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STP METHOD FOR SOLVING THE MINIMAL NORM
TOEPLITZ SOLUTIONS OF MX — XN = GY + R~*

WEIHUA CHEN, CAIQIN SONG', MEIRONG XU

Abstract: This paper will consider the nonhomogeneous Yakubovich-(conjugate) quaternion matrix equa-
tions MX — XN = GY + R, where X is X or the {i, 4, k}-conjugate of X. The STP method for solving the
minimal norm least squares lower(upper) triangular Toeplitz solution and the minimal norm least squares
lower(upper) triangular Toeplitz {4, j, k}-conjugate solutions of the above equation are given, and the ex-
pressions of the above solutions of these equations. In addition, we also give the necessary and sufficient
conditions and expressions for the existence of (anti)self-conjugate solutions of the corresponding conjugate
matrix equations.
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Introduction

The semi-tensor product (STP) of matrices is originally proposed by Cheng [5], which is
a generalization of traditional matrix product. As a new matrix product, it is not limited
by matrix dimensions. That is to say, we can use STP to calculate the product of two real
matrices M and N(M € R™*"™ N € RP*9). At present, it has been widely used in Boolean
networks [10], graph coloring [18], cryptography [11], and other fields. This paper will study
the application of STP in quaternion linear system.

Quaternion linear systems are widely used in many fields, such as control theory, signal
and color image processing, quantum physics [9, 1, 12, 17]. In recent years, many scholars
have studied the equations with different algebraic structures by different methods, and
obtained many valuable results, see [6, 16, 15]. In [6], the explicit expressions of least square
solution are obtained by using the real vector representation of quaternion matrix. In [16],
the explicit solutions to the quaternion matrix equations XF'— AX = C and X F — AX =C
are established by using complex representation. The authors in [15] derived the necessary
and sufficient conditions for the existence of solutions of the equations AX*—XB =CY +D
and X — AX*B=CY + D.

*This work is supported by Shandong Natural Science Foundation (No.ZR2020MA052, No.ZR2020MA055
and ZR2017BA010).
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In recent years, Toeplitz matrix has become a special kind of matrix in scientific research,
like
So S1 S92 . Sn—1
tl S0 S1 N Sn—2

tn—l e tg tl So

It is widely used in many scientific fields, such as digital signal processing, digital image pro-
cessing, numerical analysis, numerical solution of differential equations [14]. In digital image
processing, the process of image degradation is equivalent to linear transformation of the
original image matrix by transfer function and noise, while the process of image restoration
is equivalent to transforming the least square problem into the inversion of Toeplitz matrix
when the transfer function is separable [19]. In addition, the expressions of special solutions
of constant coefficient linear differential equations and difference equations are given by us-
ing the upper triangular Toeplitz matrix, which brings great convenience to solve constant
coefficient linear differential equations and difference equations [7, 8]. Therefore, the study
of Toeplitz matrix has important application value.

In this article, we will study the minimal norm least squares lower(upper) Toeplitz i{j, k }-
conjugate solutions to the following nonhomogeneous Yakubovich-(conjugate) quaternion
matrix equation

MX - XN=GY +R, X ={X, X! X7 Xk}, (1.1)
Problem 1. Suppose M, N, G, R € Q™*", and denote

X

L:{W|W:<Y

) (X,Y € Q™) |[MX — XN — GY — R|| = min}.

Find out Wy, . € L, which satisfies
1Ways | = min W]

Then, Wgq, . is named as the minimal norm least squares lower triangular Toeplitz solution
of Eq.(3.1). If min = 0, Wq, . is called the minimal norm lower triangular Toeplitz solution
of Eq.(3.1).

Problem 2. Suppose M, N, G, R € Q"*", and denote

X

U={W|W:(Y

) (XY € Q}y"), IMX — XN — GY — R|| = min}.
Find out Wy, € U, which satisfies
[Wauell = min W]

Then, Wg,,, is named as the minimal norm least squares upper triangular Toeplitz solution
of Eq.(3.1). If min = 0, Wq,,,. is called the minimal norm upper triangular Toeplitz solution
of Eq.(3.1).
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Problem 3. Suppose M, N, G, R € Q"*"™, and denote

X

L= {W'| W' = ( v ) (X,Y € Q5M), IMX — XN — GY — R|| = min}.

Find out WéLT S Li, which satisfies
W = min [[W7].
|| QLT” WieLi || ||

Then, WéLT is named as the minimal norm least squares lower triangular Toeplitz i-
conjugate solution of Eq.(3.32). If min = 0, W, is called the minimal norm lower tri-
angular Toeplitz i-conjugate solution of Eq.(3.32).

Problem 4. Suppose M, N, G, R € Q"*", and denote

X

U={W|W:<Y

) (X,Y € QEa), |MX — X'N — GY — R|| = min}.

Find out Wé” € Ui, which satisfies
W = min ||[W¢|.

Then, WéUT is named as the minimal norm least squares upper triangular Toeplitz i-
conjugate solution of Eq.(3.32). If min = 0, Wé)m is called the minimal norm upper trian-
gular Toeplitz i-conjugate solution of Eq.(3.32).

Problem 5. Suppose M, N, G, R € Q"*", and denote

X

L= {Wl | W= < v ) (X,Y € Q13"), |[MX — X'N — GY — R| = min}.

Find out Wg? € L7, which satisfies
LT

W, | = min |[W7].
Lr WieLi

Then, Wg?m is named as the minimal norm least squares lower triangular Toeplitz j-
conjugate solution of Eq.(3.60). If min = 0, WéLT is called the minimal norm lower tri-
angular Toeplitz j-conjugate solution of Eq.(3.60).

Problem 6. Suppose M, N, G, R € Q™*", and denote

X

Ul ={Wi | Wi = ( v > (X,Y € QxM), |MX — XIN — GY — R|| = min}.

Find out WéUT € U/, which satisfies
Wl = min [[W]].
WieUj
Then, WéUT is named as the minimal norm least squares upper triangular Toeplitz j-

conjugate solution of Eq.(3.60). If min = 0, WéUT is called the minimal norm upper trian-
gular Toeplitz j-conjugate solution of Eq.(3.60).
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Problem 7. Suppose M, N, G, R € Q"*", and denote

X

k __ k k _
LF =W | w _(Y

) (X,Y € Q¥5™), |[MX — X*N — GY — R| = min}.

