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classes of dual quaternion matrices for studying the multi-agent formation control, namely
relative configuration adjacency matrices, logarithm adjacency matrices and relative twist
adjacency matrices. Most recently, Qi and Luo [23] showed that dual quaternion Hermitian
matrices have very nice spectral properties. They showed that an n × n dual quaternion
Hermitian matrix has exactly n right eigenvalues, which are all dual numbers and are also
the left eigenvalues of this Hermitian matrix. Thus, we may simply call them eigenvalues of
that Hermitian matrix. This Hermitian matrix is positive semi-definite or positive definite if
and only if these n dual number eigenvalues are nonnegative or positive in the sense of [22],
respectively. Moreover, the minimax principle and generalized inverses of dual quaternion
matrices were studied in [17], and the singular values of dual quaternion matrices and their
low-rank approximations also were studied [16]. Then, Qi, Wang and Luo [24] showed that
the relative configuration adjacency matrix and the logarithm adjacency matrix are dual
quaternion Hermitian matrices. These dual quaternion matrices have important applica-
tions in multi-agent formation control, and the related spectral and positive semi-definite
properties pave the way for us to study stability issues of the multi-agent formation con-
trol problem. The recent work in [24] builds a bridge for the research on dual quaternion
matrices and multi-agent formation control. Furthermore, Cui and Qi [8] proposed a power
method to compute eigenvalues of a dual quaternion Hermitian matrix, and applied it to
the simultaneous location and mapping problems.

It is well-known that the von Neumann trace inequality [27] (see also [20]), which bounds
the inner product of two matrices via the inner product of their singular value vectors,
is the key inequality for the analysis of spectral functions, and plays a pivot role in the
developments of low-rank matrix approximation theory and low-rank optimization, e.g.,
see [12]. Since quaternion matrices have many applications in engineering [4, 5, 10, 14],
the related spectral theory has been received considerable attention in recent years [32,
33, 34]. Particularly, to derive quaternionic proximity operators for trace-norm regularized
optimization problems arising from audio separation, Chan and Yang [3] first proved that
the von Neumann trace inequality still holds for quaternion matrices. As a combination of
dual numbers and quaternions, dual quaternion matrices have been applied to multi-agent
formation control [24]. In theoretical aspects, however, the existence of zero divisors, i.e.,
infinitesimal dual quaternion numbers makes analysis on dual quaternion matrices difficult.
In the literature, it is unknown whether the von Neumann trace inequality still holds for
dual quaternion matrices. To answer such a question, we first introduce the spectral norm
for dual quaternion matrices in this paper. Then, we present a von Neumann type trace
inequality for dual quaternion matrices, which then paves the way to establish a Hoffman-
Wielandt type inequality characterizing a simultaneous perturbation bound for all singular
values of a general dual quaternion matrix. It is worth pointing out that, when the dual
quaternion is reduced to the quaternion, the von Neumann inequality obtained in this paper
is exactly the one presented in [3], but our proof method is completely different from the
way used in [3], even in the case of quaternions. Moreover, considering the application of
dual quaternion Hermitian matrices in multi-agent formation control, we also discuss the
above two inequalities for dual quaternion Hermitian matrices. We believe that our results
will enrich the theory of dual quaternion matrices, and be of benefit to further study of dual
quaternion matrices, algorithmic design, and applications.

This paper is divided into five sections. In Section 2, we present some preliminaries on
dual numbers, quaternions, dual quaternions and dual quaternion algebra. In Section 3, we
introduce the concept of the spectral norm for dual quaternion matrices, which is exactly
the largest singular value of the involved dual quaternion matrix. In Section 4, we present a
von Neumann type trace inequality for dual quaternion matrices. In Section 5, we consider
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the extension of the well-known Hoffman-Wielandt inequality to dual quaternionic versions.
Finally, some concluding remarks are drawn in Section 6.

2 Preliminaries

2.1 Dual Numbers

Let R and R̂ denote the field of the real numbers and the set of the dual numbers, respectively.
A dual number q ∈ R̂ has the form q = qst + qinϵ, where qst ∈ R is called the real part or
the standard part; qin ∈ R represents the dual part or the infinitesimal part of q; and ϵ
is the infinitesimal unit satisfying ϵ ̸= 0 and ϵ2 = 0. Particularly, if the standard part
qst of q is nonzero, i.e., qst ̸= 0, we say that q is appreciable; otherwise, we say that q is
infinitesimal. Note that the infinitesimal unit ϵ is commutative in multiplication with real
numbers, complex numbers and quaternion numbers (see Section 2.2). The dual numbers
form a commutative algebra of dimension two over the reals.

Now, we recall the recently introduced total order for dual numbers in [22]. Given two

dual numbers p = pst + pinϵ, q = qst + qinϵ ∈ R̂ with pst, pin, qst, qin being real numbers, we say
that q < p if either qst < pst, or qst = pst and qin < pin, q = p if qst = pst and qin = pin, and we
say that q ≤ p if either q < p, or q = p . Consequently, if q > 0, we say that q is a positive
dual number; and if q ≥ 0, we say that q is a nonnegative dual number. In what follows, we
denote the set of nonnegative and positive dual numbers by R̂+ and R̂++, respectively. For

given p = pst + pinϵ, q = qst + qinϵ ∈ R̂, we have

p+ q = pst + qst + (pin + qin)ϵ, pq = pstqst + (pstqin + pinqst)ϵ. (2.1)

Following the definition in [22], the absolute value of q = qst + qinϵ ∈ R̂ is defined by

|q| =
{

|qst|+ sgn(qst)qinϵ, if qst ̸= 0,
|qin|ϵ, otherwise,

(2.2)

where ‘sgn(·)’ represents the sign function, that is, for any u ∈ R,

sgn(u) =


1, if u > 0,

0, if u = 0,

−1, if u < 0.

