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theory, is not sufficient because much discriminative information has been lost after images
being projected onto it alone. Accordingly, Foley and Sammon [5, 19] proposed the Foley-
Sammon transform method to find an optimal set of discriminant vectors for LDA that
attracts many researchers [2, 28]. From numerical algebra point of view, the execution of
LDA can be depicted as finding generalized eigenvectors of the following generalized eigen-
equation

Sbx = λSwx,

where x denotes the Fisher projection axis, and the matrices Sb, Sw represent between-class
scatter matrix and within-class scatter matrix, respectively.

The major drawback of applying LDA is that it may encounter the so-called small size
sample problem (i.e., Sw is singular), whenever the number of samples is smaller than
the dimensionality of the samples. Many efficient algorithms have emerged to circumvent
this problem, such as pseudo-inverse LDA [21], PCA+LDA [1], and regularized LDA. The
two stage method PCA+LDA first discards the null space of Sw by PCA, so that Sw no
longer degenerates and then LDA can be performed without trouble [14, 15]. In addition
to these methods, the uncorrelated LDA (ULDA) method [11, 25] provides a novel insight
of LDA that the extracted feature vectors are mutually uncorrelated in the low-dimensional
subspaces. This property is highly desirable for feature extraction in many applications to
contain minimum redundancy [24].

It is verified that color image provides more information than gray image [18]. The
structure of color face image can be retained by a pure quaternion matrix perfectly [3, 12,
20]. But for the presence of the limitation of computation and memory while dealing with
high-dimensional quaternion matrix, the face recognition method based on quaternion may
achieve high recognition rate at the expense of running time. Recently, the applications of
quaternion in color face recognition have been developed rapidly, including two-dimensional
quaternion PCA [7, 26, 27] and quaternion singular value decomposition (QSVD) based
on Lanczos method [8]. These developments mainly benefit from the structure-preserving
strategy of quaternion matrix operations, which makes full use of the structure of real
representations of quaternion matrices, and can decrease the amount of computation time
compared with direct quaternion matrix operations. For more details about quaternion
structure-preserving strategy we refer to [9].

In this paper, we present a new color LDA approach based on quaternion model for
feature extraction of color images, and further design a fast and efficient structure-preserving
method that improves the performance of the new method. We also consider randomization-
based color LDA method for quite large sample set. The contributions of this paper are
summarized in three aspects.

• We establish a trace-ratio under quaternion framework as the objective function for
dimension reduction, and make an analysis for the small samples size problem. We put
forward a weighted norm as the distance measure for the feature matrices that help us
avoid generating projection matrices explicitly in color image recognition.

• We propose quaternion generalized singular value decomposition (QGSVD) method
for solutions of color LDA model that leads to the color LDA method. We elaborate
the structure-preserving strategy for performing the color LDA method. A quaternion
random Gaussian matrix is borrowed to form randomization-based structure-preserving
color LDA method for quite large sample set, which makes the color image recognition
rate promoted with less CPU time.

• Based on two famous color face databases, we compare the proposed color LDA method



COLOR LINEAR DISCRIMINANT ANALYSIS FOR FACE RECOGNITION 267

with other traditional LDA methods and representation-based methods [29, 30] for the
implementation of color face recognition and color image reconstruction. Numerical
results indicate that the structure-preserving color LDA method and its randomization
have better recognition performances.

The rest of the paper is organized as follows. In section 2, we introduce color LDA
method for color face recognition and color image reconstruction using quaternion model.
In section 3, we elaborate computational issues that use real structure-preserving operations
for color LDA, and propose a randomization strategy. In section 4, we report numerical
results based on the famous color face database to test the feasibility and effectiveness of
the proposed methods. Finally, the conclusion is presented in section 5.

Notations. In order to distinguish from the symbols of real matrices which are denoted
by capital letters, we use boldfaced capital letters to represent quaternion matrices. Hm×n

and Rm×n denote the set of m × n matrices with quaternion and real entries, respectively.
Hm and Rm are short for Hm×1 and Rm×1, respectively. The superscript T and H denote
the transpose and conjugate transpose of a matrix or a vector, respectively. rank(A) and
tr(A) denote the rank and trace of a quaternion matrix A, respectively. In denotes the
n× n identity matrix. ∥ · ∥2 denotes the matrix spectral norm or vector 2-norm.

2 Color LDA Based on Quaternion Model

In this section, we make a brief review of quaternions and quaternion matrices, then elaborate
the color LDA method based on quaternion model.

2.1 Quaternions and quaternion matrices

Quaternions and quaternion matrices have extensive applications in many research fields. A
quaternion q has the following form

q = q0 + q1i+ q2j+ q3k ∈ H,

where q0, q1, q2 and q3 are four real numbers, and the three imaginary units i, j,k satisfy

i2 = j2 = k2 = ijk = −1,

jk = −kj = i,ki = −ik = j, ij = −ji = k.

This indicates that the quaternion skew-field H is an associative but non-commutative al-
gebra. The conjugate of q ∈ H is given by q̄ = q0 − q1i − q2j − q3k, and the modulus of q
is defined by |q|2 = q20 + q21 + q22 + q23 = qq̄ = q̄q. A pure quaternion is a special quaternion
whose real part is zero.