Find out Wgw € L*, which satisfies

k s k
IWg,. Il = min W]
Then, WC’BLT is named as the minimal norm least squares lower triangular Toeplitz k-

conjugate solution of Eq.(3.74). If min = 0, WsLT is called the minimal norm lower tri-
angular Toeplitz k-conjugate solution of Eq.(3.74).

Problem 8. Suppose M, N, G, R € Q"*", and denote

X

k __ k k _
Uk = {(Wr | w _<Y

> (X,Y € Qpx™), |IMX — X*N — GY — R|| = min}.

Find out WgUT € U*, which satisfies

E _ . E
IWeu .l = min IWZ].
Then, WCSUT is named as the minimal norm least squares upper triangular Toeplitz k-

conjugate solution of Eq.(3.74). If min = 0, W(SUT is called the minimal norm upper trian-
gular Toeplitz k-conjugate solution of Eq.(3.74).

The structure of this paper is as follows. In Section 2, we review some basic knowledge
used in this paper. In Section 3, we study the minimal norm least squares lower(upper) trian-
gular Toeplitz solution and the minimal norm least squares lower(upper) triangular Toeplitz
i{J, k}-conjugate solutions to nonhomogeneous Yakubovich-(conjugate) quaternion matrix
equation Eq.(1.1) by using STP method. In Section 4, we discuss the self-conjugate and
anti-self-conjugate solutions of the studied quaternion conjugate matrix equation. Finally,
in Section 5, a brief summary of this paper is given.

The symbols used in this article are explained as follows. R/Q are denoted by the set
of the real/quaternion field. R"™ stands for the set of all real column vectors with order
n. R™*™/Q™>™ are denoted by the set of all real/quaternion matrices with order m x n.
Q11" Q" stand for the set of all the lower/upper triangle Toeplitz quaternion matrices
with order n x n. (A)IQ}1"/(A)IQ 4" stand for the set of all n x n (anti)I-self-conjugate
the lower /upper triangle Toeplitz quaternion matrices. (A)JQ}7"/(A)JQ{ " stand for the
set of all n x n (anti)J-self-conjugate the lower/upper triangle Toeplitz quaternion matrices.
(AKQ1" [(A)KQp4" stand for the set of all n x n (anti)K-self-conjugate the lower/upper
triangle Toeplitz quaternion matrices. A?, A7, A* stand for {4, j, k}-conjugate matrix of A,
respectively. I,, is denoted by unit matrix with order n. &) stands for the i-th column of
unit matrix I,,. AT /A% are denoted by the transpose/ M P inverse of matrix A. ®/x are
denoted by the Kronecker product/the semi-tensor product of matrices. || - || stands for the
Frobenius norm of a matrix or Euclidean norm of a vector.

Preliminaries

Definition 2.1 ([20]). Let a € Q, M € Q™*™, the norm of quaternion a = ag+ayi+azj+ask
, and the Frobenius norm of matrix M = My + Myi+ Msj + M3k are defined separately as

lall = v/llaoll® + lax[? + [laz ][ + Tlas]1, (2.1)
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and

1M} = /Moll? + [[M][2 + | M2 + [[ M52 (2.2)

Definition 2.2 ([6]). Let M = (M*') € Q™*", and M*" = M;"' + Ms'i + M5'j + M;'k,
where M7t M5t M5t M;t € R™*". Denote

(M?)* = Myt + M3'i — M35 — Mj'k, (2:3)
(M7)*t = Myt — M3t + M3'j — M;'k, (2.4)
(MF)st = Myt — Msti — M3'j + Mj'k, (2.5)

then M*® = (M%)t is defined i-conjugate matrix of M, M7 = (M7)! is defined j-conjugate
matrix of M, M* = (M*)*t is defined k-conjugate matrix of M. If M* = M, we call M i-self-
conjugate matrix. If M? = —M, we call M anti-i-self-conjugate matrix. The representation
of {j, k}-conjugates matrix is similar to that of i-conjugates matrix.

Definition 2.3 ([2]). Let M € R™*™ N € RP*9, the semi-tensor product of M and N
denoted by

MxN = (M ® It/n)(N ® It/p)v (26)
where ¢t = lem(n, p) is the least common multiple of n and p.
Remark 2.4. If n = p, obviously, there is M x N = M N.

Example. Suppose

2 —2'-1 1 o1
T s M N B =R
-2 =3 2 1 '

First, one can block matrix M and N into

My My,
M= My M| ,N= [NH ng} .
M3 M3
Then,

MxN=(M@IL)N®I)

9 9 1 1 -2 0 1 0
0 -2 0 1

=11 0 3 -3

9 _3 o 1 -3 0 2 0

- 0 -3 0 2

(-1 1 0 0
=|(-11 9 7 -6

-2 3 2 -1

[Mi1 x Ny + Mg x Nap Myq X Nyo + Mg X Nao
= | M2y X Nii + Maz X Noy Moy X N1z + Moz X Nag

| M31 X Ni1 + Msz X Nap Msy X Nig + M3zz X Nao
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Lemma 2.5 ([4]). Suppose F, G, H are quaternion matrices, A, u € R, then
(1) (Associative rule)

(FxG)x H=Fx (Gx H). (2.7)

(2) (Distributive rule)
Fx (A GxpuH)=M x G+ uF x H, (2.8a)
(AF + uG) x H = A\F x H + uG x H. (2.8b)

(3) Letw e R™, o € R", then

WX o=w®o. (2.9)

Lemma 2.6 ([4]). Let w € R', M € R™*™, then
wix M= (I, ®M)xw, (2.102)
M x wh =T x (I, ® M). (2.10b)

