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graphics, flight dynamics and navigation systems of aircraft, orbital mechanics, quantum
mechanics, etc.

Dual numbers and dual quaternions were introduced by W. Clifford in 1873 [3]. A dual
number is expressed as

ă = a+ ϵa′ with ϵ2 = 0 and ϵ ̸= 0,

where a and a′ are real numbers. Particularly, a dual number ă = a+ ϵa′ can be represented
by a matrix

(
a 0
a′ a

)
, which implies that ϵ is understood to be ( 0 0

1 0 ). Dual numbers form a
commutative algebra.

When real numbers a and a′ are substituted by quaternions a and a′, we obtain a dual
quaternion ă = a+ ϵa′ [3, 11, 12]. The dual quaternion ă can be regarded as an element of
an eight-dimensional vector space over the real number field with basis (1, i, j,k, ϵ, ϵi, ϵj, ϵk).
Then, dual quaternions form a non-commutative ring with multiplicative identity. Interest-
ingly, dual quaternions could represent rigid transformations including rotations and trans-
lations in 3D space as simple dual quaternion products with clear geometric meaning [4].

As an important problem in many areas such as robot kinematics, hand-eye calibration
(more appropriately, sensor-actuator calibration) is the computation of the relative transla-
tion and rotation between the robot gripper (hand) and a camera (eye) mounted rigidly on
the gripper. In fact, any rigid transformation can always be described by two parameters: a
translation vector t⃗ ∈ R3 and a rotation matrix R ∈ SO(3). By combining translations and
rotations, we obtain homogeneous transformation matrices(

R t⃗

0⃗⊤ 1

)
∈ SE(3),

where SE(3) stands for the Euclidean group of rigid-body motions. SE(3) has the structure
of both a differentiable manifold and an algebraic group, and is an example of a Lie group.
The well-known hand-eye equation [14, 16, 10] is formulated as

AX = XB, (1.1)

where the homogeneous transformation matrix from gripper to camera X ∈ SE(3) is un-
determined, A ∈ SE(3) is the change in the robot gripper position and B ∈ SE(3) is the
resulting camera displacement.

Numerical methods for solving hand-eye calibration problems include direct methods and
iterative methods. Direct methods can find closed-form solutions. For example, Shiu and
Ahmad [14] estimated the orientational component by utilizing the angle-axis formulation
of rotations and then the translational component by using standard linear system tech-
niques. Zhuang and Roth [21] and Chou and Kamel [2] used quaternion algebra to represent
orientations and re-formulated the determination of the rotation matrix as a homogeneous
linear least squares problem. Daniilidis [4] introduced the dual quaternion parameterization
and proposed a simultaneous solution for the rotation and the translation using singular
value decomposition. Wu et al. [18] utilized symbolic methods to derive a globally opti-
mal solution for the hand-eye equation. Although direct methods can estimate rotational
and translational components for the hand-eye calibration problems, many of them involve
complicated derivations.

Iterative methods are simple and efficient. Horaud and Dornaika [6] used the Levenberg–
Marquardt nonlinear minimization method, which solves for rotation and translation simul-
taneously for hand-eye calibration. They claimed that nonlinear optimization method seems
to be the most robust one with respect to noise and measurement errors. A recent research
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[9] also confirmed the assertion. Qiu, Wang, and Kermani [13] used the gradient-descent
technique on the special Euclidean group SE(3). Zhang, Zhang, and Yang [20] presented an
alternating minimization for hand-eye calibration using dual quaternions. Heller, Havlena,
and Pajdla [5] proposed to integrate the hand-eye calibration problem into a branch-and-
bound parameter space search. Wang et al. [17] gave singularity analysis for the solution
of the hand-eye calibration and solved a singular-free solution in the form of homogeneous
transformation matrices. For a more exhaustive review of the hand-eye calibration, the
readers are referred to [7].

In this paper, we consider the hand-eye calibration problem by means of dual quaternions:

ăiq̆ = q̆b̆i, (1.2)

for i = 1, . . . ,m, where ăi and b̆i are known and q̆ is an undetermined unit dual quaternion.
First of all, the hand-eye calibration problem (1.2) is rewritten as a least squares optimization
of real function in dual quaternion variables, subject to a unit dual quaternion constraint.
Unusually, the set of unit dual quaternions is nonconvex, unbounded and closed. Second,
to handle the unit dual quaternion constraint, we exploit the relationship between dual
quaternions and eight-dimensional vectors and formulate the unit dual quaternion constraint
as two quadratic equations in the field of real numbers. Using optimization theory, we can
compute the closed-form solution of the projection from any eight-dimensional vector onto
the real feasible region constrained by these two quadratic equations. That is to say, we
invent an algorithm for computing the projection of dual quaternions onto the unit dual
quaternion set. Third, utilizing the unit dual quaternion projection, we design a proximal
linearized algorithm for optimization of real function in dual quaternion variables. The
global convergence of the proximal linearized algorithm is analyzed. Finally, numerical
experiments on hand-eye calibration and regression problems illustrate the effectiveness of
the proposed proximal linearized algorithm.

