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Introduction

In 1873, Clifford introduced dual numbers and dual quaternions. Many researches have been
done on dual numbers, dual quaternions and their applications [2, 3, 4, 5, 6, 8, 18, 19, 20, 21].

In this paper, we use the following notation. The symbols R, D, Q, DQ respectively
denote the set of real numbers, dual numbers, quaternions, dual quaternions. R™*"™ D™*"
Qm*m DQ™*™ respectively denote the set of m x n real matrices, dual matrices, quaternions
matrices, dual quaternions matrices. For any ¢ = g5t + eq; € D(or DQ), where qgt,qr €
R(or Q) are standard part, infinitesimal part of ¢, respectively. ¢ is the infinitesimal unit
satisfying € # 0,¢? = 0, and € is commutative in multiplication with real numbers, dual
numbers and quaternion numbers.

If gs¢ # 0, we say that ¢ is appreciable. Otherwise, we say that ¢ is infinitesimal. In
2021, Qi, Ling and Yan[12] introduced total order over D. Let p=p+ep1, § = q¢+eq € D,
then p< gif p<q,orp=gqand p; < q; p=¢qif p=¢q and p; = ¢1. Based on this result,
Wang, Cui and Wei[l16]introduce QLY total order over D™.

Let ¢ = qo + 11+ q2j + g3k, in which i, j and k are three imaginary units of quaternions,
and qg, q1, g2 and g3 are real numbers. The conjugate of q is § = qo — q1i — ¢2j — gsk. Denote
A=Ay + €A € DQ™*", where Ay, A; € Q™*™ are the standard part, infinitesimal part
of A, respectively. Denote the transpose of A as AT = AL + ¢AT the conjugate of A as
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A = A, + €A;, the conjugate transpose of A as A* = ZT, and A* = A%, + €A}. A square
dual quaternion matrices A € DQ"*" is nonsingular(invertible) if there exists B € DQ"*"
such that AB = BA = I,, , we denote A~! = B.

The dual quaternion Moore-Penrose generalized inverse(DQMPGI for short)[11] of A =
Ay +eAr € DQ™*" is the unique matrix which satisfies

(1) AXA= A, (2) XAX = X, (3) (AX)* = AX, (4) (XA)* = XA, (1.1)

and is denoted by Af. It should be noted that, unlike the general quaternion matrix,
DQMPGI does not necessarily exist for any given dual quaternion matrix. If the DQMPGI
of dual quaternion matrix exists, it is unique . Furthermore, Ling, Qi and Yan[11] give
necessary and sufficient conditions for X = Af, — eAl, A; AT, € DQ™ ™ to be a {1}-, {3}-
and {4}-dual quaternion generalized inverse of A, respectively.

An n x n dual quaternion matrix A is said to be Hermitian, if A* = A. We denote the
set of all dual quaternion Hermitian matrices over DQ™*" as DQR*". Let A = Ay + €Ar €
DQ ™. If for any = = x4 + exy € DQ" with x being appreciable, we have z* Az > 0 and it
is appreciable, then A is called positive definite. A is called positive semi-definite if for any
T = T4 + exy € DQ", we have 2*Ax > 0. Furthermore, let A = A, + eA; € DQ™ " be a
positive semi-definite dual quaternion Hermitian matrix, then A is called perfect Hermitian
if there is a positive semi-definite dual quaternion Hermitian matrix L € DQ™*™ such that
A = L? [13]. The symbols DQL*", DQL*" and DQpy" stand for the set of all dual
Hermitian positive definite, dual Hermitian positive semi-definite and perfect Hermitian
matrices over DQJ ", respectively.

For more details about the theory of dual quaternion matrix, such as the properties and
applications of the left eigenvalue, right eigenvalue, singular value decomposition of dual
quaternion matrix, orthogonal dual quaternion matrix, unitary dual quaternion matrix, you
can refer to [10, 11, 12, 13]. These results provide a solid foundation for the following
research on dual quaternion theory and its applications.

In this paper, we consider the conditions for the existence of DQMPGI. By applying
DQMPGI, we get characterizations of perfect Hermitian matrix. At last, we introduce two
partial orders over DQ™*".