An n× n square quaternion matrix P = P0 + P1i+ P2j+ P3k is said to be nonsingular
if PQ = QP = In for some Q ∈ Hn×n.

Definition 2.1 ([22, 23]). For a given quaternion matrix A ∈ Hm×n, there exists a quater-
nion matrix G ∈ Hn×m satisfying all of the following Penrose functions

(1)AGA = A; (2)GAG = G;

(3)(AG)H = AG; (4)(GA)H = GA.

Then, G is the Moore–Penrose inverse of A, denoted by A†.
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For a given quaternion matrix Q = Q0+Q1i+Q2j+Q3k ∈ Hm×n with Q0, Q1, Q2, Q3 ∈
Rm×n, the real representation matrix of Q is defined [9] to be

ΥQ =


Q0 Q2 Q1 Q3

−Q2 Q0 Q3 −Q1

−Q1 −Q3 Q0 Q2

−Q3 Q1 −Q2 Q0

 ∈ R4m×4n, (2.1)

where Υ is a linear homeomorphic mapping from quaternion matrices (or vectors) to their
real representation. With the help of block permutation matrices

Jt =


0 −It 0 0
It 0 0 0
0 0 0 It
0 0 −It 0

 , Rt =


0 0 −It 0
0 0 0 −It
It 0 0 0
0 It 0 0

 , St =


0 0 0 −It
0 0 It 0
0 −It 0 0
It 0 0 0

 ,

the algebraic structure of (2.1) is called JRS-symmetric [9] in the sense that

JmΥQJT
n = ΥQ, RmΥQRT

n = ΥQ, SmΥQST
n = ΥQ.

For two given quaternion matrices P,Q ∈ Hn×n, their real representations have the
following properties

Υk1P+k2Q = k1ΥP + k2ΥQ, k1, k2 ∈ R, (2.2)

ΥQH = ΥT
Q, ΥPQ = ΥPΥQ, (2.3)

rank(Q) =
1

4
rank(ΥQ). (2.4)

A quaternion matrix Q is called pure quaternion matrix if it has zero real part. In RGB
color space, a pixel can be encoded by a pure quaternion Ri+Gj+Bk, where R,G and B
stand for the pixel values of red, green and blue components, respectively. Then an m × n
color image can be represented by an m × n pure quaternion matrix Q. Each elements of
Q represents a pixel of the color image.

2.2 Color LDA method

Now, we introduce the color LDA method using the quaternion model that is the improve-
ment of [6].

Suppose that there are N training face image samples and c known classes in training
set Ti, i = 1, . . . , c. The j-th sample in training set can be denoted as aj ∈ Hmn, which
is the vectorized representation of the color image matrix. The mean image of all training
samples is denoted by ā. āi denotes the mean image of class i for i = 1, . . . , c. ni is the
number of color image samples in class i satisfying n1 + · · ·+nc = N . With these notations
in hand, we introduce three scatter matrices of training set, which are within-class scatter
matrix, between-class scatter matrix and total scatter matrix, as the following,

Sw =

c∑
i=1

∑
aj∈Ti

(aj − āi)(aj − āi)
H ,

Sb =

c∑
i=1

ni(āi − ā)(āi − ā)H ,

St =

N∑
i=1

(ai − ā)(ai − ā)H .
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It is easy to verify that St = Sw + Sb.
Suppose there is a projection axis w ∈ Hmn. The image vector aj (j = 1, . . . , N) can

be projected onto w by the linear transformation yj = wHaj (j = 1, . . . , N). Then, yj

is called the projection feature or projection point, the corresponding projected class is Pi

(i = 1, . . . , c). ȳ, ȳi denote the average of all projection points and those in the projected
class Pi for i = 1, . . . , c, respectively. The aim of color LDA is to seek an optimal projection
axis, such that the projection points of the same class shall be as close as possible, and the
projection points of different samples shall be as far away as possible. Generally, the single
projection axis, even if it is optimal in theory, is not sufficient because much discriminative
information has been lost after images being projected onto it alone. Therefore, we should
seek a set of optimal projection axes rather than only one, in this case, yj = WHaj (j =
1, . . . , N), where the columns of W are optimal projection axes. The intra-class distance
and inter-class distance can be calculated by the trace of within-class scatter matrix and
between-class scatter matrix. In this regard, the criterion of color LDA is given by

J = max
tr(S̃b)

tr(S̃w)
,

where S̃b and S̃w are between-class scatter matrix and within-class scatter matrix of pro-
jection space, respectively, derived from

S̃b =

c∑
i=1

ni(ȳi − ȳ)(ȳi − ȳ)H ,

= WH

(
c∑

i=1

ni(āi − ā)(āi − ā)H

)
W,

= WHSbW,

S̃w =

c∑
i=1

∑
yj∈Pi

(yj − ȳi)(yj − ȳi)
H ,

= WH

 c∑
i=1

∑
aj∈Ti

(aj − āi)(aj − āi)
H

W,

= WHSwW.

Alternatively, the criterion could be expressed by

J(W) = max
W

tr(WHSbW)

tr(WHSwW)
. (2.5)

This criterion can be seen as the promotion of Fisher linear projection criterion in quaternion
skew-field. The columns of quaternion matrix W are called the Fisher optimal projection
axes.