The remainder of this paper is organized as follows. Section 2 describes foundations
on dual quaternions and the relationship between dual quaternions and eight-dimensional
vectors. The closed-form solution of the projection from a dual quaternion onto the unit
dual quaternion set is derived in Section 3. A proximal linearized algorithm for optimization
of real function in dual quaternion variables is customized in Section 4, and the global
convergence is also analyzed. Numerical experiments on the proposed proximal linearized
algorithm for solving hand-eye calibration and regression problems are illustrated in Section
5. Finally, some concluding remarks are given in Section 6.

2 Preliminary on Dual Quaternions

The purpose of this section is to transform unfamiliar dual quaternion operations to
frequently-used linear algebra operations in vector space. In the beginning, linear oper-
ations on quaternions and dual quaternions are performed in an element-wise manner.

We concentrate on the multiplication of quaternions

pq = (p0q0 − p⃗⊤q⃗, p0q⃗ + q0p⃗+ p⃗× q⃗), (2.1)

where p = (p0, p⃗) and q = (q0, q⃗) are two quaternions. Since the cross product satisfies
p⃗× q⃗ = −q⃗× p⃗, the quaternion multiplication is not commutative. However, the quaternion
multiplication is associative and has a unit element (1, 0⃗). By linear algebra, the cross-
product p⃗× q⃗ could be rewritten as

p⃗× q⃗ = W (p⃗)q⃗ = −W (q⃗)p⃗,
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where W is a skew-symmetric matrix

W (p⃗) :=

 0 −p3 p2
p3 0 −p1
−p2 p1 0

 .

Since a quaternion q corresponds to a four-dimensional real vector

vecq :=

(
q0
q⃗

)
,

there is an interesting lemma.

Lemma 2.1 ([20]). The multiplication between quaternions p = (p0, p⃗) and q = (q0, q⃗) can
be represented as

vec(pq) = L(p)vecq = R(q)vecp,

where

L(p) :=

(
p0 −p⃗⊤

p⃗ p0I +W (p⃗)

)
, R(q) :=

(
q0 −q⃗⊤

q⃗ q0I −W (q⃗)

)
.

Next, we consider the multiplication between dual quaternions p̆ = p + ϵp′ and q̆ =
q + ϵq′:

p̆q̆ = (p+ ϵp′)(q + ϵq′) = pq + ϵ(pq′ + p′q), (2.2)

where p,p′, q and q′ are quaternions. Then the following theorem holds.

Theorem 2.2. By regarding a dual quaternion q̆ = q + ϵq′ as an eight-dimensional real
vector

vecq̆ :=

(
vecq
vecq′

)
,

the multiplication between dual quaternions could be represented as

vec(p̆q̆) = L(p̆)vecq̆ = R(q̆)vecp̆,

where

L(p̆) :=

(
L(p) 04×4

L(p′) L(p)

)
, R(q̆) :=

(
R(q) 04×4

R(q′) R(q)

)
.

Proof. Using Lemma 2.1 and linear algebra, we have

L(p̆)vecq̆ =

(
L(p)vecq

L(p′)vecq +L(p)vecq′

)
=

(
vec(pq)

vec(p′q + pq′)

)
= vec(p̆q̆).

The other equality R(q̆)vecp̆ = vec(p̆q̆) can be proved by a similar discussion.

3 Project onto the Unit Dual Quaternion Set

Let q̆ = q + ϵq′ = q0 + iq1 + jq2 + kq3 + ϵq′0 + ϵiq′1 + ϵjq′2 + ϵkq′3 be a dual quaternion. The
conjugate ¯̆q of q̆ is defined by ¯̆q = q̄ + ϵq̄′ = q0 − iq1 − jq2 − kq3 + ϵq′0 − ϵiq′1 − ϵjq′2 − ϵkq′3.
For a unit dual quaternion q̆ = q + ϵq′, it holds that

q̆ ¯̆q = qq̄ + ϵ(qq̄′ + q′q̄) = q20 + q21 + q22 + q23 + ϵ2(q0q
′
0 + q1q

′
1 + q2q

′
2 + q3q

′
3) = 1.
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The real part qq̄ = 1 and the dual part qq̄′+q′q̄ = 0 mean ∥vecq∥22 = 1 and (vecq)⊤vecq′ =
0, respectively. For convenience, let q := vecq ∈ R4 and q′ := vecq′ ∈ R4. Then the unit
dual quaternion set corresponds to the following set:

Ω :=
{
(q⊤,q′⊤)⊤ | ∥q∥22 = 1,q′⊤q = 0

}
⊆ R8. (3.1)

Obviously, the set Ω is a closed, nonconvex and unbounded set. That is to say, the following
lemma is valid.