Some Properties and Characterizations of Dual Euaternion
Moore-Penrose Generalized Inverse

It is well known that generalized inverse is one of the powerful tools to study the least-squares
problem, and it is widely used in numerical computation, control theory, optimization, etc.
Dual generalized inverses (DGISs) are also applied to the study of dual analog of least-squares
problem, and to kinematic analysis and synthesis of spatial mechanisms. In [11], Ling, Qi
and Yan introduce the DQMPGI At of dual quaternion matrix A € DQ™*™. When the
DQMPGI of A exists, Ling, Qi and Yan[11] get a characterization of Af by applying the SVD
of dual quaternion matrix A. In this section, we consider properties and characterizations
of DQMPGI.

Lemma 2.1 ([11, 13]). Suppose that A € DQ™*", there exist dual quaternion unitary
matrices U € DQ™ ™ and V € DQ™™", such that

e =0
v =5 4. (21)
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where ¥y € Dt has the form
Zt:diag()\17...,)\r,...,)\t)7 (22)

r <t <min{m,n}, \y > --- > A, are positive appreciable dual numbers, and A,y > - - >
At are positive infinitesimal dual numbers.

When the DQMPGI of A exists, the diagonal elements of 3, are all appreciable, the rank
of A is equal to t. Furthermore,

270
(R PO .
A _V[ . O}U. (2.3)

Theorem 2.2. Let A= A, +eAr € DQ™*", then a necessary and sufficient conditioning
for A has the DQMPGI At =Y — eZ € DQ™™™ is:

Y = Al,,
Ap = Ag AL Ar — Ay Z Ay + Ar Al Ay,
Z=AlAuZ — AL ALAL, + ZAL AT,

(ArAl, — Ay Z) and (AL, A; — ZAy,) are Hermitian.

(2.4)

Proof. Let X =Y —eZ € DQ™™™, where Y and Z satisfy (2.4). Then AXA = A is
equivalent to (Ag + €Ar) (Y — eZ) (Ast + €Ar) = Ast + €Ay, that is,

{ AstYAst = Ash (25)
AstYAI - AstZAst + AIYAst = AI; (26)

XAX = X is equivalent to (Y — €Z) (A5t + €Ar) (Y —eZ) =Y — €Z, that is,

{ YAuY =, (2.7)
YAuWZ - YAY + ZAuY = Z. (2.8)

AX = (AX)* is equivalent to (Ag + €Ar) (Y —€Z) = ((Ase + €Ar) (Y — €Z))", that is,

AgY = (AgY)", (2.9)
{ (AIY_AstZ) = (AIY_AstZ)*; (210)

XA = (XA)" is equivalent to (Y — eZ) (Ag + €Ar) = (Y — €Z) (Agt + €Ar))", that is,

YAy =(YAy)", (2.11)
{ (YA — ZAy) = (YA — ZAg)". (2.12)

Since Y is the Moore-Penrose inverse of Ag; is equivalent to that it satisfies (2.5), (2.7),
(2.9), (2.11). According to (2.6), (2.8), (2.10) and (2.12) we get that a necessary and
sufficient condition for A has the DQMPGI AT =Y — e¢Z € DQ™*™ is (2.4). O

Theorem 2.3. Let A= Ay +eAr € DQ™*™. Then the following conditions are equivalent:

(1) the DQMPGI A" of A emists;

(2) (Im - AstAit) Ar (In - A.ZtAst) =0;

(3) rank {AI Ast

Ay 0 } = 2rank(Ag).
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Furthermore, when the DQMPGI A" of A exists,
At = Al, —¢R, (2.13)
where

R=AlLAAL — (AL AW A (L — AwAl) — (I — AL AL AT (A AL (214)

Proof. Let the rank of Ay be r and the singular value decomposition of Ay be

0],
Ast_U[O O}V, (2.15)

where U € Q™*™ and V € Q"*" are unitary quaternion matrices, ¥ € Q"*" is a diagonal
positive quaternion matrix [22]. Then

P -1 o], .
AL =V { 0 O] U (2.16)
and
L. 0], I, 0, .
Al A, =V {0 0] V*, AgAl, =U {o o} U*. (2.17)
Furthermore, write
N AL Ay X 4 Z
UA;V = {As A4] , V*ZU = |:Z3 ZJ , (2.18)

where A; € Q™" and Z; € Q"*".
(1) = (2) Suppose that the DQMPGI AT of A exists and AT = Y — €Z. Then by
applying (2.4), we have YV = A&t7 and Ay = AIAZtASt — AgZAg + AStAI,tAI. It follows

that
A 20212220+A1A2
As A4 0 0||Zs Z4 |0 0 0 0

-3
[2 Ele A2:| .