For a given dual number q = qst + qinϵ, if q is appreciable, then q is nonsingular and
q−1 = q−1

st − q−1
st qinq

−1
st ϵ. If q is infinitesimal, then q is not nonsingular. If q is nonnegative

and appreciable, then the square root of q is still a nonnegative dual number. If q is positive
and appreciable, we have

√
q =

√
qst +

qin
2
√
qst

ϵ. (2.3)

In particular, we have
√
q = 0 when q = 0.

Below, we recall a proposition introduced in [17].

Proposition 2.1. Let p, q ∈ R̂. Then, we have the following conclusions.

(a). If p, q ∈ R̂+, then pq ∈ R̂+.

(b). If p, q ∈ R̂++ and at least one of them is appreciable, then pq ∈ R̂++.
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(c). If p ≥ 0, then |p| = p; otherwise, |p| > p.

(d). If p is appreciable, then |p| =
√

p2.

(e). If p, q ∈ R̂++ and are both appreciable, then
√
pq =

√
p
√
q.

(f). If q ∈ R̂++ and is appreciable, then p− q ∈ R̂+ implies
√
p−√

q ∈ R̂+.

2.2 Quaternions

Denote by Q the four-dimensional vector space of the quaternions over R, with an ordered
basis, denoted by e, i, j and k. A quaternion q ∈ Q has the form q = q0e+ q1i+ q2j+ q3k,
where q0, q1, q2 and q3 are real numbers, i, j and k are three imaginary units of quaternions,
which satisfy

i2 = j2 = k2 = ijk = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

For notational simplicity, we will omit the real unit e and denote q ∈ Q as q = q0 + q1i +
q2j+ q3k in the subsequent discussions.

For a quaternion q = q0+q1i+q2j+q3k, we call Re(q) := q0 and Im(q) := q1i+q2j+q3k the
real and imaginary parts, respectively; the conjugate of q is given by q̄ := q0−q1i−q2j−q3k
and the norm of q is defined by |q| :=

√
q̄q =

√
q20 + q21 + q22 + q23 . In particular, a quaternion

is called imaginary if its real part is zero. Given two quaternions p = p0 + p1i + p2j + p3k
and q = q0 + q1i+ q2j+ q3k, it is easy to verify that

pq̄ + qp̄ = p̄q + q̄p = 2(p0q0 + p1q1 + p2q2 + p3q3). (2.4)

However, we shall notice that the multiplication of quaternions satisfies the distribution law,
but is noncommutative. In fact, Q is an associative but non-commutative algebra of four
rank over R, called quaternion skew-field [32].

Throughout this paper, we denote by Qm×n the collection of all m × n matrices with
quaternion entries. Specially, Qm×1 is abbreviated as Qm, which is the collection of quater-
nion column vectors with m components.

2.3 Dual Quaternions and Dual Quaternion Algebra

2.3.1 Dual Quaternions

Dual quaternion is a composite concept, which is the combination of dual numbers and
quaternions. Specifically, a dual quaternion q has the form q = qst + qinϵ, where qst, qin ∈ Q
are the standard part and the infinitesimal part of q, respectively. Throughout, we denote
by Q̂ the set of dual quaternions. Recalling the definitions introduced in [1, 6, 13], for any
two dual quaterions p = pst+pinϵ and q = qst+qinϵ, the addition and multiplication between
them are defined by

p+ q = (pst + qst) + (pin + qin)ϵ

and
pq = pstqst + (pinqst + pstqin)ϵ,

respectively. It is easy to see that Q̂ is a ring with respect to the two binary algebraic
operations defined above. The conjugate of q is q̄ = q̄st + q̄inϵ. It is easy to see that qq̄ = q̄q
for any q ∈ Q̂ [22]. Similar to dual numbers, if qst ̸= 0, then we say that q is appreciable,
otherwise, we say that q is infinitesimal. We can derive that q is invertible if and only if q
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is appreciable. In this case, we have q−1 = q−1
st − q−1

st qinq
−1
st ϵ, where q−1

st = q̄st/|qst|2. The

magnitude of q ∈ Q̂ is defined as

|q| :=

 |qst|+
(qstq̄in + qinq̄st)

2|qst|
ϵ, if qst ̸= 0,

|qin|ϵ, otherwise,
(2.5)

which is a dual number by (2.4). Notice that such a definition immediately reduces to the

absolute function (2.2) when q is a dual number, i.e., q ∈ R̂, and it is exactly the magnitude
of a quaternion when q ∈ Q.

2.3.2 Dual Quaternion Algebra

Denote by Q̂m the set of all dual quaternion vectors with m components. For any two
m-dimensional dual quaternion vectors x = (x1, x2, . . . , xm)⊤, y = (y1, y2, . . . , ym)⊤ and a

dual quaternion α ∈ Q̂, we define

x+ y = (x1 + y1, x2 + y2, . . . , xm + ym)⊤ and xα = (x1α, x2α, . . . , xmα)⊤,

which is called the right multiplication of x ∈ Q̂m and α ∈ Q̂. It is easy to verify that Q̂m is
an m-dimensional vector space over Q̂, with respect to the addition and right multiplication
defined above.

Definition 2.2 ([17]). Let Ξ :=
{
u(1),u(2), . . . ,u(s)

}
⊂ Q̂m. We say that Ξ is right linearly

independent, if for any α1, α2, . . . , αs ∈ Q̂,

u(1)α1 + u(2)α2 + · · ·+ u(s)αs = 0 ⇒ α1 = α2 = · · · = αs = 0.

As a result of Definition 2.2, we can see that, if Ξ is right linearly independent, then
u(i) is appreciable for every i = 1, 2, . . . , s. For given u = (u1, u2, . . . , um)⊤ and v =

(v1, v2, . . . , vm)⊤ in Q̂m, denote by ⟨u,v⟩ the dual quaternion-valued inner product, i.e.,
⟨u,v⟩ =

∑m
i=1 v̄iui. It is easy to see that ⟨u,vα+wβ⟩ = ᾱ⟨u,v⟩+β̄⟨u,w⟩ and ⟨u,v⟩ = ⟨v,u⟩

for any u,v,w ∈ Q̂m and α, β ∈ Q̂. If u ∈ Q̂m is appreciable, then ⟨u,u⟩ is an appreciable
positive dual number.