It is obvious that (2.5) requires the within-class scatter matrix Sw to be nonsingular.
The optimization problem (2.5) can be solved by dealing with the quaternion generalized
eigenvalue problem

Sbwi = λiSwwi, λi ∈ R, i = 1, . . . , d, (2.6)

where wi is the Fisher projection axis that consists of W and d is the number of projection
axes that we want.
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Define

Hb = [
√
n1(ā1 − ā), . . . ,

√
nc(āc − ā)] ∈ Hmn×c, (2.7)

Hw = [A1 − ā1e1, . . . ,Ac − ācec] ∈ Hmn×N , (2.8)

Ht = [a1 − ā, . . . , aN − ā] ∈ Hmn×N , (2.9)

and ei = [1, . . . , 1] ∈ R1×ni ,Ai = [a1, . . . , ani ],aj ∈ Ti (j = 1, . . . , ni, i = 1, . . . , c). It is
obvious that rank(Hb) = c−1, rank(Ht) = N−1, and the scatter matrices can be expressed
by Sb = HbH

H
b ,Sw = HwHH

w ,St = HtH
H
t .

From (2.2) and (2.3), we have

ΥSw = ΥHwΥ
T
Hw

, ΥSb
= ΥHb

ΥT
Hb

, ΥSt = ΥHtΥ
T
Ht

,

and rank(ΥSw) = rank(ΥHw), rank(ΥSt) = rank(ΥHt) and rank(ΥSb
) = rank(ΥHb

). Ac-
cording to (2.4) we obtain rank(Sb) = rank(Hb) = c − 1, rank(St) = rank(Ht) = N − 1
and rank(Sw) = rank(Hw) = min{mn,N − c}. So St and Sb must be singular.

As a matter of fact, the number of training samples is usually smaller than the dimen-
sionality of the samples, this means rank(Sw) = N − c < nm. So Sw is always singular,
which is the so-called “small samples size” problem. In this case, we can not even define the
Fisher criterion (2.5), and the discriminant fails.

We aim to seek a solution that does not impose the restriction of singularity problem,
and that can be found without explicitly forming Sb and Sw, respectively. Toward that
end, let λi = α2

i /β
2
i . Then (2.6) becomes

HbH
H
b wiβ

2
i = HwHH

wwiα
2
i . (2.10)

This problem can be solved using the QGSVD, as described in the next subsection.

2.3 QGSVD applied to color LDA

The following theoretical results are about QGSVD of two given quaternion matrices with
the same number of columns.

Theorem 2.2 ([10], QGSVD). For any quaternion matrices A ∈ Hm×n,B ∈ Hp×n, there
exist unitary quaternion matrices U ∈ Hm×m and V ∈ Hp×p, and a nonsingular matrix
X ∈ Hn×n such that

UHAX = diag(α1, . . . , αt), αi ≥ 0,

VHBX = diag(β1, . . . , βq), βi ≥ 0,

where β1 ≥ . . . ≥ βs ≥ βs+1 = . . . = βq = 0, t = min{m,n}, q = min{p, n}.

According to the proof of Theorem 2.2, we outline the QGSVD algorithm as below.

Algorithm 1 Quaternion Generalized Singular Value Decomposition

Input: Two quaternion matrices with the same number of columns

A ∈ Hm×n, B ∈ Hp×n.

Output: The nonsingular quaternion matrix X ∈ Hn×n, and two unitary quaternion ma-
trices U ∈ Hm×m,V ∈ Hp×p.
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1: Compute the QSVD of C = [A;B] ∈ H(m+p)×n:

PHCQ =

[
R 0
0 0

]
.

2: Let t = rank(C). Compute U from the QSVD of P(1 : m, 1 : t):

UHP(1 : m, 1 : t)W = Γa.

3: Compute the QR decomposition of P(m+ 1 : m+ p, 1 : t)W:

VH(P(m+ 1 : m+ p, 1 : t)W) = Γb.

4: Construct

X = Q

[
R−1W 0

0 I

]
,

where I is the identity matrix of appropriate size.

According to Theorem 2.2, for quaternion matrix pencil {HH
b ,HH

w}, we can find two
unitary quaternion matrices U,V and a nonsingular quaternion matrix X, such that

UHHH
b X = [Γb 0] and VHHH

wX = [Γw 0], (2.11)

ΓT
b Γb + ΓT

wΓw = Ik, for k = rank

([
HH

b

HH
w

])
.

The diagonal matrices Γb and Γw has the following forms

Γb =

r s k − r − s[ ]
Ib r

Db s
Ob c− r − s

,

Γw =

r s k − r − s[ ]
Ow N − k + r

Dw s
Iw k − r − s

,

where

Db = diag(αr+1, . . . , αr+s),

Dw = diag(βr+1, . . . , βr+s),

satisfies
1 > αr+1 ≥ · · · ≥ αr+s > 0, 0 < βr+1 ≤ · · · ≤ βr+s < 1,

and
α2
i + β2

i = 1, for i = r + 1, . . . , r + s.

Combining with (2.10), the columns of the nonsingular quaternion matrix X are the Fisher
projection axes that we need.

From the previous analysis, in color LDA method we do not need to compute a complete
QGSVD, just the first two steps are enough. The algorithm for the color LDA is given as
follows.
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Algorithm 2 Color Linear Discriminant Analysis

Input: Color image vector aj (j = 1, . . . , ni) that represents the j-th sample of training
set, the number of Fisher features d.