0

Therefore, A; = 0, that s, (Im - Athgt) A (1 - Athgt) —0.
A

(2)=(1)1 ( —Ag It) A (I - AbtAét) = 0, it is easy to check that A4 = 0. Then
from (2.18) we get

_ Al AZ *
AI—U[AB O}V. (2.19)

It follows from (2.15) that

X 0

AAStJreAIU{O 0

} V* +eU {Al Aﬂ V*.

As 0
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Write
X=v FO_ ' 8] U* — eV [2:421122_;1 _Z(_)QA?’?] U, (2.20)
Then
AX = U H) 8] U* + U [Aggl E;Aﬂ U*,
XA=V [IO 8} Vet eV [A;%1 E_(I)AQ} vE

It shows that AX and XA are Hermitian. And it is easy to check that AXA = A and
XAX = X. Therefore, by applying (1.1) we conclude that the DQMPGI of A exists and
X = Af,
Furthermore, applying (2.15), (2.16) and (2.19), we get
-1 -1 q
v [E O~ atapal,
0 Z_2A*: * * *
vy T o= s At - Acal,

Azy—2

0 0], o
V|: 0 U Z(In—AltAst)AI(AstAst)T'

Therefore, from (2.20) and X = AT we get (2.13).
(2) < (3) By applying (2.15), (2.16) and (2.17), we have

rank { A Ag

A, 0 ] = rank(Ay) + rank(Ag;) + rank ((Im - AstAlt> Ag (In - AitASt)> ;

Therefore, we can get that rank ((Im — AstAJsrt) Ar (In — ALASt)> = 0 if and only if con-
dition (3) holds. O

mXxn

Remark 2.4. A matrix X is called a {1}-dual quaternion generalized inverse of A € DQ ,
in which X satisfies equation AXA = A. In [11], Ling, Qi and Yan get that a necessary
and sufficient conditions for the matrix X = Al, — eAl, 4; AT, to be a {1}-dual quaternion
generalized inverse of A € DQ,,, ., is

(Im - AstAL> A (In - ALAst> = 0.
Therefore, from Theorem 2.3 we get that the DQMPGI AT of A exists if and only if {1}-dual
quaternion generalized inverse of A exists.

The solvability of quaternion matrix equations is one of the important topics in quater-
nion matrix analysis and applications.

Lemma 2.5 ([17]). Let Ay € Qm*", X € QX! Oy € QL. Then the equation Ay Xg =
Cst is consistent if and only if

(Im - AstAlt> Cy =0 (2.21)
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if and only if
rank [Ast Cst} = rank (Ast) . (222)
Furthermore, the general solution of A Xest = Cot is Xgp = ALC’St +(I- AltASt)Yst, where
Y;'t c @nxl.
Next we consider the dual quaternion matrix equation

AX =C, (2.23)

where A = Ay + €A € DQ™* ", C = Cy +€eCr € ]D)Qle7 X = Xg +eX; € DQ™¥

Theorem 2.6. The matriz equation (2.23) is consistent if and only if

Ast 0 Cst _ Ast 0
rank [AI A C[} = rank [AI Ast] . (2.24)

Furthermore, if the DQMPGI of A exists, then the equation AX = C is consistent if and
only if

Ast 0 Cst

rank {AI A, C;

} = 2rank(Ag). (2.25)

In this case, the general solution to this equation is
X =ATC+ (I - ATA)Y, (2.26)

where Y € DQ™*L.

Proof. Let A= Agy+€eA; € DQ™", C = Cyy4€Cr € DQ™ ! and X = X, +€eX; € DQ™*'.
Since

_ Ast 0 _ C(st
ax—co [ xer [0 =[], a1

then AX = C is consistent if and only if At Xt + 0 X = Ct is consistent. By
A Ast Cr

applying Lemma 2.5 we get that (2.24) is true.
Furthermore, if the DQMPGI of A exists, then by applying Theorem 2.3 we get
Ag 0

rank { ‘

Ar ASJ = 2rank(As:).

It follows from (2.24) that (2.25) holds.