Definition 2.3. Let u,v ∈ Q̂m be appreciable. We say that u,v are orthogonal if ⟨u,v⟩ = 0.

An n-tuple {u(1),u(2), . . . ,u(s)} ⊂ Q̂m, where all u(1),u(2), . . . ,u(s) are appreciable, is said
to be orthogonal if ⟨u(i),u(j)⟩ = 0 for i ̸= j, and orthonormal if it is orthogonal and
⟨u(i),u(i)⟩ = 1 for i = 1, 2, . . . , s.

Denote by Q̂m×n the set of m × n dual quaternion matrices. Then A = (aij) ∈ Q̂m×n

can be written as A = Ast + Ainϵ, where Ast, Ain ∈ Qm×n are the standard part and the
infinitesimal part of A, respectively. If Ast is nonzero, i.e., Ast ̸= O, we say that A is
appreciable, otherwise, we say that A is infinitesimal. For given A ∈ Q̂m×n, the transpose of
A is denoted as A⊤ = (aji), the conjugate of A is denoted as Ā = (āij), and the conjugate
transpose of A is denoted as A∗ = (āji) = Ā⊤. It is obvious that A⊤ = A⊤

st + A⊤
inϵ,

Ā = Āst + Āinϵ and A∗ = A∗
st + A∗

inϵ. In this paper, a square matrix A ∈ Q̂m×m is called

nonsingular (invertible) if AB = BA = Im for some B ∈ Q̂m×m. In that situation, we denote

A−1 = B. Moreover, a square matrix A ∈ Q̂m×m is called normal if AA∗ = A∗A, Hermitian
if A∗ = A, and unitary if A is nonsingular and A−1 = A∗. We have (AB)−1 = B−1A−1 if A
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and B are nonsingular, and (A∗)−1 = (A−1)∗ if A is nonsingular. We say that A ∈ Q̂m×m

is unitary, if A satisfies A∗A = Im. It is obvious that A is unitary, if and only if the set
consisting of column (row) vectors form an orthonormal basis of Q̂m, i.e., it is orthonormal

and any vector in Q̂m can be written as a right linear combination of this set. Similarly, we
say that A ∈ Q̂m×s(s ≤ m) is partially unitary, if A satisfies A∗A = Is. From Definition 2.2,
it is easy to see that, the right linear independence of the involved vector set Ξ is essentially
that Ax = 0 has a unique zero solution in Q̂n, where A = [u(1), . . . ,u(s)] ∈ Q̂m×s. For given

A = (aij) ∈ Q̂m×m, the trace of A, named trace(A), is defined as

trace(A) =

m∑
i=1

aii, (2.6)

which is a dual quaternion.
As defined in [23], for a dual quaternion matrix A ∈ Q̂m×m, if there exist a λ ∈ Q̂ and

an appreciable x ∈ Q̂m such that
Ax = xλ, (2.7)

then we say that λ is a right eigenvalue of A, with x as an associated right eigenvector. If
λ is a dual number, then we have

Ax = λx, (2.8)

i.e., λ is also a left eigenvalue of A. In this case, λ is simply called an eigenvalue of A, and x
an associated eigenvector. In particular, it was shown in [23] that an m×m dual quaternion
Hermitian matrix has exactly m dual number eigenvalues.

For given A = Ast + Ainϵ = (aij) ∈ Q̂m×n, the Frobenius norm of A, which is a dual
number, is defined by

∥A∥F =


√√√√ m∑

i=1

n∑
j=1

|aij |2, if Ast ̸= O,

∥Ain∥F ϵ, otherwise.

(2.9)

Clearly, the Frobenius norm of a matrix is actually the ℓ2-norm of the vectorization of that
matrix. Most recently, Ling et al. [17] proved a dual quaternion version of Cauchy-Schwarz
inequality, which can be stated as follows.

Proposition 2.4 (Cauchy-Schwarz inequality on Q̂m). For any u,v ∈ Q̂m, it holds that

∥u∥2∥v∥2 − |⟨u,v⟩| ∈ R̂+,

that is, |⟨u,v⟩| ≤ ∥u∥2∥v∥2.

As a consequence of (2.9) and Proposition 2.4, for given A ∈ Q̂m×n and x ∈ Q̂n,
regardless of whether Ax is appreciable or not, it can be verified that ∥Ax∥2 ≤ ∥A∥F ∥x∥2.

Proposition 2.5. Suppose that U ∈ Q̂m×n is partially unitary, and x ∈ Q̂n. Then

∥Ux∥2 = ∥x∥2. (2.10)

Proof. Suppose that x = xst + xinϵ is appreciable. It follows from (2.9) that

∥x∥22 =

n∑
i=1

|xi|2 = x∗x.
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On the other hand, let U = Ust + Uinϵ. A direct calculation leads to U∗
stUst = In. Then, the

standard part of Ux is Ustxst ̸= 0, i.e., Ux is also appreciable. Consequently, by (2.9) again,
we have

∥Ux∥22 = (Ux)∗(Ux) = x∗U∗Ux = x∗x.

Hence, ∥Ux∥2 = ∥x∥2 in this case.
Now, we assume that x is infinitesimal, i.e., x = xinϵ. Then Ux = Ustxinϵ, which means

that Ux is also infinitesimal. We have ∥Ustxin∥2 = ∥xin∥2 since U∗
stUst = In. Then by (2.9),

we still have ∥Ux∥2 = ∥x∥2 in this case.