Output: The set of Fisher projection axes X.
1: Compute Hb ∈ Hmn×c and Hw ∈ Hmn×N from training set according to (2.7) and (2.8),

respectively.
2: Compute the QSVD of C = [Hb,Hw]H ∈ H(c+N)×mn:

PHCQ =

[
R 0
0 0

]
.

3: Let k = rank(C). Compute V from the QSVD of P(1 : c, 1 : k):

UHP(1 : c, 1 : k)V = Γb.

4: Compute the nonsingular matrix

X = Q

[
R−1V 0

0 I

]
,

where I is the identity matrix of appropriate size.

2.4 Feature extraction and dimension reduction

Upon we obtain the optimal Fisher projection axes X̃ ∈ Hmn×d, which consists of d columns
of X, we can perform the classification task and reconstruction task in practical applications
motivated by the idea in [16].

In color image classification, given two color images vectors a1,a2 from training set and
test set respectively. Their projection images are calculated by

ãi = X̃(X̃HX̃)−1X̃Hai, i = 1, 2.

Whether a1 and a2 belong to the same class or not is determined by the distance between
ã1 and ã2, that is,

d(ã1, ã2) = ∥ã1 − ã2∥2 = [(ã1 − ã2)
H(ã1 − ã2)]

1
2

= [(X̃(X̃HX̃)−1X̃Ha1 − X̃(X̃HX̃)−1X̃Ha2)
H(X̃(X̃HX̃)−1X̃Ha1 − X̃(X̃HX̃)−1X̃Ha2)]

1
2

= [(X̃(X̃HX̃)−1X̃H(a1 − a2))
H(X̃(X̃HX̃)−1X̃H(a1 − a2))]

1
2

= [(a1 − a2)
HX̃(X̃HX̃)−1X̃H(a1 − a2)]

1
2

= ∥X̃H(a1 − a2)∥(X̃HX̃)−1 . (2.12)

Obviously, the distance between ã1 and ã2 can be characterized by a weighted norm. In
practical calculations, we just need to compute the feature vector bi = X̃Hai, called “feature
extraction”, so as to reduce computational cost.

It is obvious that the dimension of ai decreases after the feature extraction step. Actually,
if we want to decrease the dimension of ai to a fixed value t, we can construct X̂ ∈ Hmn×t

that consists of t columns of X, and the dimension of ai can be reduced by

b̂i = X̂Hai.

Conversely, the reconstructed image is given by

âi = X̂(X̂HX̂)−1b̂i.
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2.5 The selection of optimal Fisher projection axes

From the previous analysis, the optimal Fisher projection axes can be chosen from the
columns of nonsingular quaternion matrix X. Notice that the dimension of X is mn, it is
unwise to chooseX as the optimal Fisher projection axes. The central work in this subsection
is how to select the most discriminative Fisher projection axes within the columns of X.

In pattern recognition theory, the general principle of feature extraction is to make the
statistical correlation between the extracted features as small as possible. It is the best
to extract irrelevant features. With this regard, we first review some statistical results in
quaternion skew-field.

Definition 2.3 ([17]). Suppose that q = q0 + q1i + q2j + q3k is a quaternion probability
variable, the expectation of q is given by

E(q) = E(q0) + E(q1)i+ E(q2)j+ E(q3)k.

Definition 2.4 ([17]). Let q = q0 + q1i + q2j + q3k and p = p0 + p1i + p2j + p3k be two
quaternion probability variables. The covariance between p and q is defined as

cov(p,q) = E(q− E(q))(p− E(p))
= cov(q0, p0) + cov(q1, p1) + cov(q2, p2) + cov(q3, p3)

+ {cov(q1, p0)− cov(q0, p1)− cov(q2, p3) + cov(q3, p2)}i
+ {cov(q2, p0)− cov(q0, p2) + cov(q1, p3)− cov(q3, p1)}j
+ {cov(q3, p0)− cov(q0, p3) + cov(q1, p2)− cov(q2, p1)}k.

From the definition of real representation (2.1), the Fisher criterion (2.5) can also be
expressed as

J(ΥW) = max
ΥW

tr(ΥT
WΥSb

ΥW)

tr(ΥT
WΥSwΥW)

, (2.13)

and the following relation holds

ΥSt = ΥSw +ΥSb
.

From the analysis in [15], the optimization problem (2.13) is equivalent to

J(ΥW) = max
ΥW

tr(ΥT
WΥSb

ΥW)

tr(ΥT
WΥStΥW)

, (2.14)

where the real representation matrix ΥSw of the within-class scatter matrix in the denomi-
nator is replaced by ΥSt .

Recall that the total scatter matrix St is singular. Motivated by [11] the optimization
problem (2.14) can be approximated by

J(ΥW) = max
ΥW

tr((ΥT
WΥStΥW)†(ΥT

WΥSb
ΥW)), (2.15)

which can overcome the singularity problem of St. Thus, for the color LDA method, we can
take an alternative criterion to approximate (2.5), i.e.,

J̃(W) = max
W

tr((WHStW)†(WHSbW)). (2.16)
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It is easy to confirm that the nonsingular matrix X constructed in Algorithm 2 can
diagonalize St to be

XHStX =

[
Ik 0
0 0

]
.