Let the DQMPGI of A exists, and AX = C' is consistent. Then AX = C' is consistent if
and only if there exist X, and X; such that
{ Astht = Cst

ArXg+ Aq X =Cr. (2.28)

It is obvious that X = ALCSt is a special solution of Az Xs = Cg. Substituting Xg =
AZtCst into A; X + A X; = C; we get A Xy = Cp — AIAltC’St. It is obvious that
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X; = Al,0r — AT, A AT, Oy, is a special solution of Ay X = C; — A;Al,Cyy. Therefore, we
get a special solution of (2.28) as follows,

_ gt
{ KXo = A Cq (2.29)

X;=AlL,cp — AL A AT Oy,

and

Ag Al Cy = C,
{ st e (2.30)

Ay Al (c, - AIALCSt) = 07 — ArALCy.
Next, when the DQMPGI of A exists, applying Theorem 2.3 and (2.30) we get
AATC = (Ay + €Ay) (AL - eR) (Cat + €C))
= Ay ALCy +e (—AStRCSt A AL O+ AstAlth)
= Cu+ e (~AqAl A1 AL Co + Ag (AL AN A7 (1 — AuAl,) Cy
+AAL O+ AstAgtc,) (2.31)
= Oy +e (—AstAitAIAitcst + A AL+ AstAltcf)
= Cy+eCp=C.

It follows from A(I—ATA) = 0 that X = ATC'+(I—ATA)Y is a general solution of AX = C,
in which Y € DQ™*".

Suppose that X is a solution of AX = C, then X = ATC+X—-ATC = ATC+X—-ATAX =
ATC 4 (I — ATA)X. Therefore, the general solution of AX = C is (2.26). O

In [7], Cui and Qi introduce the 2-norm of a dual quaternion vector.

Lemma 2.7 ([7]). Let = € DQ™ ' is a dual quaternion vector, then the 2-norm of x is
defined by

Py lzi|> ., if @ is appreciable
/]2 = . . ‘ (2.32)
Yoy |@ir)7e, otherwise.
It is obvious that ||Ux|2 = ||x|2, where U is an arbitrary n X n dual quaternion unitary

matriz.
Next, we consider one application of DQMPGI in least-squares problems.

Theorem 2.8. Let A = Ay + €A; € DQ™ ™, & = x4 + ex; € DQ™Y, b = by + by €
DQ™*Y, the DQMPGI At of A exists. Then the least-squares solution of the inconsistent
dual quaternion matriz equation

Az ~b (2.33)
18
z=Alb+ (I, — ATA)w, (2.34)

where w € DQ™*?.
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Proof. Let the decomposition of A be as in (2.1) and rank(A) = ¢t. Denote

. |1 *p bl
) .

2

where 21 € DQ! 25 € DQ 9% b € DQ! and by € DQY*!. Therefore, we have

? Bz — by

= 0,
So, ||Az — b||* = min if and only if ||Sezy — by = 0, that is 3 = %; 'b;. Furthermore,
applying (2.3) and (2.35) we get

-1
=V Ft bl} = Alb 4 (1, — ATA) {wl] ,

2

> 0
¢ = ISy — ba|)* + ||b2]?.

2_
| Az — b||* = HU[O 0

}V*x—b

X9 €2

where w; € DQ™*! is arbitrary. Therefore, we get (2.34). O

Perfect Hermitian Matrix

It is well known that positive definite (positive semi-definite) matrix is one of the most
important special matrices in the study of matrix theory. In [13], on the basis of positive
semi-definite dual quaternion Hermitian matrices, perfect Hermitian matrix is introduced
and its properties are studied over DQ"™*"™.

Lemma 3.1 ([11, 13]). Let A € DQ"*" is a positive semi-definite dual quaternion Hermitian
matriz. Then there are unitary matriz U € DQ™"™ and a diagonal matriz ¥ € D™*" such
that U*AU = X, where

5= {M 0 } , (3.1)

0 eN

M and N are diagonal, the diagonal entries of M are positive and appreciable, and the
diagonal entries of N are nonnegative real numbers.
Furthermore, when N =0, A is a perfect Hermitian matrix.

Lemma 3.2 ([13]). For any B € DQ™*", M = B*B is a perfect Hermitian matriz.