Proposition 2.6 ([22]). For any u = ust + uinϵ ∈ Q̂m with ust ̸= 0, it holds that

∥u∥2 = ∥ust∥2 +
⟨ust,uin⟩+ ⟨uin,ust⟩

2∥ust∥2
ϵ. (2.11)

3 Spectral Norm of Dual Quaternion Matrices

We begin this section with recalling the following two theorems for dual quaternion matrices.

Theorem 3.1 ([23]). Let A = Ast + Ainϵ ∈ Q̂m×m be a Hermitian matrix. Then, there

exists a unitary matrix U ∈ Q̂m×m and a diagonal matrix Σ ∈ Q̂m×m such that A = UΣU∗,
where

Σ := diag(λ1(A), λ2(A), . . . , λm(A)), (3.1)

where λ1(A) ≥ λ2(A) ≥ · · · ≥ λm(A) are dual numbers. Counting possible multiplicities λi,
the form Σ is unique.

It is obvious that λi(A) is the ith largest eigenvalue of A, with u(i) as an associated eigen-
vector, where u(i) is the ith column in U . When A is Hermitian, since λ1(A), λ2(A), . . . , λm(A)
are dual numbers, from (3.1) and (2.4), it is easy to see that

aii =

m∑
j=1

λj(A)uij ūij =

m∑
j=1

λj(A)ūijuij ,

which implies that

m∑
i=1

aii =

m∑
j=1

λj(A)

m∑
i=1

ūijuij =

m∑
j=1

λj(A)∥u(j)∥22 =

m∑
j=1

λj(A), (3.2)

since ∥u(j)∥2 = 1. Hence, if A is Hermitian, we have trace(A) = trace(UAU∗) for any

unitary matrix U ∈ Q̂m×m.

Theorem 3.2 ([23]). For a given A ∈ Q̂m×n, there exist two dual quaternion unitary

matrices U ∈ Q̂m×m and V ∈ Q̂n×n, such that

A = U

[
Σt O
O O

]
m×n

V ∗, (3.3)

where Σt ∈ R̂t×t is a diagonal matrix, taking the form Σt = diag(σ1(A), . . . , σr(A), . . . , σt(A)),
r ≤ t ≤ s := min{m,n}, σ1(A) ≥ σ2(A) ≥ · · · ≥ σr(A) are positive appreciable dual
numbers, and σr+1(A) ≥ σr+2(A) ≥ · · · ≥ σt(A) are positive infinitesimal dual numbers.
Counting possible multiplicities of the diagonal entries, the form Σt is unique.
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We call form (3.3) the singular value decomposition (SVD) for dual quaternion matrix
A, and call σ1(A), . . . , σr(A), . . . , σt(A) and possibly σt+1(A) = · · · = σs(A) = 0 (if t < s)
the singular values of A, where t and s correspond to the appreciable rank and the rank of
A, respectively.

For given A ∈ Q̂m×n, the spectral norm ∥A∥2 is defined by

∥A∥2 = max
x∈Q̂n, ∥x∥2=1

∥Ax∥2. (3.4)

Notice that ∥A∥2 is induced by the ℓ2-norm on dual quaternion vector spaces and hence is
a matrix norm. In addition, by (3.4), we have

∥Ax∥2 ≤ ∥A∥2∥x∥2 (3.5)

for any appreciable x ∈ Q̂n. The following proposition shows that, similar to the common
complex matrix situation, ∥A∥2 defined by (3.4) is exactly the largest singular value of A.

Proposition 3.3. Let A ∈ Q̂m×n. It holds that ∥A∥2 = σ1(A), where σ1(A) is the largest
singular value of A.

Proof. Let A = UΣV ∗ be a singular value decomposition of A, in which U and V are unitary,
Σ = diag(σ1(A), . . . , σs(A)) with σ1(A) ≥ · · · ≥ σs(A) ≥ 0 and s = min{m,n}. It follows
from (3.4) and Proposition 2.5 that

∥A∥2 = max
x∈Q̂n, ∥x∥2=1

∥ΣV ∗x∥2

= max
y∈Q̂n, ∥V y∥2=1

∥Σy∥2

= max
y∈Q̂n, ∥y∥2=1

√√√√ n∑
i=1

σ2
i (A)|yi|2

≤ max
y∈Q̂n, ∥y∥2=1

σ1(A)

√√√√ n∑
i=1

|yi|2

= σ1(A),

where the inequality comes from items (a), (c) and (f) of Proposition 2.1. However, ∥Ay∥2 =
σ1(A) for y = e1, hence ∥A∥2 ≥ σ1(A). Therefore, we conclude that ∥A∥2 = σ1(A) and
complete the proof.

4 von Neumann Type Trace Inequality

In this section, we extend the well-known von Neumann trace inequality to dual quaternionic
versions. Because R̂ is a total order space in the meaning of total order stated in Section
2.1, unless otherwise specified, we have, for p, q ∈ R̂, p ≤ q if and only if q − p ∈ R̂+. We
start this section by introducing the following concept for dual numbers.

For given dual numbers x1, x2, . . . , xm, we use x̂1, x̂2, . . . , x̂m to denote these numbers
arranged in non-ascending order of magnitude. If the two sets of dual numbers x1, x2, . . . , xm

and y1, y2, . . . , ym satisfy the relations

x̂1 + x̂2 + · · ·+ x̂s

{
≤ ŷ1 + ŷ2 + · · ·+ ŷs for 1 ≤ s ≤ m− 1,
= ŷ1 + ŷ2 + · · ·+ ŷs for s = m,
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we write (x1, x2, . . . , xm) ≺ (y1, y2, . . . , ym) for simplicity. For example, (5, 3, 3) ≺ (5, 5, 1),
and it is similar for dual numbers xi and yj .

The following lemma is an extension of Lemma in [19] to the case of dual numbers. Due

to the introduction of the total order “≥” in R̂, it has similar properties to the set of real
numbers. For example, if a, b ∈ R̂+ implies a+ b ∈ R̂+ and ab ∈ R̂+. Although the proof of
this lemma is similar to the way used for the unique lemma in [19], we give a proof for the
completeness of this paper.