Combining with (2.11) we have

(XHStX)†(XHSbX) =

[
Ik 0
0 0

] [
ΓT
b Γb 0
0 0

]
=

Ib D2
b

0

 ,

which means J̃(W) = r +
∑r+s

i=r+1 β
2
i . So the set of optimal Fisher projection axes consists

of the leftmost r + s columns of X, where r + s is the rank of Sb.

Theorem 2.5. Let the transformation matrix for color LDA be X̃ = [x1, . . . ,xd], for some
d ≥ 0. The original color image vector a is transformed into b = XHa, where the i-th
feature component of b is bi = xH

i a. Assume that xi and xj are St-orthogonal to each
other, i.e., xH

i Stxj = 0 for i ̸= j. Then the correlation between bi and bj is 0 for i ̸= j.
That is, bi and bj are uncorrelated to each other.

Proof. The covariance between bi and bj can be computed as

Cov(bi,bj) = E(bi − Ebi)(bj − Ebj)

= E(xH
i a− E(xH

i a))(xH
j a− E(xH

j a))

= xH
i {E(a− E(a))(a− E(a))H}xj

= xH
i Stxj = 0.

As a result, the correlation coefficient of bi and bj is zero from the formula

Corr(bi,bj) =
cov(bi,bj)√

cov(bi,bi)
√

cov(bj ,bj)
.

Theorem 2.5 means that the set of optimal Fisher projection axes chosen from criterion
(2.16) can extract features that are statistically uncorrelated. This property is highly desir-
able for feature extraction in many applications in order to contain minimum redundancy.

3 Computational Issues for Color LDA

It is well known that the basic quaternion operations including addition and multiplication
between quaternions. They usually need more computational cost and as a result waste
more CPU time compared with those of real and complex operations. Some of the existing
algorithms are based on the real or complex representation, which transform the quaternion
matrix problem to that of real or complex matrix problem at the cost of dimensional ex-
pansion in quadruple or in double. Recently emerged structure-preserving algorithms take
advantage of the block structure of real representation matrix (2.1), the algorithms only deal
with real operations but never lead to dimensional expansion [23]. Explicitly, we just need
to store and perform on the first block row of the real representation matrix, denoted by

Υc
Q = [Q0, Q2, Q1, Q3].
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Suppose that A = A0 +A1i+A2j+A3k ∈ Hm×m,B = B0 +B1i+B2j+B3k ∈ Hm×m and
C = C0 + C1i+ C2j+ C3k ∈ Hm×m are three quaternion matrices. It is easy to verify the
following equivalent relations.

Addition: C = A+B ⇔ Υc
C = Υc

A +Υc
B.

Multiplication: C = AB ⇔ Υc
C = Υc

AΥB ⇔

C0 = A0B0 −A2B2 −A1B1 −A3B3,

C2 = A0B2 +A2B0 −A1B3 +A3B1,

C1 = A0B1 +A2B3 +A1B0 −A3B2,

C3 = A0B3 −A2B1 +A1B2 +A3B0.

(3.1)

With these real operations, the JRS-symmetric structure of real representation matrix is
always inherited. The quaternion algorithm carried out by virtue of this strategy is called
“structure-preserving method”. For example, by applying operational rules in (3.1), the
multiplication between two quaternion matrices can be performed on real matrices by the
following structure-preserving method.

Algorithm 3 timesQ (Structure-preserving Multiplication Between Two Quaternion
Matrices).

Input: The first block row of real representation matrices of A and B:

Υc
A = [A0 A2 A1 A3], Υc

B = [B0 B2 B1 B3].

Output: The first block row of real representation matrix of C = AB.
1. Compute multiplications of real matrices by (3.1).
2. Construct Υc

C = [C0 C2 C1 C3].

It is seen that the color LDA algorithm (Algorithm 2) consists of two QSVD’s. The
structure-preserving QSVD algorithm is presented in [13] and it is divided into two stages.
The first stage is about the structure-preserving bidiagonalization process that is summarized
in the following theorem.

Theorem 3.1 ([13], Bidiagonalization). Suppose that Q ∈ Hm×n and ΥQ is the real repre-
sentation of Q. Then, there exists orthogonal JRS-symplectic matrices U ∈ R4m×4m and
V ∈ R4n×4n such that

UTΥQV =


D 0 0 0
0 D 0 0
0 0 D 0
0 0 0 D

 ,

where D ∈ Rm×n is a bidiagonal matrix.

The detailed structure-preserving bidiagonalization process for a quaternion matrix is re-
ferred to [13, Algorithm 3.3–Bidiagq]. The second stage is about the SVD of real bidiagonal
matrix D, which can be directly implemented by the MATLAB order svd.

3.1 Structure-preserving color LDA

Combining Algorithm 2 with the structure-preserving strategy, we propose the structure-
preserving color LDA algorithm in this subsection.
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Algorithm 4 Structure-preserving Color LDA

Input: Color image vector aj (j = 1, . . . , ni) that represents the j-th sample of training
set, and the number of classes c.