Theorem 3.3. Let A = Ay + eAr € DQ™*" is a positive semi-definite dual quaternion
Hermitian matriz. Then A is a perfect Hermitian matriz if and only if the DQMPGI of A
exists.

Proof. “ = 7. Let A be a perfect Hermitian matrix. By applying Lemma 3.2 we see
that there exists B = By + eB; € DQ™ " such that A = B*B. Then Ay + €A; =
(B, + €B7) (Bst + €By) = Bi,Bgt + € (B, Br + B} By), that is,

Ast = B:tBsta
{ A, = B5%By + B By, (3.2)
Since
Ar Agl| B Br+ BBt DB} B
rank l:Ast 0 } =rank { BBy 0
_ 0 B Bat| _ .
= rank |:B:tBst 0 ] = 2rank (B}, Bst)

= 2rank (Ag),
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applying Theorem 2.3, we get that the DQMPGI of A exists.
“<=7: Let A= Ay + €A be a positive semi-definite dual quaternion Hermitian matrix,
then it is as the form in (3.1). Write U = Ug; + €Uy and M = M + eM;. Then

A:(Ust+eU1)<[]V([)5t 8}—1—6[]\51 ]%Dw;ﬁw;)

Mg 0| ;. Mg 0 . M;p 0], . Mg Of .
Ust[ot O}Ust+e(Ust{Ot O}UI+U“{OI N]UstJrU]{ot O]Ust).

It follows from A = Ay + €A that
My 0

Ast:Ust 0 0 Us*m
MS 0 * M O * MS 0 *
A = Uy ot 0 UI+USt[OI N}Usﬁw{ot O}Ust
and
AI Ast
rank |:Ast 0
[ [M, 0], ., M; O],. . [Mg 0], ., My 0] ...
Ust[ o 0} Ur+Ua |y n Ust+U1[ o 0} U Ust{ o 0] U;,
= rank M 0
Ugt OSt 0 Uz 0
(M, 0], . M; 0 o [My, 0] [My 0
[0 O]UIU“JF 0 N +U8tU’{o 0] [o o}
= rank
My 0 0
I 0 0

= 2rank(My;) + rank(N).

When the DQMPGI of A exists, by applying Theorem 2.3 and rank(A;) = rank(M,),
we get N = 0. Furthermore, by applying Lemma 3.1, we get that A is a perfect Hermitian
matrix. O

Lemma 3.4. Let A= Ay + € (AjAs + At AG) € DQ™ ™. If Ay is a positive semi-definite
quaternion Hermitian matriz, then A is perfect Hermitian matriz.

Proof. Since Ag; is a positive semi-definite quaternion Hermitian matrix, then A = Ay +
2

€(ArAg + A A7) is Hermitian. Write Ag = (Ai) , where Ai is positive semi-definite.
Denote B* = As%t +e (AIA§t>~ Then B = Ai +e (AétA?) and
1 1 1 1
BB = (A;t te (AIAjt» (A;t +e (A;tA;)) = Ay + € (A Al + ArAy) = Al
Furthermore, applying Lemma 3.2 gives that A is a perfect Hermitian matrix. O

Theorem 3.5. Let A= Ay + eAr € DQ". If

Ay is positive semi-definite,
(In - AstAlt) A (In - AitAst) —0.

then A is a perfect Hermitian matriz.
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Proof. Let A= Ag + €Ar € DQRF". If As and A; satisfy (3.3) then

A=Ay + €A
= At e (A Al AL+ ArAL Ay — A AT ALAT A

+e (In — AstAit) Ap (In - AltASt)

= Au+ e (A Al Ar + ArAl Ay — A Al ArAT A

1 1
= Ay +e <(<AI - QAStAZtAI) AL) Ag + Ay (Ait <A1 - QAIAitASt))) .

Since A, is positive semi-definite, applying A; = A} we get

1 * 1 * 1
((A, _ 2AStAltAI) A;) = Al (AI - QAStAZtAI) = Al, (AI - QAIAltA5t> .

Applying Lemma 3.4, it follows that A is a perfect Hermitian matrix. O

Theorem 3.6. Let A = Ay +eAr € DQ™™". Then A is perfect Hermitian matriz if and
only if D*AD s perfect Hermitian matriz for any D = Dy + eD; € DQ™ ™.