Lemma 3.1. The unit dual quaternion set is nonempty, closed, nonconvex and unbounded.

Next, we concentrate on the projection of a generic dual quaternion ă onto the unit dual
quaternion set, i.e., find a solution of the following optimization problem

min
q̆

1

2
∥vecq̆ − vecă∥22 s.t. vecq̆ ∈ Ω, (3.2)

which is indeed a quadratically constrained quadratic programming in the field of real num-
bers

min
q,q′

1

2
∥q− a∥22 +

1

2
∥q′ − a′∥22

s.t. ∥q∥22 = 1, q′⊤q = 0,

(3.3)

where ă = a+ ϵa′, a = veca and a′ = veca′.
Using real multipliers λ and µ, the Lagrangian function of (3.3) is

L(q,q′, λ, µ) =
1

2
∥q− a∥22 +

1

2
∥q′ − a′∥22 +

λ

2
(∥q∥22 − 1) + µq′⊤q.

By optimization theory, we solve the following system of polynomial equations

q− a+ λq+ µq′ = 0, (3.4)

q′ − a′ + µq = 0, (3.5)

∥q∥22 − 1 = 0, (3.6)

q′⊤q = 0. (3.7)

By taking the inner product between q and (3.4) and using (3.6) and (3.7), we obtain

λ = q⊤a− 1.

Similarly, using (3.5), (3.6), and (3.7), we get

µ = q⊤a′.

Further, it follows from (3.5) that

q′ = a′ − µq = a′ − (q⊤a′)q.

Substituting these variables into (3.4), we have

(q⊤a)q− (q⊤a′)2q+ (q⊤a′)a′ − a = 0. (3.8)
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By taking an inner product between (3.8) and a and an inner product between (3.8) and a′,
we establish

(q⊤a)2 − (q⊤a′)2(q⊤a) + (q⊤a′)(a⊤a′)− ∥a∥22 = 0,

(q⊤a)(q⊤a′)− (q⊤a′)3 + (q⊤a′)∥a′∥22 − a⊤a′ = 0.

Recalling q⊤a = λ+ 1 and q⊤a′ = µ, the above system can be rewritten as

(λ+ 1)2 − (λ+ 1)µ2 + µa⊤a′ − ∥a∥22 = 0, (3.9)

(λ+ 1)µ− µ3 + µ∥a′∥22 − a⊤a′ = 0. (3.10)

It yields from (3.10) that
(λ+ 1)µ = µ3 − µ∥a′∥22 + a⊤a′.

By substituting the above equation into the product of µ2 and (3.9), we obtain

(µ3 − µ∥a′∥22 + a⊤a′)2 − (µ3 − µ∥a′∥22 + a⊤a′)µ3 + µ3a⊤a′ − µ2∥a∥22 = 0,

which is a polynomial equation in a single variable

−∥a′∥22µ4 + 2a⊤a′µ3 + (∥a′∥42 − ∥a∥22)µ2 − 2a⊤a′∥a′∥22µ+ (a⊤a′)2 = 0. (3.11)

All real roots of the above quartic equation for µ can be found by approaches in [15, 19].
Clearly, there may exist multiple roots. Once a real root µ is known, we find λ by (3.10) if
µ ̸= 0, otherwise, we find real λ by (3.9). There may have multiple (µ, λ) pairs.

Whereafter, for each (µ, λ) pair, we obtain a linear system by (3.4) and (3.5)

(λ+ 1)q+ µq′ = a,

µq+ q′ = a′,

which means

q =
1

λ+ 1− µ2
(a− µa′), q′ =

1

λ+ 1− µ2
(−µa+ (λ+ 1)a′).

If there are multiple (q,q′) pairs, we find the best one which attains the minimal objective of
the projection (3.3). In summary, the detailed algorithm for finding a closed-form solution
of the unit dual quaternion projection is described in Algorithm 1.

Theorem 3.2. The dual quaternion ă = a + ϵa′ satisfies a ̸= κa′ for all κ ∈ R. Then,
Algorithm 1 can solve the projection problem (3.2).