Output: The set of Fisher optimal projection axes G.
1: Compute Hb ∈ Hmn×c and Hw ∈ Hmn×N from training set according to (2.7) and (2.8),

respectively.
2: Compute two JRS-symplectic matrices ΥP1 and ΥQ1 via Bidiagq in [13, Algorithm

3.3] such that

ΥT
P1

ΥCΥQ1 = ΥD,

where C = [Hb,Hw]H ∈ H(c+N)×mn, and D ∈ R(c+N)×mn is a bidiagonal matrix.
3: Compute the SVD of D

PT
2 DQ2 =

[
R 0
0 0

]
,

and obtain Q = Q1Q2,P = P1P2 via timesQ.
4: Let t = rank(C). Bidiagonalize P(1 : c, 1 : t) via Bidiagq such that

ΥT
U1

ΥP(1:c,1:t)ΥV1
= ΥD1

,

where ΥU1 and ΥV1 are two JRS-symplectic matrices, and D1 is a real bidiagonal
matrix.

5: Compute the SVD of D1

UT
2 D1V2 =

[
R1 0
0 0

]
,

and obtain V = V1V2 via timesQ.
6: Compute the nonsingular matrix

X = Q

[
R−1V 0

0 I

]
via timesQ, where I is the identity matrix of appropriate size.

7: Compute G = X(:, 1 : c− 1).

Remark 3.2. Notice that for a given quaternion matrix Q ∈ Hm×n, the algorithm Bidiagq

is suitable for the case where m ≥ n. In the practical case of (c + N) ≤ mn, we should
perform Bidiagq on the conjugate transpose of C = [Hb,Hw]H .

3.2 Structure-preserving Color LDA based on randomization

In practical data processing, the dimensions of Hb and Hw could be quite large. So Algo-
rithm 4 may cost too much CPU time. In order to make Algorithm 4 faster, we propose the
following structure-preserving color LDA method based on randomization. For quaternion
matrix pencil {HH

b ,HH
w}, if the number of rows are larger than columns, we aim to sample

the rows of these two quaternion matrices by the aid of a quaternion random Gaussian ma-
trix Ω = Ω0 +Ω1i+Ω2j+Ω3k ∈ H(c+N)×s, where the entries in Ω0,Ω1,Ω2,Ω3 are random
and independently drawn from the N(0, 1)-normal distribution, and s is a target numerical
rank.
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Let D = [Hb,Hw] ∈ Hmn×(c+N). We sample D by Ω to get D̃ = DΩ ∈ Hmn×s

satisfying s < rank(D). Then we can obtain the approximately orthogonal basis matrix Φ
by the orthogonalization of D̃. Since the sampling D̃ is a rectangular matrix and it may not
be of full rank, in order to guarantee good numerical stability, we use the quaternion QR
decomposition that is implemented by the structure-preserving quaternion modified Gram-
Schmidt (QMGS) on the columns of D̃ [23, Chapter 2.4.3]. Once we get Φ in hand, we reduce
the dimensions of Hw and Hb by H̃w = ΦHHw and H̃b = ΦHHb. The approximate Fisher
projection axes can be computed by the QGSVD of quaternion matrix pencil {H̃H

b , H̃H
w} via

Algorithm 1 cooperated with the structure-preserving strategy. We summarize this process
in Algorithm 5.

Algorithm 5 Structure-preserving Color LDA Based on Randomization

Input: Color image vector aj that represents the j-th sample of training set for j =
1, . . . , ni, the target numerical rank s, and the number of classes c.

Output: The set of Fisher optimal projection axes G.
1: Compute Hb ∈ Hmn×c and Hw ∈ Hmn×N from training set according to (2.7) and (2.8),

respectively.
2: Let D = [Hb,Hw]. Sample D to obtain D̃ = DΩ ∈ Hmn×s by a quaternion random

Gaussian matrix Ω ∈ H(c+N)×s.
3: Orthogonalize the columns of D̃ by quaternion QR decomposition based on structure-

preserving QMGS [23, Chapter 2.4.3] and obtain Φ ∈ Hmn×s.
4: Reduce the dimensions of Hw and Hb by H̃w = ΦHHw ∈ Hs×N , H̃b = ΦHHb ∈ Hs×c.
5: Compute two JRS-symplectic matrices ΥP and ΥQ1 via Bidiagq such that

ΥT
P1

ΥCΥQ1
= ΥD,

where C = [H̃b, H̃w]H ∈ H(c+N)×s, and D ∈ R(c+N)×s is a bidiagonal matrix.
6: Compute the SVD of D

PT
2 DQ2 =

[
R 0
0 0

]
,

and obtain Q = Q1Q2, P = P1P2 via timesQ.
7: Let t = rank(C). Bidiagonalize P(1 : c, 1 : t) via Bidiagq such that

ΥT
U1

ΥP(1:c,1:t)ΥV1
= ΥD1

,

where ΥU1
and ΥV1

are two JRS-symplectic matrices, and D1 is a real bidiagonal
matrix.

8: Compute the SVD of D1

UT
2 D1V2 =

[
R1 0
0 0

]
,

and obtain V = V1V2 via timesQ.
9: Compute the nonsingular matrix

X = Q

[
R−1V 0

0 I

]
via timesQ, where I is the identity matrix of appropriate size.