Definition 2.7 ([3]). Suppose that W, ,) € R™"*™" is defined as the swap matrix,

Wil =£5]n®5}m]n®5§w...,fn®5;’;] (2.11)
=0mn[l,...,(n=)m+1,....m,...,nm],
and 0y [y, ..., 4] is abbreviation of [0}, ...,8;7].
Remark 2.8. Especially, when m = n, one can denote W, := W, -
Lemma 2.9 ([3]). Let « € R™ and B € R", then
Win,n) X (ax B) = B x a, (2.12a)
(a” % BT) x Wiy n = BT x ol (2.12b)

Definition 2.10 ([3]). Let Q;(i = 0,1,...,n) be vector spaces. The mapping ® : 21 x Qg x
.. Qy — Qg is named as a multilinear mapping. If dim(€;) = k;, where (6,07 ,..., 6,];) is
the basis of €;, denote

@(5',111 : 671227 o 5%:) — 2750:1 /\21,j2,~~7jn5207 (2.13)

where j; =1,...,k;, t=1,...,n, then

{Npdzedn gy =1, kyy, t=1,...,m; s=1,...,ko}, (2.14)
is named as structure constants of ®.
11...kyp k1ka...kn
Ao )\h Lo /\11;; .
Adtelo Ag o QR
Mg = . . . , (2.15)
1.1 1.k Kexka. in
ko )\ko )\k; 2

and Mg is named as the structure matrix of ®.
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Next, we will give some conclusions of real linear system of matrix equations and real
vector representation of quarernion matrix.

Lemma 2.11 ([13]). The linear system of equations Az = b with A € R™*™ and b € R™,
has a solution x € R™ if and only if

AATh = b. (2.16)
In that case it has the general solution
r=Atb+ (I — At A)y, (2.17)
where y € R™ is an arbitrary vector.

Lemma 2.12 ([13]). The least squares solutions of linear system Ax = b with A € R™*"
and b € R™, can be represented as

r=Atb+ (I — At A)y, (2.18)

where y € R™ is an arbitrary vector. The minimal norm least squares solution of the linear
system Ax =b is ATb.

Definition 2.13 ([6]). Let a = ag + a1i + azj + ask € @, denote
UR(Q) = (a0aa1;a2;a3)T7 (219)

v®(a) is named as the real staking form of a.

Lemma 2.14 ([6]). Let a,b € Q, then
vR(ab) = Mg x vf(a) x v7(b), (2.20)

where the structure matriz Mg of multiplication of quaternion can be expressed as

1P 0000 -10 0O0TO0O -1000 0 -1
Mo — 0601001 0 0 0 OO O 1O0O0O-=-1 0
€“loo100 0 0-11 0 0001 0 0
ooo010 01 0 0-1 0 010 0 O

Definition 2.15 ([6]). Let a = (a1,az,...,a,), b= (b1,ba,...,b,)T be quaternion vectors,
where a;,b; € Q, (i =1,2,...,n). Denote

U:(al) U;(Zl)
oiay = | (:@) iy = | (:2) , (2.21)
UR(.an) UR(.bn)

in which v®(a) and v®(b) are named as the real staking form of quaternion vector a and b,
respectively.
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Definition 2.16 ([6]). Let M € Q™*", we denote

v (M) v (M)
v (Coly (M)) P vB(Row: (M)) ol
R ols v (Mml) R ows v (Mln)
) - <0:1<M>> T e - (R: any| |
vR(Coln(M)) UR(MI'”) UR(ROU.}m(M» ’UR(Mml)
vR(an) UR(an)
(2.22)

vE(M) /v (M) are named as the real column/row stacking form of M.

Remark 2.17. In addition, v/*(M) and v/*(M) can be transformed into each other. Then
we have
Wi, X v (M) = v (M), (2.23a)

Winm) & ve (M) = v (M). (2.23b)

Lemma 2.18 ([6]). Let a = (a1,a2,...,a,), @ = (a1, dz,-..,a,) and b = (b1, ba,...,b,)T
be quaternion vectors, a € R, then we have

vE(a +a) = vfi(a) + vfi(a), (2.24)
vE(aa) = av®(a), (2.25)
vf(ab) = Mq w 3701 {(0,)" & [Lan ® (8])7]} < v(a) x v(b). (2.26)

Lemma 2.19 ([6]). If M € Q™" M € QM*", N € Q"*P, o € R, then we have

(M + M) = o (M) + o (M), vF(M + M) = vf (M) + oF (M), (2.27)
vE(aM) = avE(M), vE(aM) = av(M), (2.28)
M| = v (M) = [[of (M), (2:29)
vB(MN) = G x vB(M) x vB(N), vB(MN) =G x vB(M) x vE(N). (2.30)
where
H x (67177,)T X [I4mn ® (5;)T] H x (671n)T X [I4mn ® (6;1))T]
H 5 (53)7 [T ® (53)7] H 5 (55)7 ¢ [Lin ® (82)7]
G = : , G = : ., (2:31)
H % (05,)" % [Lamn @ (65)"] H % (0)" % [Limn ® (35)7]
H < (077 % [Lagun @ (62)7] H < (07 % [Lamn @ (62)7]
and

H = Mg % 3221 {(9,)" % [11n ® (5,) ]} (2.32)
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The Main Results of Problems 1-8

In this part, we consider the minimal norm least squares Toeplitz solutions of quaternion
matrix equation (1.1). Part one, we discuss the minimal norm least squares lower triangular
Toeplitz solution and the minimal norm least squares upper triangular Toeplitz solution to
equation (3.1). In order to reduce the complexity of the problem, firstly, according to the
structural characteristics of the lower(upper) triangular toeplitz matrix, the independent
elements are extracted and arrange them in the real column stacking form, denoted as
vE(X), it can be proved that vZ(X) and v*(X) have the following relationship. Part two,
according to the properties of {i, j, k}-conjugate matrix, the relationship between the real
column stacking form and {4, j, k}-conjugate matrix is given, we research separately the
minimal norm least squares lower(upper) triangular Toeplitz {4, j, k}-conjugate solutions of
equation (3.31).