Proof. We only need to prove that Algorithm 1 is well-defined.
If a′ = 0, we say a ̸= 0. Equation (3.11) has a double root µ = 0. Then, equation (3.9)

reduces to (λ + 1 − µ2)(λ + 1) = ∥a∥22 ̸= 0, which means λ + 1 − µ2 ̸= 0. Hence, q and q′

can be found successfully.
Otherwise, we assume a′ ̸= 0. Because a ̸= κa′ with κ = 0, we say a ̸= 0. Since

−∥a′∥22 < 0 and (a⊤a′)2 ≥ 0, we know the polynomial equation (3.11) has real roots. Next,
equations (3.9) and (3.10) could be rewritten as

(λ+ 1− µ2)(λ+ 1) = (a− µa′)⊤a,

(λ+ 1− µ2)µ = (a− µa′)⊤a′,

respectively. Let θ be the angle between nonzero vectors a and a′. It holds that θ ∈ (0, π)
since a ̸= κa′ for all κ. Hence, at least one of scalars (a − µa′)⊤a and (a − µa′)⊤a′ is
nonzero. Therefore, λ+ 1− µ2 ̸= 0 and q and q′ can be found successfully.
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Algorithm 1 Projection onto the unit dual quaternion set.

1: Abstract a = veca and a′ = veca′ from the inputted (nonzero) dual quaternion ă =
a+ ϵa′.

2: Solve a polynomial equation (3.11)

−∥a′∥22µ4 + 2a⊤a′µ3 + (∥a′∥42 − ∥a∥22)µ2 − 2a⊤a′∥a′∥22µ+ (a⊤a′)2 = 0

to find all real roots µ1, µ2, . . . , µn. If µt = 0, we regard it as a double root.
3: for t = 1, 2, . . . , n do
4: Find λt according to µt by solving (3.10) or (3.9).
5: Compute qt and q′

t via

qt =
1

λt + 1− µ2
t

(a− µta
′), q′

t =
1

λt + 1− µ2
t

(−µta+ (λt + 1)a′).

6: Calculate objective

ft =
1

2
∥qt − a∥22 +

1

2
∥q′

t − a′∥22.

7: end for
8: Find t∗ = argmint=1,...,n ft. Set quaternions q and q′ such that vecq = qt∗ and vecq′ =

q′
t∗ .

9: Return a unit dual quaternion q̆ = q + ϵq′.

Corollary 3.3. Suppose that the dual quaternion ă = a + ϵa′ satisfies a ̸= 0 and aā′ +
a′ā = 0 (i.e., a⊤a′ = 0). Then the projection of ă onto the unit dual quaternion set is
q̆ = a/

√
aā+ ϵa′.

At the end of this section, we give an example.

Example 3.4. Let ă = a+ ϵa′ = (1, 0, 0, 0) + ϵ(10, 10, 10, 10). Algorithm 1 produces

q̆true = (0.8666,−0.2881,−0.2881,−0.2881) + ϵ(9.9784, 10.0072, 10.0072, 10.0072).

For a naive projection method, which project a onto the unit quaternion set and then project
a′ onto the hyperplane aā′ + a′ā = 0, the resulting unit dual quaternion is

q̆naive = (1, 0, 0, 0) + ϵ(0, 10, 10, 10).

Obviously, we have
∥q̆true − ă∥ = 0.5170 < ∥q̆naive − ă∥ = 10.

4 A proximal Linearized Algorithm

The hand-eye calibration problem (1.2) is to find a unit dual quaternion q̆ such that

ăiq̆ = q̆b̆i, ∀ i = 1, . . . ,m. (4.1)

We consider the least squares fitting problem for hand-eye calibration

min f̃(q̆) :=
1

2

m∑
i=1

∥vec(ăiq̆ − q̆b̆i)∥22 s.t. q̆ is a unit dual quaternion. (4.2)



220 C. LI, Y. CHEN AND D.-H. LI

By Theorem 2.2, we have

m∑
i=1

∥vec(ăiq̆ − q̆b̆i)∥22 =

m∑
i=1

∥L(ăi)vecq̆ −R(b̆i)vecq̆∥22

= (vecq̆)⊤

(
m∑
i=1

[L(ăi)−R(b̆i)]
⊤[L(ăi)−R(b̆i)]

)
vecq̆.

Let

H :=

m∑
i=1

[L(ăi)−R(b̆i)]
⊤[L(ăi)−R(b̆i)].

Then, the following theorem on the positive semidefinite matrix H is interesting.

Theorem 4.1. The matrix H has a double eigenvalue 0 with associated eigenvectors vecq̆
and (01×4, vecq

⊤)⊤, if the hand-eye calibration problem (4.1) has a solution q̆ = q + ϵq′.

Proof. Since q̆ = q + ϵq′ is a solution of (4.1), we have ăiq̆ − q̆b̆i = 0̆ and hence [L(ăi) −
R(b̆i)]vecq̆ = 0 for all i = 1, . . . ,m. Hence, we say Hvecq̆ = 0vecq̆.