10: Compute G = ΦX(:, 1 : c− 1) via timesQ.
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4 Numerical Experiments

In this section, we test the efficiency of the color LDA method proposed in this paper,
and compare it with the traditional LDA methods. All the experiments are performed on a
personal computer with 2.4GHz Intel Xeon E5 and 64 GB memory using MATLAB-R2020b.
Machine epsilon is 2.2e− 16. The selected face databases are the famous Georgia Tech face
database and Faces95 database.

Georgia Tech face database contains various pose faces with different expressions on
cluttered background. All images in Georgia Tech face database are manually cropped, and
then resized to 33 × 44 pixels. The samples of the cropped images are shown in Figure 1.
There are 50 persons to be used and per person has 15 images.

Figure 1: Sample images for one individual in Georgia Tech face database

Faces95 database contains 72 individual images, every person has 20 images. Faces95
database collects the facial images of subjects when they spoke. The purpose of requiring
subjects to speak is to collect facial expression changes on color face images. The images
in faces95 database are also resized to 33 × 44 pixels, and the background color is brown.
Figure 2 shows some examples of faces95 database.

4.1 Color image reconstruction

Suppose that we have obtained the Fisher projection matrix X̂ ∈ Hmn×d. In subsection 2.4,
we have shown that for a given color image a ∈ Hmn, the feature vector of a is given by

Ara V. Nefian, The Georgia Tech Face Database. http://www.anefian.com/research/face reco.htm
L. Spacek’s Facial Images Databases. https://cmp.felk.cvut.cz/∼spacelib/faces/
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Figure 2: Examples of facial images from faces95 database

b̂ = X̂Ha, and the reconstructed image of a is

ã = X̂(X̂HX̂)−1b̂.

We call ã as a reconstructed image of a, which has the same size as the original color
image a. This means that we use a set of Fisher features to reconstruct the original image.
If d = mn, then we can entirely reconstruct the image: ã = a. But in most cases, d is
smaller than mn, so ã is an approximation of a. Define the reconstruction ratio of image
reconstruction [7] by

Ratio = 1− ∥ã− a∥2
∥a∥2

.

Figure 3: Some reconstructed images of one individual

In Figure 3, we take the color face image s01 01.jpg in Georgia Tech face database as an
example. Some reconstructed images with different d and the original image are presented.
The variant d denotes the number of Fisher projection axes computed by Algorithm 4. As
shown from these images, the reconstructed image ã is more and more similar to the original
image as the value of d increasing. The result of this experiment indicates that the color LDA
method can be used for color face reconstruction, and it can almost completely reconstruct
the original image when we only use half of the Fisher projection axes.

4.2 Color image classification

Suppose that the Fisher optimal projection matrix is X̃ ∈ Hmn×(c−1), where c is the number
of classes in training set. Given two color image vectors a1,a2 ∈ Hmn, the corresponding
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projection vectors are denoted by b1,b2. Then the distance between b1 and b2 is defined
as

d(b1,b2) = ∥b1 − b2∥(X̃HX̃)−1 ,

where ∥ · ∥(X̃HX̃)−1 is the weighted norm mentioned in (2.12).
There are Fisher feature vectors of training images b1,b2, . . . ,bN , and each image be-

longs to a class Ti. For a given test image vector a, b is the corresponding projection vector.
If d(b,bi) = min

l∈{1,2,...,N}
{d(b,bl)}, and bi ∈ Tj , then the color image a should be classified

into Tj .

4.2.1 Comparison with other traditional LDA methods

In this subsection, we compare the color LDA method with other traditional LDA methods
based on two mentioned databases. For the famous Georgia Tech face database, the number
of chosen Fisher projection axes is 49, where c = 50. The first x (= 7, 10 or 13) images of
each individual are chosen as the training set and the remaining as the testing set. For the
faces95 database, the number of chosen Fisher projection axes is 71, where c = 72. The
first x (= 10, 13, or 16) images of each individual are chosen as the training set and the
remaining as the testing set.

For each case, we repeat the process five times. The average face recognition rate (AR)
and the average CPU times (CPU) of three LDA-based methods are shown in Tables 1-2,
in which the notations have the following meanings:

CLDA: color LDA proposed by Algorithm 2.

CLDA-SP: structure-preserving color LDA proposed by Algorithm 4.

LDA-grey: traditional LDA using greyscale of color face images proposed in [6].

CLDA-rand(s): structure-preserving color LDA based on randomization proposed by
Algorithm 5, where s is the numerical rank.

AR: the arithmetic mean of face recognition rate of five repeated experiments.

Table 1: Average face recognition rate and average CPU time (in seconds) based on Georgia
Tech face database

x
CLDA CLDA-SP LDA-grey

CLDA-rand
(s = 100)

AR CPU AR CPU AR CPU AR CPU
7 68.20% 322.30 68.20% 120.91 69.20% 2.14 82.50% 14.40
10 66.72% 473.14 66.72% 177.20 64.60% 3.60 86.24% 23.03
13 66.40% 640.40 66.40% 234.80 66.64% 2.70 90.40% 34.22

The results in Table 1 show that the LDA methods based on quaternion model (CLDA,
CLDA-SP) have better performances than traditional LDA using grey images. But the
CLDA methods cost more CPU time than traditional LDA. The structure-preserving CLDA
can save almost two-thirds CPU time compared with CLDA, but it is also much slower
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Table 2: Average face recognition rate and average CPU time (in seconds) based on faces95
database

x
CLDA CLDA-SP LDA-grey

CLDA-rand
(s = 115)

AR CPU AR CPU AR CPU AR CPU
10 81.97% 695.65 82.00% 318.43 80.53% 6.25 90.19% 39.40
13 81.31% 964.81 81.87% 443.53 79.84% 7.29 92.58% 58.85
16 80.49% 1326.90 85.00% 583.18 78.54% 9.31 95.28% 84.81

than LDA-grey. If we combine structure-preserving CLDA with randomization, then the
recognition rate of CLDA-rand(100) promotes about 30 percent than that of LDA-grey at
the cost of ten times of CPU. Analogous conclusions can be deduced from the numerical
results in Table 2.