The main results of Problems 1-2
First, we will begin to study the following equation
MX — XN =GY +R. (3.1)
Theorem 3.1. Let X = [X1, Xo,..., X, € Q11" Y = [Y1,Y>,....Y,] € Q}1", then
WB(X) = KoR(X), vR(Y) = KvR(Y), (3.2)
in which
vf(Xy) v(Y1) K, Kim

(3.3)
and
Axdn s r<m
3.4
{ o~ m+1 ®I4, r>m. (3:4)

1, Y2, ..., Y,), by Definition 2.16 and K,,,vE(X) =

Proof. Let X = (Xl,XQ,.. ,Xn), Y = (Y1,
1 <m < n), so we can obtain

UR(Xm)a Kmv?(y) (Ym) (1<

v™(X1) Kol (X)

VR(X) = Al I e — KuR(X), (3.5)
v(X,) KnuiH(X)
vB(Y7) KvR(Y)

ST Rl B g e (36)
UR(:Yn) Knv;%(Y)

Therefore, the proof process is as above. O



316 W.-H. CHEN, C.-Q. SONG AND M.-R. XU

Theorem 3.2. Let M,N,G,R € Q™*"™, denote
O =[G x vE(M) x K — G} X Wiy X Wigne) X 0F(N) x K, —GY x o[/(G) x K], (3.7)

where Gy, G;, Glll have the same structure as G, G in Lemma 2.19 excepting for the

R
dimension, and ¢ = { v%(X)

oR(Y) } . Then the set L of Problem 1 can be represented as

L= Wi = () (XY € Q150 = O uli(R) + (T, ~ O* O Wy € B}, (39

and the minimal norm least squares lower triangular Toeplitz solution 1y, satisfies
Y = OTvE(R). (3.9)
Proof. By Remark 2.17 and Lemma 2.19, we can get

IMX — XN - GY -
= [vB(MX — XN - GY — R)||
= [lod (MX) — (XN) v (GY) = vl(R)|

= |G, W) o (X) Gy < v (X) w0 f(N)
—Gy %0 (G) x v (Y) — vl (R )H
= /Gy x FH(M) s v2(X) — G 5 Wiy < w(X) w ()
~Gy % v (G) x vf(Y) — o (R)|
= ||G1 X ’Uﬁ(A) X ’U?( ) Gl X W[n] X W[4n2] X ’U?(N) X Uf(X) (310)

—Gy x v (G) x o (Y) —vB(R)|
= |Gy x vH(A) x Kol(X) — G} x Wiy X Wigpz) X vE(N) x KoF(X)

S

—Gy x 0, (G) x Kvi(Y) — v (R)]|
= [[G1 x v (A) X K — G} X Wiy X Wigne) X 0F(N) x K, —G} x 0(G) x K]
Uf(X) R
R } o (R)|
= [0y — v (R)]| -
Therefore
|[MX — XN — GY — R| = min (3.11)
if and only if
|0y — vE(R)|| = min. (3.12)

For the real matrix equation
Oy = vf(R). (3.13)

According to Lemma 2.12, its least squares lower triangular Toeplitz solutions can be written
as

¥ = O vl (R) + (Is, — OFO)y, Wy € R*". (3.14)

Hence we can obtain the formula (3.8).
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Notice

min W, <— min .
WQLTEQ%"TH Qrrll ¢L6R8n||1/)L|| (3.15)

Then, by the prior proof, 1;, € L of Eq.(3.1) satisfies
Y = OtvB(R). (3.16)
Thus, the formula (3.9) holds. O

Corollary 3.3. Suppose that M, N,G,R € Q"*™ O and 1 are the same as Theorem 3.2.
Then Eq.(3.1) has a solution over Q%" if and only if

(00T — Ii2)vE(R) = 0. (3.17)
If (3.17) holds, the solution set of Eq.(3.1) over Q75" can be represented as

X

Z:{W|W:(Y

) (X,Y € Q75™), 0 = Ol (R) + (Is, — OTO)y, Yy € R®"}. (3.18)

Moreover, the minimal norm lower triangular Toeplitz solution over Q71" satisfies

Y = OTvE(R). (3.19)
Proof. Eq.(3.1) has a solution over ¢, € Q77" if and only if
IMX — XN —-GY — R|=0. (3.20)

Combined Theorem 3.2 with OOTO = O, we can obtain

IMX ~XN=GY = R| =[O0 —vf(R)| = [00*06 —vER)| 521)
= 00TV (R) = v (R)|| = (00T = L2 )v . (R)]-
So, it can be derived
[MX - XN—-GY —R|=0 < [|(00F — I,2)vE(R)|| =0
o (00F — Iy R (R) = 0. (3.22)
Therefore, it can be concluded that Eq.(3.1) is compatible and its solution satisfies
Oy = vE(R). (3.23)
Moreover, by Lemma 2.11, its solution Wg, . satisfies
Y = O vE(R) + (Is, — OTO)y. (3.24)

And then we can get the minimal norm lower triangular Toeplitz solution 1, satisfies
Y = OtvB(R). (3.25)
Therefore, we finish the proof. O

In the followng, we will to solve Problem 2. The process of proof is similar to the above
conclusion, and we omit it here.
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Theorem 3.4. Let M,N,G,R € Q™*"™, denote

0= [a; X Uﬁ(M) X IN(—E?V; X W[n] X W[4n2] X UE(N) X I?7—é? X Uﬁ(G) X K}, (3-26)

where Cflvl, G|, GY have the same structure as G, G’ in Lemma 2.19 excepting for the

R
dimension, and ¢ = [ ZSRE);; } . Then the set U of Problem 2 can be represented as
U={W|W= < if > (XY e Q}5), v = 6*1}5’(]%) + (Ign — 5*5)3/, Vy € R}, (3.27)

In the case, the minimal norm least squares upper triangular Toeplitz solution ¥y of Eq.(3.1)
satisfies

Yu = Ot (R). (3.28)
in which

’UR(Xl) ’UR(Yl) Kl Klm

7K: Km 7K7n: Krm ,m:1,2,...7’},,

(3.29)
and
O4><4n; r> m,
K., = 3.30
{ (@TﬂH)T @Iy, T<m. (3:30)

The main results of Problems 3-8

According to the method proposed in the subsection 3.1, we will continue to solve Problems
3-8. First of all, based on the properties of {3, j, k}-conjugate quaternion matrix, we give
the relationship between {i, j, k}-conjugate quaternion matrix equation

MX — XN =GY +N, X ={X' X7, XF}, (3.31)

and its real column stacking form of matrix equation. Next, we construct the expressions of
minimal norm least square {i, j, k}-conjugate solutions.