Proof. “=" Since A is perfect Hermitian matrix, we see that there exists a positive semi-
definite dual quaternion Hermitian matrix L € DQ™*" such that A = L*L.

For any D € DQ™*™, denote P = LD. Then D*AD = D*L*LD = P*P. Therefore,
applying Lemma 3.2 gives that D*AD is a perfect Hermitian matrix.

“<=" Let m =n and D = I. It is obvious that A is a perfect Hermitian matrix. O

Corollary 3.7. Let A = Ay + eA; € DQ™™", then A is perfect Hermitian matriz if and
only if kA is a perfect Hermitian matriz for any nonnegative and appreciable dual number
k.

Theorem 3.8. Let A = Ay + €Ar € DQ" ™ be a perfect Hermitian matriz, then At is a
perfect Hermitian matrix.

Proof. Let A = Ay +eAr € DQ™"™ be a perfect Hermitian matrix. Then A,; and A; are
positive semi-definite dual quaternion Hermitian matrices. From Theorem 3.3 we get that
the DQMPGI of A exists.

We denote P = I,, — AstAlt and Q = A%, As. Applying Theorem 2.3 gives

A=Al +e (—AgtAIALt + QAP + PA;QT) . (3.4)

Applying Theorem 2.3, it is easy to check that DQMPGI of AT exists. And since —AitAIAlt—i—
QTA3P + PA;QT is Hermitian, applying Theorem 3.5 gives that AT is a perfect Hermitian
matrix.

If the DQMPGI of A exists, then the DQMPGI of A" exists and (AT)T = A. Therefore,
we get that if A is a perfect Hermitian matrix, then A is a perfect Hermitian matrix. [

Write

X = Al, —eAl, A, AT (3.5)
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we call it the Moore-Penrose dual quaternion generalized inverse(MPDQGI for short) of A,
and denote it as AF. Since every quaternion matrix has a unique Moore-Penrose inverse,
similarly, dual quaternion matrix has a unique MPDQGI. In [11], Ling, Qi and Yan check
that

IFAP:(ﬂ,ﬂﬂb&ﬂaA(ﬂfwA;h£O:AL—M&&AL:Aﬂ
that is, A" is a {2}-inverse of A.

Theorem 3.9. Let A = Ay + €A € DQ™ ™ be a positive semi-definite dual quaternion
Hermitian matriz, then A* is a perfect Hermitian matriz.

Proof. Let A = Ay +eAr € DQ™ ™ be a positive semi-definite dual quaternion Hermitian
matrix. Then A, and Alt are positive semi-definite quaternion Hermitian matrices.

Applying equation (3.5) gives A” = Al, — eAl, A;Al,. Since

—AlAAT, Al
rank SZLI st St} = 2rank (Alt> ;

applying Theorem 2.3 gives that the DQMPGI of A" exists. And since AltAIAZt is Hermi-
tian, it follows from applying Theorem 2.3 and Theorem 3.5 that AF is a perfect Hermitian
matrix. O

Corollary 3.10. Let A= Ay +eAr € DQ™ ", A be a perfect Hermitian matriz. Then AP
s a perfect Hermitian matriz.

Let A" is a perfect Hermitian matrix, From Theorem 2.3, we conclude that the DQMPGI
of A" exists, even if DQMPGI of A may not exist. Therefore, the converse of Corollary 3.10
does not hold.

0 0 3 4 0 0 0
check that A* is a perfect Hermitian matrix and A is not a perfect Hermitian matrix.

Example 3.11. Let A = {1 O] +€ [1 2}, then A" = [1 0} +€ {1 8} It is easy to

Corollary 3.12. Let A = Ay + €Ar € DQ™*", A is a positive definite dual quaternion
matriz. Then A~ is a positive definite dual quaternion matriz.

Proof. Suppose A is non-singular, then we can get A~! = A" — eA;tlAIA;tl. Because A is

a positive definite dual quaternion matrix, A;l also is a positive definite quaternion matrix.
Furthermore,

(AG'ATAG) = (Ah)" A7 (AQY)" = (A5 h A7 (Az) 7 = A AL AL

then A;'A;A" is Hermitian. Since there is 2*A~'z > 0 for any x being appreciale, A~!
is a positive definite dual quaternion matrix. O

Dual Quaternion Partial Order

In this section, we introduce two Lonwer-type partial orders on DQ"™*"™.
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Lowner-P partial order

Consider the binary relation:
M Lép N : N — M is a perfect Hermitian matrix, (4.1)
in which M, N € DQ"*". We call the binary operation (4.1) the Lonwer-P order.

