
3469.18 33.33 32.95 48.56 35.56
3091.78 24.75 23.55 49.44 27.67
3405.91 30.16 35.28 42.81 32.11

Then, we transform the vector signal into a Hankel matrix and construct a pure quaternion
matrix by the Hankel matrices. Finally, the problem of signal denoising is transformed into
a rank-k approximation problem,

min
rank(Â)≤k

∥A− Â∥2. (5.7)

The Lorentz attractor [37] is a three-dimensional nonlinear system that is used in at-
mospheric turbulence. The model is a system of three ordinary differential equations now
known as the Lorenz equations,

∂x

∂t
= σ(y − x), ∂y

∂t
= x(ρ− z)− y, ∂z

∂t
= xy − βz. (5.8)

where σ, ρ, β > 0. For the chaotic behavior of the Lorenz attractor, we set σ = 10, ρ = 28,
and β = 8/3. In our experiment, the Lorentz system (5.8) is solved by the built-in function
ode45(f(t, [x, y, z]), [0, 40], [12, 4, 0]) in MATLAB, where x, y, z ∈ R2001. For convenience, we
take part of the solutions of the Lorenz system x1 = x(401 : 800), x2 = y(401 : 800), x3 =
z(401 : 800) as three true signals. We add white Gaussian noise y1 = awgn(x1, snr), y2 =
awgn(x2, snr), y3 = awgn(x3, snr) by the function awgn in MATLAB, where the signal-to-
noise ratio parameter is set to be snr = 5. For a vector signal x = (x(1), x(2), . . . , x(N))⊤,
we can construct a Hankel matrix as follows,

X =


x(1) x(2) · · · x(s)
x(2) x(3) · · · x(s+ 1)
...

...
. . .

...
x(s) x(s+ 1) · · · x(N)

 , (5.9)
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Figure 5: Original signal and noisy signal.

where s = ⌊N/2⌋. Similarly, we can construct three Hankel matrices X,Y, Z by vector
signals x, y, and z, respectively. Then we obtain a pure quaternion noisy signal matrix [34]

A = Xi+ Y j+ Zk. (5.10)

In Figure 5(a), we can see the original and noisy signals. We can see the singular values of
the noisy signal under logarithmic scale in Figure 5(b). There are few large singular values
and other singular values decrease slowly. Therefore, we choose the target rank k = 20 in
our QUTV algorithms. We denoise the noisy signal by the CoRQUTV and the BlockQUTV
in Figure 6(a) and Figure 6(b), respectively.

Figure 6: Recovered signal.

5.4 Total Least Squares for Signal Processing

The vector-sensor signals can be represented as quaternionic signals. The polarization waves
are one kind of quaternionic signal [20]. For the complex number z = a+ bi, the argument
or phase angle is defined as atan2(b, a). If z = q0 + q1i + q2j + q3k is written it the form
z = ∥z∥2eiγ , then γ is the phase (argument) of z, denoted arg(z) = γ. Quaternions contain
three complex subfields and, correspondingly, three phases components which are

ϕ = atan2(nϕ, dϕ),

θ = atan2(nθ, dθ),

ψ = arcsin(nψ),

(5.11)
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where nϕ, dϕ, nθ, dθ, nψ come from the equivalence of two homomorphic quaternion trans-
formations and are defined as 

nϕ = 2(q2q3 + q0q1),

dϕ = q20 − q21 + q22 − q23 ,
nθ = 2(q1q3 + q0q2),

dθ = q20 + q21 − q22 − q23 ,
nψ = 2(q1q2 + q0q3).

(5.12)

Now we consider a set of N vector sensors, the collected vector data set S can be written
as a matrix whose rows are the signals recorded on vector sensors that constitute the array
S = (s1(m), s2(m), . . . , sN (m))⊤. The set of signals recorded on the vector-sensor array,
S, is a matrix of size N × M which elements are quaternions (S ∈ QN×M ). Using the
quaternionic signal representation, any polarized signal is expressed as

sn(m) = ρn(m)eµn(m). (5.13)

This is to say that its magnitude is, at time sample m, equal to ρ(m), and the distribution
of magnitude on the three components are carried by the eigenangle µn(m). Total least
squares [10] (TLS) is a useful method for fitting a model to a set of data points when both
the predictor (explanatory) variables and the response (dependent) variables are subject to
error. This can be important in signal processing, as it is often the case that measurements of
a signal are subject to some degree of uncertainty or that there are errors in the model itself.
The total least squares approximation x̂TLS is obtained as a solution of the optimization
problem,  x̂TLS = argmin

Â,̂b

∥∥∥(Â b̂
)
−
(
A b

)∥∥∥
F

subject to Âx = b̂
(5.14)

where A ∈ Qm×n, x ∈ Qn, b ∈ Qm and Ax ≈ b is an overdetermined system (m ≥ n). Here
we take the QUTV algorithm as one of the complete orthogonal decomposition methods to
deal with TLS problem. We suppose the C =

(
A b

)
has a QUTV decomposition,

C = U

(
T11 T12
O T22

)
V ∗, (5.15)

where U, V are quaternion unitary matrices, T ∈ Qm×m is nonsingular upper triangular
matrix. We can rewrite V in the block form

V =

(
V11 V12
V21 V22

)
, (5.16)

where V11 ∈ Qp×p. Then we can have the TLS solution [39] x̂TLS = −V12V †
22. Now we try

an artificial signal example to verify our QUTV algorithm. First, we construct quaternionic
signal matrix A = USV ∗ ∈ Qm×n by using quaternion Householder matrix U, V and S =
diag(1,

√
2,
√
3, . . . ,

√
n). Then we construct x = (x(1), x(2), . . . , x(n))⊤, where x(p) =

1/p + (1/p)i + (1/p)j + (1/p)k, p = 1, 2, . . . , n. We add the Gaussian noise to A and b =
Ax ∈ Qm with η = 0.03. In our experiment, we set m = 100 and n = 50. Because of the
previous introduction of the total least squares method, we can only apply the BlockQUTV
structure to solve this problem and set the parameter k = 10. In Figure 7, we can see
the performance of the BLockQUTV algorithm under the total least squares method in the
artificial quaternionic signal.



208 R. XU AND Y. WEI

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1
Original signal Vs BlockQUTV

origin
BlockQUTV

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

Figure 7: Original signal VS BlockQUTV recovery.

6 Conclusion Remarks

Quaternion matrix optimization problems have garnered increasing attention in the fields of
color image processing and signal processing. In these applications, the QSVD plays a crucial
role. This paper introduces randomized quaternion UTV decompositions as an alternative to
QSVD. Experimental results demonstrate that the proposed randomized QUTV algorithms
are both effective and efficient in addressing quaternion matrix optimization problems.
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