Lemma 4.1. Let {x1, x2, . . . , xm}, {y1, y2, . . . , ym} and {z1, z2, . . . , zm} ⊂ R̂. Suppose
x1 ≥ x2 ≥ · · · ≥ xm ≥ 0, y1 ≥ y2 ≥ · · · ≥ ym and (z1, z2, . . . , zm) ≺ (y1, y2, . . . , ym). Then
it holds that

m∑
i=1

xizi ≤
m∑
i=1

xiyi. (4.1)

Proof. For any 1 ≤ k ≤ m, let Yk = y1 + y2 + · · · + yk and Zk = ẑ1 + ẑ2 + · · · + ẑk. Then,
by virtue of hypothesis, we have Zk ≤ Yk for k = 1, 2, . . . ,m. Consequently, it holds that

m∑
k=1

xkzk ≤
m∑

k=1

xkẑk

= x1Z1 +

m∑
k=2

xk(Zk − Zk−1)

=

m−1∑
k=1

(xk − xk+1)Zk + xmZm

≤
m−1∑
k=1

(xk − xk+1)Yk + xmYm

=

m∑
k=1

xkyk.

The proof is completed.

Lemma 4.2. Let A = (aij) ∈ Q̂m×m be a Hermitian matrix, and let the eigenvalues λi(A) of
A be arranged so that λ1(A) ≥ λ2(A) ≥ · · · ≥ λm(A). Then, for any given positive integer

k ≤ m, the sum
∑k

i=1 λi(A) is the maximum of
∑k

i=1(x
(i))∗Ax(i), when k orthonormal

vectors x(i) (i = 1, 2, . . . , k) vary in Q̂m. In particular, we have

k∑
i=1

aii ≤
k∑

i=1

λi(A), k = 1, 2, . . . ,m. (4.2)

Proof. By Theorem 3.1, there exists a unitary matrix U ∈ Q̂m×m such that

U∗AU = diag(λ1(A), λ2(A), . . . , λm(A)),

which implies Au(i) = u(i)λi(A) for i = 1, 2, . . . ,m, where u(i) is the ith column of U . Since

UU∗ = I, it holds, for any x(j) ∈ Q̂m, that

x(j) = UU∗x(j) =

m∑
i=1

u(i)
(
(u(i))∗x(j)

)
=

m∑
i=1

u(i)⟨x(j),u(i)⟩.
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Since A ∈ Q̂m×m is a Hermitian matrix, all λi’s are dual numbers. Consequently, we have

(x(j))∗Ax(j) =

m∑
i=1

λi(A)
∣∣∣⟨x(j),u(i)⟩

∣∣∣2
= λk(A)

m∑
i=1

|⟨x(j),u(i)⟩|2 +
k∑

i=1

(λi(A)− λk(A))|⟨x(j),u(i)⟩|2

+

m∑
i=k+1

(λi(A)− λk(A))|⟨x(j),u(i)⟩|2.

Hence, when ∥x(j)∥2 = 1, we obtain

(x(j))∗Ax(j) ≤ λk(A) +

k∑
i=1

(λi(A)− λk(A))|⟨x(j),u(i)⟩|2,

since
m∑
i=1

|⟨x(j),u(i)⟩|2 = (x(j))∗UU∗x(j) = (x(j))∗x(j) = ∥x(j)∥2 = 1,

as well as λi(A) ≤ λk(A) for i = k + 1, . . . ,m. By this, it holds that

k∑
j=1

(x(j))∗Ax(j) ≤
k∑

j=1

λk(A) +

k∑
j=1

k∑
i=1

(λi(A)− λk(A))|⟨x(j),u(i)⟩|2

=

k∑
j=1

λk(A) +

k∑
i=1

(λi(A)− λk(A))

k∑
j=1

|⟨x(j),u(i)⟩|2,

which implies

k∑
i=1

λi(A)−
k∑

j=1

(x(j))∗Ax(j) ≥
k∑

j=1

(λj(A)− λk(A))−
k∑

i=1

k∑
j=1

(λi(A)− λk(A)) |⟨x(j),u(i)⟩|2

=

k∑
j=1

(λj(A)− λk(A))

{
1−

k∑
i=1

|⟨x(j),u(i)⟩|2
}

≥ 0,

since λj(A) ≥ λk(A) for j = 1, 2, . . . , k and

k∑
i=1

|⟨x(j),u(i)⟩|2 = (x(j))∗Ũ Ũ∗x(j) ≤ ∥Ũ Ũ∗∥2∥x(j)∥22 ≤ ∥x(j)∥22 = 1,

where Ũ = [u(1), . . . ,u(k)]. On the other hand, by taking x(j) = u(j) for j = 1, 2, . . . , k, it is

easy to verify that
∑k

i=1 λi(A) =
∑k

j=1(x
(j))∗Ax(j).

Notice that aii ∈ R̂ for i = 1, 2, . . . ,m, since A is Hermitian. In particular, by taking
x(j) = ej , where ej is the jth column in Im, it is easy to see that (4.2) holds. Therefore, we
obtain the desired result and complete the proof.

Hereafter, we recall a lemma that can be found in [17, Theorem 4.10].
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Lemma 4.3 ([17]). Let A ∈ Q̂m×m and H = (A∗+A)/2. Let σ1(A) ≥ σ2(A) ≥ · · · ≥ σm(A)
be singular values of A, and let λ1(H) ≥ λ2(H) ≥ · · · ≥ λm(H) be the right eigenvalues of
H. Then, it holds that

λi(H) ≤ σi(A), i = 1, 2, . . . ,m.

With the above preparations, we now state and prove the von Neumann type trace
inequality for dual quaternion matrices. Here, we prove the dual quaternionic von Neumann
inequality by a unified way, which is applicable to the quaternionic case and is completely
different with the proof given in [3].