Next, by Theorem 2.2, it follows from [L(ăi)−R(b̆i)]vecq̆ = 0 that(
L(ai)−R(bi) 04×4

L(a′
i)−R(b′i) L(ai)−R(bi)

)(
vecq
vecq′

)
= 0

and hence
[L(ai)−R(bi)]vecq = 0, ∀ i = 1, . . . ,m.

Then, it is straightforward to calculate that

[L(ăi)−R(b̆i)]

(
04×1

vecq

)
=

(
L(ai)−R(bi) 04×4

L(a′
i)−R(b′i) L(ai)−R(bi)

)(
04×1

vecq

)
= 0,

for all i = 1, . . . ,m. Therefore, (01×4, vecq
⊤)⊤ is also an eigenvector of H corresponding to

the zero eigenvalue.

Let x := vecq̆. The optimization model (4.1) can be represented as

min f(x) =
1

2
x⊤Hx+ iΩ(x),

where Ω is defined in (3.1) and iΩ is an indicator function such that iΩ(x) = 0 if x ∈ Ω and
iΩ(x) = +∞ otherwise.

Starting from an initial point x1 and setting t ← 1, we repeatedly solve the proximal
linearized subproblem

xt+1 = argmin
1

2
x⊤
t Hxt + (x− xt)

⊤Hxt +
1

2κt
∥x− xt∥22 + iΩ(x), (4.3)

which is equivalent to a projection problem

xt+1 = argmin ∥x− xt + κtHxt∥22
s.t. x ∈ Ω.

(4.4)

We note that the subproblem (4.4) can be solved by Algorithm 1. Then, we set t ← t + 1.
If the difference between two iterative points ∥xt+1 − xt∥ is small enough, we terminate the
algorithm. The detailed algorithm is represented in Algorithm 2.

Now, we show that the smallest step size in line 3 of Algorithm 2 is reasonable.
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Algorithm 2 Proximal linearized algorithm.

1: Choose x1. Set parameters η > 0, κ0 = 1, and t← 1.
2: while not convergence do
3: Find the largest κt ∈ {κt−1, κt−1/2, κt−1/4, . . . , 2

−⌈log2(∥H∥2+η)⌉} such that

f(xt+1) ≤ f(xt)−
η

2
∥xt+1 − xt∥22, (4.5)

where xt+1 is obtained by solving (4.4).
4: t← t+ 1.
5: end while

Lemma 4.2. The step size κt used in line 3 of Algorithm 2 is bounded away from zero, i.e.,

κt ≥ 2−⌈log2(∥H∥2+η)⌉, for all t = 1, 2, . . . .

Proof. Because xt ∈ Ω, we have

f(xt+1) =
1

2
x⊤
t Hxt + (xt+1 − xt)

⊤Hxt +
1

2
(xt+1 − xt)

⊤H(xt+1 − xt)

=
1

2
x⊤
t Hxt + (xt+1 − xt)

⊤Hxt +
1

2κt
∥xt+1 − xt∥22

−1

2
(xt+1 − xt)

⊤(κ−1
t I −H)(xt+1 − xt)

≤ 1

2
x⊤
t Hxt −

1

2
(xt+1 − xt)

⊤(κ−1
t I −H)(xt+1 − xt)

≤ f(xt)−
1

2
(κ−1

t − ∥H∥2)∥xt+1 − xt∥22.

When κ−1
t − ∥H∥2 ≥ η, the inequality (4.5) holds. Hence, we say that the step size is

bounded away from zero.

On the convergence of Algorithm 2, we establish the following theorem.

Theorem 4.3. For all bounded subsequences {xt′} of {xt}, we have

lim
t′→∞

dist(0,Hxt′ + ∂iΩ(xt′)) = 0.

Proof. Let T ≥ 1 be an iterative number. According to (4.5) and the nonnegativity, we
know

f(x1) ≥ f(x1)− f(xT+1) =

T∑
t=1

f(xt)− f(xt+1) ≥
η

2

T∑
t=1

∥xt+1 − xt∥22.

Let T →∞. We get
∑∞

t=1 ∥xt+1 − xt∥22 < 2
ηf(x1) and hence

lim
t→∞

∥xt+1 − xt∥2 = 0. (4.6)

Because xt+1 is a solution of (4.4) and (4.3), we have

0 ∈ Hxt +
1

κt
(xt+1 − xt) + ∂iΩ(xt+1)

= Hxt+1 + ∂iΩ(xt+1) + (κ−1
t I −H)(xt+1 − xt).
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For a bounded subsequence {xt′} of {xt}, we get

dist(0,Hxt′ + ∂iΩ(xt′)) ≤ ∥(κ−1
t′−1I −H)(xt′ − xt′−1)∥2

≤ (2⌈log2(∥H∥2+η)⌉ + ∥H∥2)∥xt′ − xt′−1∥2,

where the last inequality holds owing to Lemma 4.2. It follows from (4.6) straightforwardly
that dist(0,Hxt′ + ∂iΩ(xt′))→ 0.