Now, we start with studying the related property of i-conjugate matrix and give the
related theorems and conclusions.

MX — X'N =GY + N. (3.32)
Theorem 3.5. Let X = (2),,x, € Q5" with 2° = x5t + a5ti + x5’ + 'k, then
VB(XY) = pu(X), (3.33)

where

p=1L>®RY and R = (3.34)

co o
cor o
|
—_
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Proof. By using Definition 2.2, we can get

Ril)vR(x“)

Rfll)’UR(l'nl)

R£1)0R<$nn)
ROV x vF(X))] RV x (814)7 x vf(X)

n2 c

= Rff)[(é”l)T. xof(X)) | = | RYY x (63!)T x vE(X) (3.35)

AV 0m)T s ur (1)) \RD w (0m2)7 e uR(x)

n2 n?2
(17 @ RV

V(X)) = (L2 @ R wE(X).

n2

n . 1
(@77 @ Ry

nn - 1
(67" © RV

Thus, the proof is finished. O

According to the previous conclusions, we now resolve problems 3-4.
Theorem 3.6. Let M,N,G,R € Q™*™, denote

P =[Gy x v (M) x K — Gy X Wiy X Wigne) X 02(N) x p x K, —Gy x 0F(G) x K],(3.36)

c

where Ga, GIQ, GIQ/ have the same structure as G, G’ in Lemma 2.19 excepting for the
R .
dimension, K is the same as Theorem 3.1, and ¥ = [ Z}cgf(; } . Then the set L of Problem

8 can be represented as

L= {Wilwi = ( ); ) (X,Y € Qpx™), ¢ = PYoB(R) + (Is, — PTP)y, Vy € R*"}.(3.37)

In this case, the minimal norm least squares lower triangular Toeplitz i-conjugate solution
Y satisfies

Wi = PHol(R). (3.38)



320 W.-H. CHEN, C.-Q. SONG AND M.-R. XU

Proof. By Remark 2.8, Lemma 2.19 and Theorem 3.5, we can get

|MX — XN - GY — R|
= |[vB(MX — XN - GY — B
= [0 (MX) = v (X'N) = vF(GY) — v (R)]

||Gg X vy (M) X UR( ) — G2 X vR(X ) X vE(N)

—Gy v (@) x oY) = 0B (R)| |

= 11Ga x vy (M) 5<X>—G2 X Wi X 0E(X7) x 0 (N)

—Gy v (@) x oY) = oF(R)| |

= [|G2 x vl (A) X v (X) = Gy X Wi X Wigge) % 0F(N) s 0B (X7)

~Gy x of(G) x oB(Y) — vE(R)| (3.39)

= [|Ga x v (A) x vE(X) — Gy x Wi X Wignz) % 0F(N) x p x vF(X)
—Gy x vf(G) X vR(Y) — vl (R)|
=[IG> x vf (A) x Kol'(X) — G; X Win) X Wianz) X vE(N) x p x Kvl(X)
—Gy x v(G )xKv (V) = v (R)|
= G2 D<’U RBA)x K — G2 D<W[n] X Wianz) X vE(N) x p x K, —Gy % vF(G) x K]

/—?
e

i |
i
Therefore
IMX — XN — GY — R|| = min (3.40)
if and only if
|Pv — vE(R)|| = min. (3.41)

For the real matrix equation
Py = vE(R). (3.42)

According to Lemma 2.12, its least squares lower triangular Toeplitz i-conjugate solutions
can be written as

¢ = PYoR(R) + (Is, — P+ P)y, Vy € R®". (3.43)

Hence we can obtain the formula (3.37).
Notice

min_|[Wg: || <:>wmm [YLl]- (3.44)

Qpp =~ LT
Then, by the prior proof, ¢: € L' of Eq.(3.32) satisfies
Y = PYoR(R). (3.45)
Thus, the formula (3.38) holds. O

Corollary 3.7. Let M,N,G,R € Q™ "™, P and v be the same as Theorem 3.6. Then
Eq.(3.32) has a solution over Q"X" if and only if

(PP — Iy2)vE(R) = 0. (3.46)
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If (3.46) holds, the solution set of Eq.(3.32) over Q75" can be represented as

X

Li = {WiWi = (Y

) (X,Y € QU5™), 4 = PYoR(R) + (Is, — P*P)y, Yy € R®"}.(3.47)

Moreover, the minimal norm lower triangular Toeplitz i-conjugate solution over Q77" sat-

isfies
Y = PHoR(R). (3.48)
Proof. Eq.(3.32) has a solution over ¢ € Q71" if and only if
IMX — XN — GY — R = 0. (3.49)

Combined Theorem 3.6 with PPt P = P, we can obtain

IMX ~ XN~ GY ~ R| =[Py~ vR(R)| = | PP* Py — o (R)| (3.50)
=[PP (R) = vf(R)|| = [(PPT — Lip2)vf (R
So, it can be derived
[MX — XN —-GY —R||=0 <& [[(PPt — I,2)vE(R)||=0 (3.51)

& (PPt — Iy )vE(R) = 0.
Therefore, it can be concluded that Eq.(3.32) is compatible and its solution satisfies
Py =vE(R). (3.52)
Moreover, by Lemma 2.11, its solution WQiL . satisfies
Y = PTol(R) + (Is, — PTP)y. (3.53)

And then we can get the minimal norm lower triangular Toeplitz i-conjugate solution vy,
satisfies

Y = PToR(R). (3.54)
Therefore, we complete the proof. O

Theorem 3.8. Let M,N,G,R € Q™"*"™, denote
P =[Gy x vB(M)x K — CA?; X Wing X Wiane) X 0F(N) % p x K, —CA%' x B (G) x K],(3.55)

where 6/2, Gy, Gy have the same structure as G, G’ in Lemma 2.19 excepting for the