Theorem 4.4. For any A,B ∈ Q̂m×n, it holds that

trace(A∗B +B∗A) ≤ 2

s∑
i=1

σi(A)σi(B), (4.3)

where s = min{m,n}, and σ1(A) ≥ σ2(A) ≥ · · · ≥ σs(A) and σ1(B) ≥ σ2(B) ≥ · · · ≥ σs(B)
are singular values of A and B, respectively.

Proof. Without loss of generality, we assume m ≤ n. Let A = UΣAV
∗ be the SVD of A,

where ΣA = diag(σ1(A), σ2(A), . . . , σm(A)). It is obvious that A∗ = V Σ⊤
AU

∗, since all σi(A)
(i = 1, 2, . . . ,m) are dual numbers. Consequently, we have

V ∗(A∗B +B∗A)V = Σ⊤
AC + C∗ΣA,

where C = U∗BV ∈ Q̂m×n. It is easy to see that

trace(A∗B+B∗A) = trace {V ∗(A∗B +B∗A)V } = trace(Σ⊤
AC+C∗ΣA) =

m∑
i=1

σi(A)(cii+c̄ii),

where cii is the ith diagonal element of C and c̄ii is the conjugate of the dual quaternion
number cii.

Now, we prove
m∑
i=1

σi(A)(cii + c̄ii) ≤ 2

m∑
i=1

σi(A)σi(B).

Let

D = (dij) :=

[
C

0(n−m)×n

]
+ [C∗, 0n×(n−m)].

It is obvious that D ∈ Q̂n×n satisfies D∗ = D, i.e., D is a dual quaternion Hermitian matrix.
It is obvious that dii = cii + c̄ii for any i = 1, 2, . . . ,m. Applying Lemma 4.2 with A = D,
we obtain

k∑
i=1

(cii + c̄ii) =

k∑
i=1

dii ≤
k∑

i=1

λi(D) ≤ 2

k∑
i=1

σi(C) = 2

k∑
i=1

σi(B), k = 1, 2, . . . ,m, (4.4)

where the second inequality comes from Lemma 4.3 and the fact that σi

([
C

0(n−m)×m

])
=

σi(C) for i = 1, 2, . . . ,m, and the last equality is due to the fact σi(C) = σi(B) for i =
1, 2, . . . ,m since U, V are unitary. Finally, since σi(A) ≥ 0 for i = 1, 2, . . . ,m, by (4.4) and
Lemma 4.1, we obtain the desired conclusion and complete the proof.
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Proposition 4.5. Let A ∈ Q̂m×n. We have

max
X∈UQ̂m×n

trace(A∗X +X∗A) = 2

s∑
i=1

σi(A),

where UQ̂m×n = {X ∈ Q̂m×n | XX∗ = Im} and σi(A) is the i-th singular value of A for
1 ≤ i ≤ s = min{m,n}.

Proof. Without loss of generality, we assume m ≤ n. Let A = UΣAV
∗ be the

SVD of A, where ΣA = diag(σ1(A), σ2(A), . . . , σm(A)). Denote X̄ = USV ∗, where S =

[Im, Om×(n−m)] ∈ Q̂m×n. It is obvious that X̄X̄∗ = Im and σi(X̄) = 1 for i = 1, 2, . . . ,m.

Moreover, it is clear that A∗ = V Σ⊤
AU

∗, since all σi(A) (i = 1, 2, . . . ,m) are dual numbers.
Consequently, it is easy to see that

trace(A∗X̄ + X̄∗A) = 2trace

(
V

[
ΣA Om×(n−m)

O(n−m)×m O(n−m)×(n−m)

]
V ∗

)
= 2trace(ΣA) = 2

m∑
i=1

σi(A),

where the second equality follows from the fact that

[
ΣA Om×(n−m)

O(n−m)×m O(n−m)×(n−m)

]
is

Hermitian. Finally, by combining the above discussion and Theorem 4.4, we obtain the
desired result and complete the proof.

Due to the application of dual quaternion Hermitian matrices in multi-agent formation
control, we below present a variant of the von Neumann inequality expressed by eigenvalues
of dual quaternion Hermitian matrices.

Theorem 4.6. Let A,B ∈ Q̂m×m. Suppose that both A and B are Hermitian. We have

2

m∑
i=1

λi(A)λm−i+1(B) ≤ trace(AB +BA) ≤ 2

m∑
i=1

λi(A)λi(B),

where λ1(A) ≥ λ2(A) ≥ · · · ≥ λm(A) and λ1(B) ≥ λ2(B) ≥ · · · ≥ λm(B) are the eigenvalues
of A and B, respectively. In particular, the above inequality holds when A,B ∈ Qm×m are
Hermitian.

Proof. Since both A and B are dual quaternion Hermitian matrices, we know that
λi(A), λi(B) ∈ R̂ for i = 1, 2, . . . ,m. By Theorem 3.1, there exists a unitary matrix

U ∈ Q̂m×m such that A = UΣU∗ where Σ = diag(λ1(A), λ2(A), . . . , λm(A)). Let C :=
(cij) = U∗BU . It is clear that C is a dual quaternion Hermitian matrix, which implies

cii ∈ R̂ for i = 1, 2, . . . ,m. Moreover, we have

trace(AB +BA) = trace(U(ΣC + CΣ)U∗) = trace(ΣC + CΣ) = 2

m∑
i=1

λi(A)cii. (4.5)

Since C is Hermitian, by Lemma 4.2 and (3.2), for every k = 1, 2, . . .m− 1, it holds that

k∑
i=1

cii ≤
k∑

i=1

λi(C) =

k∑
i=1

λi(B) and

m∑
i=1

cii =

m∑
i=1

λi(B),
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since λi(C) = λi(B) for i = 1, 2, . . . ,m. Consequently, by Lemma 4.1, we have

m∑
i=1

λi(A)cii ≤
m∑
i=1

λi(A)λi(B),

which implies, together with (4.5), the desired right inequality holds.
Since λi(−B) = −λm−i+1(B), by replacing B in the proved right inequality with −B,

we obtain the left inequality.