5 Numerical Experiments

We examine the performance of the proposed proximal linearized algorithm for solving the
hand-eye calibration and a special regression problem in unit dual quaternion variables.

5.1 Hand-eye calibration

An example of hand-eye calibration is equipped with parameters [14]:

Xact = Trans(0.01 m, 0.05 m, 0.1 m) · Rot([1, 0, 0]⊤, 0.2 rad),

A1 = Trans(0 m, 0 m, 0 m) · Rot([0, 0, 1]⊤, 3.0 rad),

A2 = Trans(−0.4 m, 0 m, 0.4 m) · Rot([0, 1, 0]⊤, 1.5 rad),

and
B1 = X−1

actA1Xact, B2 = X−1
actA2Xact.

That is to say, we have

q̆act = 0.9950 + 0.0998i+ 0.0000j+ 0.0000k− 0.0005ϵ+ 0.0050ϵi+ 0.0299ϵj+ 0.0473ϵk,

ă1 = 0.0707 + 0.0000i+ 0.0000j+ 0.9975k+ 0.0000ϵ+ 0.0000ϵi+ 0.0000ϵj+ 0.0000ϵk,

ă2 = 0.7317 + 0.0000i+ 0.6816j+ 0.0000k+ 0.0000ϵ− 0.2827ϵi+ 0.0000ϵj+ 0.0100ϵk,

b̆1 = 0.0707 + 0.0000i+ 0.1982j+ 0.9776k+ 0.0000ϵ− 0.0499ϵi+ 0.0098ϵj− 0.0020ϵk,

b̆2 = 0.7317 + 0.0000i+ 0.6681j− 0.1354k− 0.0000ϵ− 0.2145ϵi+ 0.0006ϵj+ 0.0031ϵk.

Starting from a random dual quaternion, the proposed proximal linearized algorithm gen-
erates an iterative sequence {q̆t} (satisfying xt = vecq̆t) that always converges fastly to the
solution of the hand-eye calibration problem. A typical iterative process is illustrated in
Figure 1, where the objective value is f(q̆t) =

1
2

∑2
i=1 ∥vec(ăiq̆t − q̆tb̆i)∥22 and the error of

dual quaternion is ∥vec(q̆t − q̆act)∥2.
To simulate the rotation error for each homogeneous transformation matrix A, a random

1 × 3 vector, whose entries indicate the rotation Euler angles error, is transformed into
rotational error matrix δR, then acts upon the rotational part of A to generate a disturbed
rotation matrix RA as follows

RA ← δR ·RA.

A translation error vector generated from a zero mean normal distribution with small stan-
dard deviation is added to translation part of A to simulate the translation error. The
rotation error and translation error of B are set by the same way.

We compare the performance of our method with three methods. (I) “Shiu89” is a direct
method based on homogeneous transformation matrices [14]. (II) “Daniilidis99” is a direct
method based on unit dual quaternions [4]. (III) “Two-step17” is a two-step iteration in
dual quaternions [20]. The first two methods have closed-form solutions via solving linear
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Figure 1: Performance of the proposed proximal linearized algorithm for hand-eye calibra-
tion.

Table 1: Average results Erotm and Etrvec for the cases of rotation error.
rotation(rad) 0.0350 0.0700 0.1050 0.1400 0.1750 0.2100 0.2450 0.2800 0.3150 0.3500

Erotm

Shiu89 0.0081 0.0143 0.0248 0.1127 0.3943 0.5894 0.6190 0.7044 0.7303 0.6536
Daniilidis99 0.0064 0.0115 0.0207 0.1076 0.3897 0.5857 0.6109 0.6995 0.7280 0.6471
Two-step17 0.0065 0.0117 0.0212 0.1080 0.3901 0.5864 0.6124 0.7000 0.7290 0.6492
Algorithm 2 0.0064 0.0115 0.0207 0.1076 0.3896 0.5857 0.6109 0.6993 0.7280 0.6470