R
dimension, and ¢ = { ZSR((;'()) } . Then the set U* of Problem 4 can be represented as
Ui = {(Wi{W' = ( )}f > (X,Y € Qs ¢ = PToB(R) + (Is, — PTP)y, Yy € R®"}.(3.56)

Moreover, the minimal norm least squares upper triangular Toeplitz i-conjugate solution Yy
satisfies

Yy = PToli(R), (3.57)



322 W.-H. CHEN, C.-Q. SONG AND M.-R. XU

in which

(3.58)
and
O4xan, T >m,
Ky = 3.59
{ ) L, r<m. (3.59)

By analogy with Problems 3-4, we will consider the related property of {j,k}-conjugate
quaternion matrix to solve Problems 5-8. The solution process of {jk}-conjugate is similar
to {i}-conjugate, so we only give its corresponding theorem and corollary, and the proof is
omitted.

Now, we start to consider the related property of j-conjugate quaternion matrix to solve

Problems 5-6.
MX — X'N =GY + N. (3.60)

Theorem 3.9. Let X = ()5, € Q7" with x%* = {4+ x5t + x5'j + 23k, then

vE(X7) = oul(X), (3.61)
where
1 0 0 O
p=LeeR? and RP =) 7 0 (3.62)
0 0 0 -1

Theorem 3.10. Let M,N,G,R € Q™*", denote
S = [G3 x vE(M) x K — Gy x Wiy x Wigne) X 0F(N) x 0 x K, —Gy x vl(G) x K],(3.63)

where G, Gé, Gg have the same structure as G, G in Lemma 2.19 excepting for the

dimension, K is the same as Theorem 3.1, and ¢ = [ ZSR((‘;()) ] . Then the set L’ of Problem

=

5 can be represented as

X

L= {Wilwi = ( v ) (X,Y € Q17"), ¢ = STwE(R) + (Isn — STS)y, Yy € R®"}.(3.64)

In addition, the minimal norm least squares lower triangular Toeplitz j-conjugate solution
Yri satisfies

Yri = STl (R). (3.65)
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Corollary 3.11. Let M, N,G,R € Q"*"™, S and 1 be the same as Theorem 3.10. Then
Eq.(3.60) has a solution over Q71" if and only if

(SS* — L2 )vE(R) = 0. (3.66)
If (3.66) holds, the solution set of Eq.(3.60) over Q75" can be represented as

X

Li = {WiW? = ( Y ) (X,Y € Qpy™), v = STl (R) + (Isn — S*S)y, Wy € R¥"}.(3.67)

Moreover, the minimal norm lower triangular Toeplitz j-conjugate solution over Q1" sat-

isfies
Yri = STul(R). (3.68)

Similarly, according to the solution process of Problem 5, and we can obtain the following
theorems to solve Problem 6.

Theorem 3.12. Let M,N,G,R € Q™*"™, denote

S = [G3 x vB(M) x fec?;) X Win X Wiggz) X (V) x 6 x IN(,—CA}’;' x vR(G) x K],(3.69)

where a‘;,, Gs, Gj have the same structure as G, G in Lemma 2.19 excepting for the

v (X)

dimension, and ¢ = { USR(Y) } . Then the set U’ of Problem 6 can be represented as

X

Ul = {WI|Wi = < v ) (X,Y € Qpx™m), 9 = STl (R) + (Is, — StS)y, Yy € R*"},(3.70)

and the minimal norm least squares upper triangular Toeplitz j-conjugate solution vy; sat-
isfies

Yus = STl (R), (3.71)

in which

K=|Kr,| Kn=|K.,, | m=12. n,

(3.72)
and
K _ O4><4na r> m, (3 73)
L (emY e, r<m. '

By analogy with Problems 5-6, we start to consider the related property of k-conjugate
matrix to solve Problems 7-8.

MX — XkN = GY + N. (3.74)
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Theorem 3.13. Let X = (2%),x, € Q13" with x°" = x5t + x5t + x§'j + x5k, then

v XF) =l (X), (3.75)
where
1 0 0 0
3 3 0 -1 0 O
n=1I,®RY and R = 0 0 -1 0 (3.76)
0 O 0 1

Theorem 3.14. Let M,N,G, R € Q"*", denote
T =[Gy x vE(M) x K — Gy x Wiy X Wignz) X vE(N) x 1 x K, —G x vl(G) x K],(3.77)

-
where Gy, G:p GZ have the same structure as G, G in Lemma 2.19 excepting for the

R
dimension, K is the same as Theorem 3.1, and ¥ = [ ZSR((;()) ] . Then the set LF of Problem

7 can be represented as

X

k _ k k _
LF = {Whw _<Y

) (X,Y € Q75"), b = THol(R) + (Is, — THT)y, Vy € R®"},(3.78)
and the minimal norm least squares lower triangular Toeplitz k-conjugate solution 1 sat-
isfies

Y = TToE(R). (3.79)

Corollary 3.15. Let M, N,G, R € Q"*™, T and v be the same as Theorem 3.14. Then
Eq.(3.74) has a solution over Q71" if and only if

(TT — Ity )vE(R) = 0. (3.80)
If (3.80) holds, the solution set of Eq.(3.74) over Q7" can be represented as

X

Tk — E\pk —
Lk = {WhW _(Y

) (XY € QU0 =T (R + (T ~ TV T, ¥y € B,
(3.81)

Moreover, the minimal norm lower triangular Toeplitz k-conjugate solution over Q1" sat-
isfies
VYrx = TToE(R). (3.82)

Similarly, according to the solution process of Problem 7, and we can obtain the following
theorems to solve Problem 8.