5 Hoffman-Wielandt Type Inequality

In this section, we are concerned with the Hoffman-Wielandt type inequality for dual quater-
nion matrices.

First, by Theorem 4.4, we have the following theorem, which is also a generalization of
the well-known Hoffman-Wielandt type inequality [11] in Cm×n, and characterizes an upper
bound for all singular values simultaneous perturbation of a dual quaternion matrix.

Theorem 5.1. Let A,B ∈ Q̂m×n. If A−B is appreciable, then it holds that

∥σ(A)− σ(B)∥2 ≤ ∥A−B∥F , (5.1)

where s = min{m,n}, σ(A) = (σ1(A), . . . , σs(A))⊤ and σ(B) = (σ1(B), . . . , σs(B))⊤ with
σ1(A) ≥ σ2(A) ≥ · · · ≥ σs(A) and σ1(B) ≥ σ2(B) ≥ · · · ≥ σs(B) being the singular values
of A and B, respectively.

Proof. Let A = UΣAV
∗ and B = XΣBY

∗ be the SVDs of A and B, respectively. Under
the condition A−B being appreciable, we divide our proofs into two cases.

If σ(A)− σ(B) is infinitesimal, then A−B being appreciable implies

∥A−B∥F = ∥Ast −Bst∥F + δϵ

for some δ ∈ R̂+ by Proposition 2.6. Clearly, it follows from the fact ∥Ast −Bst∥F > 0
that (5.1) holds.

If σ(A)− σ(B) is appreciable, then we only need to prove

s∑
i=1

|σi(A)− σi(B)|2 ≤ ∥A−B∥2F ,

which is equivalent to

s∑
i=1

σ2
i (A)−2

s∑
i=1

σi(A)σi(B)+

s∑
i=1

σi(B)2 ≤ ∥A∥2F − trace(A∗B+B∗A)+∥B∥2F . (5.2)

Recalling the fact that
∑s

i=1 σ
2
i (A) = ∥A∥2F and

∑s
i=1 σi(B)2 = ∥B∥2F , we immediately

prove (5.2) with the employment of Theorem 4.4.

To sum up, we obtain the desired conclusion and complete the proof.



242 C. LING, H. HE, L. Q AND T. FENG

Remark 5.2. Notice that, if A,B ∈ Qm×n, it is obvious that Theorem 4.4 holds. Therefore,
if both A and B are either quaternions or infinitesimal, Theorem 5.1 holds. In fact, in the
case that both A and B are infinitesimal, we claim that σ(A) and σ(B) are both infinitesimal,
and (σ(A))in = σ(Ain) and (σ(B))in = σ(Bin). Consequently, we have

∥σ(A)− σ(B)∥2 = ∥(σ(A))in − (σ(B))in∥2ϵ = ∥σ(Ain)− σ(Bin)∥2ϵ

and
∥A−B∥F = ∥Ain −Bin∥F ϵ.

Hence, we only need to prove ∥σ(Ain) − σ(Bin)∥2 ≤ ∥Ain − Bin∥F , which can be proved by
applying Theorem 4.4 with A = Ain and B = Bin. The conclusion for the case A,B ∈ Qm×n

can be proved similarly.

Remark 5.3. From Theorem 3.2, we know that the standard parts of the singular values
of a dual quaternion matrix are exactly the singular values of the standard part of that dual
quaternion matrix. Hence, If both A and B are appreciable, but A − B is infinitesimal,
i.e., Ast = Bst ̸= O, then σ(A) − σ(B) is infinitesimal. In this case, the desired inequality
(5.1) becomes ∥(σ(A) − σ(B))in∥2 ≤ ∥Ain − Bin∥F . However, we do not know whether this
inequality still holds, and leave it as an open question for one of our future concerns.

As mentioned in Remark 5.3, the infinitesimal part of dual numbers makes the analysis on
dual quaternion matrices is difficult, and Theorem 5.1 holds under the condition that A−B
is appreciable. Below, we are concerned with whether the Hoffman-Wielandt inequality still
holds for dual quaternion Hermitian matrices when removing the condition A − B being
appreciable.

We first show the quaternionic Hoffman-Wielandt inequality.

Proposition 5.4. Let A,B ∈ Qm×m. Suppose that both A and B are Hermitian. We have

∥λ(A)− λ(B)∥2 ≤ ∥A−B∥F ,

where λ(A) = (λ1(A), . . . , λm(A))⊤ and λ(B) = (λ1(B), . . . , λm(B))⊤ with λ1(A) ≥ λ2(A) ≥
· · · ≥ λm(A) and λ1(B) ≥ λ2(B) ≥ · · · ≥ λm(B) being the eigenvalues of A and B, respec-
tively.

Proof. Since trace(A2) = ∥A∥2F = ∥λ(A)∥22 and trace(B2) = ∥B∥2F = ∥λ(B)∥22, it follows
from Theorem 4.6.

Now we state and prove the following theorem, which indicates that the Hoffman-
Wielandt type inequality for dual quaternion Hermitian matrices still holds even if A − B
is infinitesimal.

Theorem 5.5. Let A,B ∈ Q̂m×m. If both A and B are Hermitian matrices, then we have

∥λ(A)− λ(B)∥2 ≤ ∥A−B∥F , (5.3)

where λ(A) = (λ1(A), . . . , λm(A))⊤ and λ(B) = (λ1(B), . . . , λm(B))⊤ with λ1(A) ≥ λ2(A) ≥
· · · ≥ λm(A) and λ1(B) ≥ λ2(B) ≥ · · · ≥ λm(B) being the eigenvalues of A and B, respec-
tively.