Additionally, the recognition rate of CLDA-rand(s) increases robustly with the increasing
number of projection axes, while the other LDA methods behave not so robust. As a matter
of fact, the effect of extracted features of the original color images in the training sets is not
effectively enlarged with more projection axes. Using randomization strategy in structure-
preserving CLDA can contribute to extract the principle features. Weighted projection
method for CLDA will be another consideration to overcome the shortcoming that the
recognition rate is not robust with the increasing number of projection axes.

4.2.2 Comparison with three representation-based methods

In [29, 30] the authors proposed three representation-based classification methods using
quaternion model, called quaternion collaborative representation-based classification (QCRC),
quaternion sparse representation-based classification (QSRC) and quaternion block sparse
representation-based classification (QBSRC). All the three methods need to firstly stack the
columns of a color image matrix into a quaternion column vector, then form the dictio-
nary by storing the training color image vectors into a matrix. They aim to code the test
facial image vector with a representation vector over a dictionary and then use it to infer
the correct identity of the test image. There is a positive regularization term in the three
representation-based methods, which is tuned by searching from a discrete set

{10−5, 10−4, 10−3, 10−2, 10−1, 1, 10}

and the best results are reported.
In this experiment, we compare the performances of the proposed structure-preserving

CLDA method with three representation-based methods. We resize the images in both
faces95 database and Georgia Tech face database to 8×10 at first. To make the results more
convincing, we repeat the experiment with five runs and compute the average, maximum and
minimum recognition rates for each method, and limit the total running time of classification
methods to 48 hours. Notice that within the limited running time, the QBSRC method does
not produce results for regularization parameters in the discrete set, so we omits the results
of QBSRC.

For the faces95 database, we randomly choose fifteen images in each subject for training
and the rest for testing. The results are shown in Table 3. From which we can see that,
the recognition rate of structure-preserving CLDA is the highest among three quaternion-
based methods. QSRC method costs the most CPU time in training process. Recall that
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Table 3: Average, maximal and minimum face recognition rate and average CPU time (in
seconds) based on faces95 database

CLDA-SP QCRC(λ = 0.01) QSRC(λ = 1)
average recognition rate 96.61% 79.94% 90.11%
maximum recognition rate 98.61% 82.50% 91.94%
minimum recognition rate 95.56% 75.28% 87.50%
training time 24.7811 10.4338 148.9934
testing time 0.5793 0.0595 0.0987

for a given test color face image, the CLDA-SP method compares the distances between
its projection color image vector and those of all the training image samples. The QCRC
and QSRC methods obtain the representation image vector for each class by performing the
linear combination of training samples in that class. They only need to compare the distances
between the projection image vector of the test image and those of the representation image
vectors. That is why both QSRC and QCRC need fewer classification time than CLDA-
SP. However, QSRC solves a quaternion Lasso model by the alternating direction method of
multipliers framework that converges slowly. Relatively speaking, QCRC costs fewer training
time because it gets a projection matrix by solving a quaternion regularized least squares
model directly. For the Georgia Tech face database, we randomly choose ten color images
in each subject for training and the rest for testing. The numerical results are reported in
Table 4, from which analogous conclusions can be deduced.

Table 4: Average, maximal and minimum face recognition rate and average CPU time (in
seconds) based on Georgia Tech face database

CLDA-SP QCRC(λ = 0.01) QSRC(λ = 1)
average recognition rate 87.68% 69.36% 40.48%
maximum recognition rate 88.80% 70.80% 43.20%
minimum recognition rate 86.00% 68.00% 38.80%
training time 3.8565 3.0237 218.6980
testing time 0.0938 0.0171 0.0249

5 Conclusion

In this paper, we have proposed novel structure-preserving color LDA methods based on
quaternion model. The proposed methods overcome the small sample size problem success-
fully by virtual of QGSVD. We have also introduced a criterion to select the Fisher opti-
mal projection axes, which may have the highest recognition rate. The features extracted
by these projection axes are statistically uncorrelated. In order to reduce the CPU time,
we have proposed a fast structure-preserving color LDA method based on randomization
(CLDA-rand(s)), which reduces the dimensions of Hb and Hw by the aid of a quaternion
random Gaussian matrix. Finally, a large amounts of numerical experiments illustrate that
the color LDA methods can be used in color face reconstruction and classification tasks,
which have higher recognition rate than traditional LDA, QCRC and QSRC methods. The
structure-preserving color LDA method can save more than two-thirds CPU time. The
CLDA-rand(s) method can further save much CPU time and its recognition rate becomes
higher than traditional LDA methods.
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