Theorem 3.16. Let M,N,G, R € Q"*", denote

T

T =[Gy x vB(M) x K — EJQ X Winy X Wianz) X vE(N) x 7 x f(,—éz x vE (@) x K],(3.83)

where Gy, G, Gy have the same structure as G, G in Lemma 2.19 excepting for the

v (X)

dimension, and ¢ = [ v‘}'g(y) } . Then the set U of Problem 8 can be represented as
S

Ur = {(Whwk = ( ); ) (X,Y € Qpat), ¢ = Tl (R) + (Is, — T*T)y, Vy € R*"}.
(3.84)
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In this case, the minimal norm least squares upper triangular Toeplitz k-conjugate solution
Yyr satisfies

Yor = TTol(R), (3.85)

in which

(3.86)
and
O4xan, T >m,
K., = 3.87
{ (5;:(1,77‘4»1),11 ®I4, r<m. ( )

Special Cases

In this part, we study some special cases of Problems 3-8, and give the minimal norm least
squares lower(upper) triangular Toeplitz (anti){4, j, k }-self-conjugate solutions of the studied
quaternion matrix equation.

i-self-conjugate and anti-i-self-conjugate solutions

Based on the characteristics of i-self-conjugate matrix, by adjusting some elements of Ril)
in Theorem 3.5, we can obtain the following Theorem 4.1. Then, we use Theorem 3.1 to
extract Independent elements and reduce the calculation scale, and then derive the following
related theorems.

Theorem 4.1. Suppose that X = (z¥) € IQT1" with x°' = z§' + x5ti + x5'j + x5k, denote

vE(X) = [x1t, 23, ot ant T (4.1)
then the relation
vB(XT) = pof(X) = p Kvl(X) = p KVuf{(X) (4.2)
holds, in which
1 0 00
p =I.oRY), RY) = 8 (1) 8 8 and V = 69p2[1,2,5,6,...,4n — 2]. (4.3)
0 0 00

Theorem 4.2. Let M,N,G,R € Q™*"™, denote

P’ =[Gy x v{ (M) x K — Gy x Wipy X Wignz) X vE(N) % p' x K, —Gy x vf{(G) x K]V,
(4.4)
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where Go, G;, Gg have the same structure as G, G in Lemma 2.19 excepting for the

R
dimension, K is the same as in Theorem 3.1, and * = { vtR(X) } . Then the set I, of

v (Y)
solution can be written as

I = {WiWi= (iﬁ) (XY €IQEEM), 6 = (P ) ol (R) + (Lin — (P)*(P))y, Wy € R},

(4.5)
Moreover, the minimal norm least squares lower triangular Toeplitz i-self-conjugate solution
Yy, satisfies

vr, = (P)Tol(R). (4.6)

Corollary 4.3. Let M,N,G,R € Q™*", P' and o' be the same as Theorem 4.2. Then
Eq.(3.32) has a lower triangular Toeplitz i-self-conjugate solution if and only if

(P) (P = L2 )of (R) = 0. (4.7)

If (4.7) holds, the lower triangular Toeplitz i-self-conjugate solution set of Eq.(3.32) can be
represented as

T T X
IL:{W|W—<Y

) (XY eIQr"),
U= (P) ol (R) + (I — (P

TPy, Yy € R}

(4.8)

Moreover, the minimal norm lower triangular Toeplitz i-self-conjugate solution satisfies
Y1, = (P) Tl (R). (4.9)
Theorem 4.4. Let M, N,G, R € Q™"*", denote

P’ =[Gy x vB(M) x K — G X Win) X Wignz] X 0F(N) x p' x K,~Gjy % vR(G) x K]V,

T

(4.10)
where 6’;, Gy, G5 have the same structure as G, G in Lemma 2.19 excepting for the
) R
dimension, and ' = { Zthf; } . Then the set Iy of solution can be written as
t

X

==

R ~t~
) (XY €1Qur") ' =P vl(R)+ (Isn — P' P')y, ¥y € R*"}.

(4.11)
Moreover, the minimal norm least squares upper triangular Toeplitz i-self-conjugate solution
Y1, satisfies

Y1, = P vR(R), (4.12)

in which

(4.13)
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and

O4xdn, T >m,
K., = 4.14
{ (5;“7T+1)T Iy, r<m. ( )

In order to research anti-i-self-conjugate solution, according to the characteristics of
anti-i-self-conjugate matrix, by adjusting some elements of Rfll) in Theorem 3.5, we can
get the following Theorem 4.5. Meanwhile, by combining the above conclusions with the
Theorem 3.1, we extract independent elements and reduce the calculation scale, then derive
the following theorems.

Theorem 4.5. Suppose that X = (z) € AIQ;"™ with x5t = x5t + x5t + a5t + x§'k,
denote

vH(X) = [adh 2l agt et (4.15)
then the relation
WB(XY) = p vR(X) = p" KuB(X) = p' KV vE(X) (4.16)
in which
00 O 0
f=rea@), B =00 0| and V=60347.8, . 4n)
00 0 -1

(4.17)
Theorem 4.6. Let M, N,G, R € Q™*"™, denote

P’ =[Gy x v{(M) x K — Gy x Wipy X Wigpz) X vE(N) x p” x K, —Gy x vf{(G) x K]V
(4.18)
where Ga, GIQ, G/Q/ have the same structure as G, G in Lemma 2.19 excepting for the

/ 0.6
dimension, K s the same as Theorem 3.1, and ¢* = [ ZtREY)) } . Then the set Al;, of
t/

/
)

solution can be written as

X
Y

12

) (XY € ATQUEM), b7 =(P" ) o (R)+ (I — (P (P )y Sy € RV

(4.19)
Moreover, the minimal norm least squares lower triangular Toeplitz anti-i-self-conjugate
solution Y ay, satisfies

AIL{WZ'|WZ'<

"

Yar, = (P )ToE(R). (4.20)

Corollary 4.7. Let M, N,G,R € Q"*", P" and wil be the same as Theorem 4.6. Then
Eq.(3.32) has a lower triangular Toeplitz anti-i-self-conjugate solution if and only if

(P)(P)T = Lin2)of(R) = 0. (4.21)

If (4.21) holds, then the lower triangular Toeplitz anti-i-self-conjugate solution set of
Eq.(3.32) can be represented as

X
Y

12 "

)7(X,Y6AIQZ§”)7W,=(P JE(R)+(Lin— (P")* (P7))y, Wy € R}
(4.22)