Proof. Firstly, since both A and B are Hermitian, we know that λ(A), λ(B) ∈ R̂m. We
divide the proofs into two cases: (a) A−B is appreciable, and (b) A−B is infinitesimal.
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In the case (a), since ∥λ(A)∥22 = ∥A∥2F and ∥λ(B)∥22 = ∥B∥2F , regardless of whether
λ(A) − λ(B) is appreciable or not, by Theorem 4.6, we can prove (5.3) in a similar way to
the proof of Theorem 5.1.

We now prove the desired inequality (5.3) for the case where A − B is infinitesimal.
In this case, both A and B must be appreciable or infinitesimal at the same time, since
Ast = Bst. If both A and B are infinitesimal, i.e., Ast = Bst = O, then the inequality (5.3)
becomes

∥(λ(A))in − (λ(B))in∥2 ≤ ∥Ain −Bin∥F , (5.4)

since λ(A) = λ(Ain)ϵ and λ(B) = λ(Bin)ϵ. Consequently, since both Ain and Bin are Hermi-
tian, by Theorem 4.6 again, we know that the inequality (5.4) holds.

If A and B are appreciable Hermitian matrices at the same time, i.e., Ast = Bst is
a nonzero quaternion Hermitian matrix, then by quaternion matrix theory, there exists a
unitary matrix S ∈ Qm×m, such that

SAS∗ = D + Cϵ and SBS∗ = D +Gϵ,

where C = SAinS
∗, G = SBinS

∗, D = SAstS
∗ = diag(λ1Ik1

, λ2Ik2
, . . . , λrIkr

). Here,
λ1 > λ2 > · · · > λr are real numbers, Iki

is a ki × ki identity matrix, and
∑r

i=1 ki = m.
It is obvious that ∥Ain − Bin∥2F = ∥C − G∥2F . Notice that both C and G are quaternion
Hermitian matrices. Let

C =


C11 C12 · · · C1r

C∗
12 C22 · · · C2r

...
...

. . .
...

C∗
1r C∗

2r · · · Crr

 and G =


G11 G12 · · · G1r

G∗
12 G22 · · · G2r

...
...

. . .
...

G∗
1r G∗

2r · · · Grr

 ,

where Cij and Gij are quaternion matrices of same adequate dimensions, and Cii and Gii

are Hermitian for i = 1, 2, . . . , r. Since Cii and Gii are Hermitian, there exist real numbers
λi,1 ≥ · · · ≥ λi,ki and µi,1 ≥ · · · ≥ µi,ki for i = 1, 2, . . . , r, such that

Cii = Uidiag (λi,1, · · · , λi,ki
)U∗

i and Gii = Vidiag (µi,1, · · · , µi,ki
)V ∗

i , i = 1, · · · , r. (5.5)

It is obvious that λi,j and µi,j are the jth largest eigenvalues of Cii and Gii respectively, for
i = 1, 2, . . . , r. From the proof precess of Theorem 4.1 presented in [23], we know that

λ(A)in = (λ1,1, . . . , λ1,k1
, λ2,1, . . . , λ2,k2

, . . . , λr,1, . . . , λr,kr
)⊤

and
λ(B)in = (µ1,1, . . . , µ1,k1

, µ2,1, . . . , µ2,k2
, . . . , µr,1, . . . , µr,kr

)⊤.

Consequently, it holds that

∥λ(A)in − λ(B)in∥22 =

r∑
i=1

ki∑
j=1

|λi,j − µi,j |2

≤
r∑

i=1

∥Cii −Gii∥2

≤
r∑

i=1

r∑
j=1

∥Cij −Gij∥2

= ∥C −G∥2F
= ∥Ain −Bin∥2F ,
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where the first inequality comes from Proposition 5.4 with A = Cii and B = Gii for i =
1, 2, . . . , r. Hence, we obtain ∥λ(A)in − λ(B)in∥2 ≤ ∥Ain − Bin∥F , which implies ∥λ(A) −
λ(B)∥2 ≤ ∥A − B∥F by (2.9), since λ(A)st = λ(B)st and Ast = Bst. We obtain the desired
result and complete the proof.

6 Conclusion

In this paper, after introducing the concept of spectral norm for dual quaternion matrices, we
extended the well-known von Neumann trace inequality to general dual quaternion matrices.
Using the proposed trace inequality, we further obtained a Hoffman-Wielandt type inequal-
ity, which characterizes the distance between two dual quaternion matrices A,B ∈ Q̂m×n

being larger than the distance between their respective singular values. Such an inequality
can also be regarded as a simultaneous perturbation bound on all singular values of a gen-
eral dual quaternion matrix. Furthermore, we also proposed two variants of the above two
inequalities expressed by eigenvalues of dual quaternion Hermitian matrices. In particular,
we proved that the Hoffman-Wielandt type inequality still holds even if A − B is infinites-
imal. As a new area of applied mathematics, there are many problems worth exploring to
enrich the theory of dual quaternion matrices, such as optimal low-rank approximations and
applications of dual quaternion matrices in the fields of data analysis, computer science and
intelligent control.
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[21] E. Pennestŕı and P.P. Valentini, Dual quaternions as a tool for rigid body motion
analysis: A tutorial with an application to biomechanics, Arch. Mech. Eng. 57 (2010),
187–205.

[22] L. Qi, C. Ling and H. Yan, Dual quaternions and dual quaternion vectors, Commun.
Appl. Math. Comput. 4 (2022), 1494–1508.

[23] L. Qi and Z. Luo, Eigenvalues and singular values of dual quaternion matrices, Pac. J.
Optim. 19 (2023), 257–272.

[24] L. Qi, X. Wang and Z. Luo, Dual quaternion matrices in multi-agent formation control,
Commun. Math. Sci. 21 (2023), 1865-1874.

[25] F. Thomas, Approaching dual quaternions from matrix algebra, IEEE Trans. Rob. 30
(2014), 1037–1048.



246 C. LING, H. HE, L. Q AND T. FENG
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