Etrvec

Shiu89 0.0014 0.0028 0.0045 0.0408 0.1602 0.2424 0.2511 0.2827 0.2891 0.2532
Daniilidis99 0.0014 0.0030 0.0047 0.0418 0.1616 0.2446 0.2537 0.2871 0.2944 0.2590
Two-step17 0.0032 0.0113 0.0217 0.0746 0.1944 0.2999 0.3462 0.3431 0.3687 0.3680
Algorithm 2 0.0015 0.0030 0.0049 0.0419 0.1603 0.2418 0.2501 0.2822 0.2882 0.2528

equations, while Two-step17 and our method are iterative methods. For iterative methods,
we stop the iteration if the number of iterations exceeds 300 or the Euclidean distance
between the t-th and the (t+1)-th iterates is less than 10−3. To qualify the results, we take
Erotq as the errors in the rotation unit quaternion and Etrvec as the errors in the translation
vector

Erotq = ∥vec(q − q∗)∥2, Etrvec = ∥t⃗− t⃗∗∥2,

where q is the estimated rotation quaternion, t⃗ is the estimated translation vector and their
ground truth q∗ and t⃗∗.

For any Ai and associated Bi, we consider rotation error and translation error sepa-
rately. The rotation angle error increases from 0.0350 to 0.3500 rad in steps of 0.0350. The
translation error increases from 0.002 to 0.02 m in steps of 0.002. For each step, we randomly
generate 50 sets of Euler angles with eligible values and run the four methods to obtain the
average errors Erotq and Etrvec for each method. For each set of Euler angles, we set 100
initial points and run the two iterative methods to obtain the average errors respectively.
The results of all four methods for the cases of rotation error are listed in Table 1 and the
cases of translation error are listed in Table 2.

With the error increasing, whether rotation or translation, the deviation of the estimation
from ground truth becomes more serious for each method. For various rotation errors, Table
1 shows that the performance of Algorithm 2 and Daniilidis99 are comparable and more
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Figure 2: Convergence performance of Two-step17 and Algorithm 2.

accurate than the other two algorithms in rotational part of the estimation. In translational
part, Algorithm 2 sometimes performs a little worse than Shiu89 and Daniilidis99 when the
rotation error is less than 0.175. But as the rotation error increases again, Algorithm 2 is
better than the other three methods. For the cases of translation error, we can see from
Table 2 that the difference of the four algorithms is very small, either rotational part or
translational part of the estimation. In particular, there is no deviation in rotational part of
Shiu89. The reason is that Shiu89 estimates the orientational component and translational
component separately, while the other methods estimate simultaneously.

For iterative methods, the sequence generated by Two-step17 may not converge within
300 iterations when the stop tolerance is set to less than 10−3, while Algorithm 2 is always
convergent even the accuracy reaches 10−12. Typical convergence performances of Two-
step17 and Algorithm 2 are given in Figure 2, in which the rotation Euler angles error are
set to empirical value 0.0350 rad and the translation error with standard deviation is 0.002
m. As illustrated in Figure 2, Two-step17 converges quickly in the first three iterations,
but little progress is made in later iterations. Although Algorithm 2 is not as fast as Two-
step17 in the early stage, the proposed algorithm can always terminate in the less number of
iterations and achieve more accurate solution when solving the hand-eye calibration problem.

5.2 A regression problem

Generalized linear regression is an important mathematical model in many areas. In this
subsection, we study the log-linear regression problem in dual quaternion variables. In the
beginning, for two unit dual quaternions p̆ and q̆, the screw linear interpolation (ScLERP)
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Table 2: Average results Erotm and Etrvec for the cases of translation error.
translation(m) 0.0020 0.0040 0.0060 0.0080 0.0100 0.0120 0.0140 0.0160 0.0180 0.0200

Erotm

Shiu89 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Daniilidis99 0.0002 0.0005 0.0007 0.0009 0.0014 0.0014 0.0021 0.0017 0.0022 0.0024
Two-step17 0.0002 0.0005 0.0007 0.0009 0.0014 0.0014 0.0021 0.0016 0.0022 0.0025
Algorithm 2 0.0003 0.0005 0.0007 0.0009 0.0014 0.0015 0.0021 0.0017 0.0023 0.0025

Etrvec

Shiu89 0.0024 0.0043 0.0078 0.0098 0.0107 0.0169 0.0164 0.0192 0.0200 0.0222
Daniilidis99 0.0024 0.0043 0.0078 0.0098 0.0107 0.0169 0.0164 0.0193 0.0200 0.0222
Two-step17 0.0024 0.0044 0.0079 0.0098 0.0113 0.0180 0.0176 0.0207 0.0215 0.0245
Algorithm 2 0.0025 0.0043 0.0077 0.0098 0.0107 0.0169 0.0164 0.0192 0.0200 0.0222