L-P
Theorem 4.1. The Lonwer-P order “ < 7 is a partial order.

Proof. (i) Reflexivity is self-evident.
L-P L-P
(ii) For anti-symmetry, let M < N and N < M, where M, N € DQ"*". Then

L-P
Z _ . - .
{ M < N { N — M is a perfect Hermitian matrix = N =M.

N Lép M M — N is a perfect Hermitian matrix

Therefore, the anti-symmetry holds.

(iii) For transitivity, let M < N and N < K, and DQMPGIs of N — M and K — N all
exist. Then applying Lemma 3.2 and (4.1), we get

{MLgpN {NMTl*Tl
=

* * * * T
= K- N=T:T =K-M=T/T\+T5T> = [T} TQ]{l],

15
where T}, T, € DQ™". It follows from Lemma 3.2 that K — M is a perfect Hermitian
matrix. Therefore, M Lép K and the transitivity holds. O
Theorem 4.2. Let M, N € DQ™*", and M Lép N. Then the following hold:

(1) M+ S Lép N + 8 for any S € DQ™™";

(2) kM Lép kN for any nonnegative and appreciable dual number k;

(3) T*MT < T*NT for any T € DQ™¥".

L-P
Proof. Applying M < N gives that N — M is a perfect Hermitian matrix.
For any S € DQ™™, (N+S)— (M + S) = N — M is a perfect Hermitian matrix.

L-P
Therefore, M + S < N + S.
For any nonnegative and appreciable dual number &, by applying Corollary 3.7, we get

that k(N — M) is a perfect Hermitian matrix, that is, kM Lép kEN.
For any T € DQ"™*", by applying Theorem 3.6, we get that T*(N — M)T is a perfect

Hermitian matrix, that is, T*MT < T*NT. 0
Lowner-S partial order
Consider the binary relation: Now we define the Lonwer-S partial order.
L-S
M < N: z*(N—-M)z>0, zcDQ™, (4.2)

in which M, N € DQ"”". We call the binary operation (4.2) the Lonwer-S order.
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L-S
Theorem 4.3. The Linwer-S order “<7” is a partial order.

Proof. (i) Reflexivity is obvious.

L-S L-S

(ii) For anti-symmetry, let M < N and N < M. Applying (4.2) gives N — M is

positive semi-definite. Similarly, M — N is also positive semi-definite. Then N = M and
the anti-symmetry is holds.

L-S L-S
(iii) For transitivity, let M < N and N < K. By applying (4.2), we obtain

L-S
< * — >
{MN {x(N M)z 20 e apes

where x is arbitrary n x 1 dual quaternion matrix. Since z* (K — M)z > 0, then K — M is

L-P
positive semi-definite, Applying (4.2), we get M < K, the transitivity holds. O

Theorem 4.4. Let M,N € DQ™*". Then M LSS N if and only if T*MT L§s T*NT for any
T c ]D)QTLX?’L .

Proof. “«<” 1t is obvious.
-
“=” Since M §S N, that is, 2*(N — M)z > 0 for any z. Denote y = Tz, then
*T*(N — M)Tx = (Tx)*(N — M)(Tx) > 0. Therefore, T*MT Lés T*NT. O

Lonwer-P partial order is different from Lonwer-S partial order. Next, we consider their
relations.

L-P L-S
Remark 4.5. Let M, N € DQ™*". Then M < N implies M < N. But the converse is
not true.

Example 4.6. Let
1 0 1 2 2 0 2 2
Sl R R R S i

L-S
It is easy to check that M < N. By applying Theorem 2.3, we get M is not below N under
L-P

the Lonwer-P partial order <7,

Remark 4.7. Partial order is a class of matrix inequality, which has wide range of ap-
plications in statistics, for example, semidefinite optimization problem [9], strictly convex
problem[1], etc. The Lonwer-type partial order can also be seen as dual quaternion matrix
inequality. This will provide some interesting dual quaternion optimization problems, for
example,

Q< XPX*st. AX=B: Q< XPX* s.t. AX = B:;
Q< X*PX st. AX =B: Q < X*PX s.t. AX = B.
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