Table 3: Observed noise-corrupted unit dual quaternions.
basis 1 i j k ϵ ϵi ϵj ϵk
p̆1 0.8274 0.3707 0.3893 0.1627 −0.0585 −0.2179 0.1671 0.3940
p̆2 0.3405 0.6244 0.6408 0.2892 −0.2753 −0.3831 0.2236 0.6559
p̆3 −0.3476 0.6223 0.6338 0.3003 −0.4514 −0.6093 0.1103 0.5075
p̆4 −0.8104 0.4170 0.3573 0.2043 −0.4139 −0.6194 −0.2753 0.1044
p̆5 −0.9990 −0.0250 0.0349 −0.0072 −0.0027 −0.5855 −0.5568 −0.2888
p̆6 −0.7894 −0.4254 −0.3868 −0.2150 0.6236 −0.2714 −0.6469 −0.5889
p̆7 −0.2756 −0.6570 −0.6212 −0.3264 1.1127 0.2458 −0.4089 −0.6559
p̆8 0.3250 −0.6006 −0.6567 −0.3200 1.2527 0.7691 0.1438 −0.4661
p̆9 0.7959 −0.3817 −0.4083 −0.2327 0.8765 1.0120 0.7285 0.0598
p̆10 0.9990 0.0292 −0.0248 −0.0207 0.0072 1.0803 1.1718 0.4679
p̆11 0.8199 0.4053 0.3704 0.1622 −1.0114 0.6900 1.1521 0.7576
p̆12 0.3193 0.6051 0.6625 0.3050 −1.8802 −0.0924 0.5772 0.8977
p̆13 −0.2892 0.6098 0.6557 0.3383 −2.0415 −0.8750 −0.3203 0.4529
p̆14 −0.7828 0.4147 0.4126 0.2120 −1.4183 −1.4608 −1.1253 −0.1892
p̆15 −0.9990 0.0051 −0.0346 −0.0260 0.0713 −1.6860 −1.6189 −0.9190
p̆16 −0.7929 −0.4191 −0.3814 −0.2241 1.6541 −1.1816 −1.5484 −1.0078

[8] gives

ScLERP(ℓ) = p̆(¯̆pq̆)ℓ, ℓ ∈ [0, 1].

In fact, ScLERP is both the shortest path and a constant speed interpolation.

Now, we consider the situation that unit dual quaternions are corrupted by noise, i.e.,

p̆k = p̆0(q̆)
k + ε̆k, k = 0, 1, . . . ,m,

where p̆1, . . . , p̆m are observed and noise-corrupted unit dual quaternions corresponding to
parameters k = 1, . . . ,m respectively, unit dual quaternion p̆0 is a known initial point, unit
dual quaternion q̆ is unknown, and ε̆k’s are noises. To find the unknown rigid transformation
q̆, a regression model is built as

min fR(q̆) :=
1

2

m∑
k=1

∥vec(p̆k − p̆0(q̆)
k)∥22 s.t. q̆ is a unit dual quaternion. (5.1)

Define

gR(q̆) := −
m∑

k=1

k
[
L(p̆0) (L(q̆))

k−1
]⊤

vec(p̆k − p̆0(q̆)
k) ∈ R8.
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Figure 3: Illustration of a regression problem in unit dual quaternion variables.

Starting from the current iterate q̆t, the proximal linearized algorithm produces a new iterate
q̆t+1 by solving the following subproblem

vecq̆t+1 = argmin ∥vecq̆ − vecq̆t + κtgR(q̆t)∥22
s.t. vecq̆ ∈ Ω.

Here, Algorithm 1 is applicable. Then, we set t← t+1 and repeat this process until gR(q̆t)
is sufficiently small.

As an example, Table 3 lists observed noise-corrupted unit dual quaternions p̆1, . . . , p̆16.
An initial point is p̆0 = 1. Positions of these unit dual quaternions are illustrated in Figure 3
with blue squares. Using the proximal linearized algorithm, we obtain the estimated solution

q̆est = 0.8090 + 0.3889i+ 0.3974j+ 0.1908k− 0.0976ϵ− 0.1940ϵi+ 0.1919ϵj+ 0.4094ϵk,

which corresponds to a regression curve marked by green circles in Figure 3. For comparison,
the true curve with

q̆true = 0.8090 + 0.3919i+ 0.3919j+ 0.1959k− 0.0980ϵ− 0.1959ϵi+ 0.1959ϵj+ 0.4045ϵk

is described by a red curve. Obviously, the proposed proximal linearized algorithm solves
this regression problem in unit dual quaternion variables successfully.
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6 Conclusion

A proximal linearized algorithm was customized for solving optimization of real function in
unit dual quaternion variables. Particularly, we designed a direct method for computing the
projection onto the unit dual quaternion set which is nonconvex and unbounded. Using the
projection, we proposed and analyzed the proximal linearized algorithm. Preliminary nu-
merical experiments on the hand-eye calibration and a special regression problem illustrated
that the proposed algorithm is effective and promising.
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