A‘sz{Wﬂwi:(
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Moreover, the minimal norm lower triangular Toeplitz anti-i-self-conjugate solution satisfies
Yar, = (P") Tl (R). (4.23)
Theorem 4.8. Let M, N,G, R € Q™"*"™, denote

P’ =[Gy x vB(M) x K — 5'2 X Wi X Wiane) X 02(N) x p” IN(,—C/}’V'Q' x v (G) x K]V,

T

(4.24)
where CTQ, Gy, G5 have the same structure as G, G in Lemma 2.19 excepting for the
/ ~X
dimension, and Y = [ ZtREY; } . Then the set Aly of solution can be written as
t/

X

Aly = {Wi W _(Y

s ~—
)’(X’YEAIQ%"W — P 0B (R)+ (I~ P P")y, Vye R},

(4.25)
and the minimal norm least squares upper triangular Toeplitz anti-i-self-conjugate solution

Yar, satisfies

+
Yar, =P vl(R), (4.26)

in which

(4.27)
and
. O4xan, 7 >m, (4.28)
e (5;;1—r+1)T @ L, r<m. '

j-self-conjugate and anti-j-self-conjugate solutions

Similar to the solution process of (anti)i-self-conjugate solution, according to the properties
of (anti)j-self-conjugate matrix, we can get the relevant (anti);j-self-conjugate solution.

Theorem 4.9. Suppose that X = (2¥7) € JQ5" with z° = x5! + x5ti+ x5t j + 25k, denote
vB(X) =[xl 2l 2t 2nt) T (4.29)

a

then the relation
vE(X7) =0 0B(X) =0 KvR(X) = 0 KHvE(X) (4.30)
holds, in which

0 =10 (R, (RY) = and H = 63,2[1,3,5,7,...,4n — 1]. (4.31)

S o o
O O OO
SO = OO
O O OO
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Theorem 4.10. Let M,N,G,R € Q™*"™, denote

S" =[Gy x v (M) x K — Gy X Wiy X Wignz) X vE(N) x 6 x K, ~Gy x 0f(G) x K]H,
(4.32)
where Ga, GIQ, G/Q/ have the same structure as G, G in Lemma 2.19 excepting for the

R
dimension, K is the same as Theorem 8.1, and v = [ Z‘}%((‘;f)) ] . Then the set Jp of
solution can be written as ’
. . X nxn . ’ ’ ’
Jo={Wi Wi = (y) (XY € TQE) =(8' Vo (R)+ (Lin — (S (S Ny, Vye R,

(4.33)
and the minimal norm least squares lower triangular Toeplitz j-self-conjugate solution s,
satisfies

v, = (8")Tl(R). (4.34)

Corollary 4.11. Let M,N,G,R € Q"*", S and v be the same as Theorem 4.10. Then
Eq.(3.60) has a lower triangular Toeplitz j-self-conjugate solution if and only if

’

((S)(S')* = Lip2)wF(R) = 0. (4.35)

If (4.35) holds, the lower triangular Toeplitz j-self-conjugate solution set of Eq.(3.60) can
be represented as

— . . X . ’ ’ 7
JL={W’|W? = ( Y ) (XY €JQu"), '=(S) Pl (R)+(Lan — (S)T(S))y, Yye R}
(4.36)
Moreover, the minimal norm lower triangular Toeplitz j-self-conjugate solution satisfies
¥y, = () ol (R). (4.37)

Theorem 4.12. Let M, N,G, R € Q"*"™, denote

S =[Gy x vE(M) x K — CZ X Wi X Wignz) X 0F(N) x p' % K, —672/ x v (G) x K]H,

- (4.38)
where é’;, Gy, Gy have the same structure as G, G in Lemma 2.19 excepting for the
vg (X)

a

dimension, and 17 = { wR (V) } . Then the set Jy of solution can be written as
X

_ 7 J —
Ju ={WI|W. _(Y

) (XY €JQM, i =8 0B (R) + (Lin — S’ §')y, Vye R*™}.(4.39)

Moreover, the minimal norm least squares upper triangular Toeplitz j-self-conjugate solution
Vg, satisfies

by =S 0R(R), (4.40)

(&

in which
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and

O4xdn, T >m,
Ky = 4.42
{ r—r ) o1, r<m. (4.42)

In order to research anti-j-self-conjugate solution, according to the characteristics of
anti-j-self-conjugate matrix, by adjusting some elements of Rf) in Theorem 3.9, we can
get the following Theorem 4.13. Meanwhile, by combining the above conclusions with the
Theorem 3.1, we extract independent elements and reduce the calculation scale, then derive
the following theorems..

Theorem 4.13. Suppose that X = (z9) € AJQ}L" with z°' = x5t + x§ti + x§'j + x5k,
denote

vB(X) = [z, 2t ant 2T (4.43)
then the relation
vB(X7) = 0"vE(X) = 0" KvF(X) = 0" KH v} (X) (4.44)
in which
0 0 0 O
0" =1, ®(R?), (R?)’ 8 ‘01 8 8 and H' = 5yp2[2,4,6,8,...,4n].
0 0 0 -1

(4.45)
Theorem 4.14. Let M, N,G, R € Q"*"™, denote

’

8" =[G x v(M) x K — G x Wiy X Wigne) X vE(N) x 07 x K, Gy x vE(G) x K|H',
(4.46)
where Go, le GIQ/ have the same structure as G, G in Lemma 2.19 excepting for the

’

_/ R(x
dimension, K is the same as Theorem 3.1, and {7 = [ Z%EY; } . Then the set AJy, of

solution can be written as

X

AJy = {Wi|Wi = (Y

)XY EATQRE), 07 (8 Yo )+ (T (88 DR,
(4.47)

and the minimal norm least squares lower triangular Toeplitz anti-j-self-conjugate solution
YAy, satisfies

1"

Yag, = (S ) vE(R). (4.48)

Corollary 4.15. Let M,N,G, R € Q"*", S" and wj, be the same as Theorem 4.14. Then
Eq.(3.60) has a lower triangular Toeplitz anti-j-self-conjugate solution if and only if

((S)(S")F = Ly )oF(R) = 0. (4.49)

If (4.49) holds, the lower triangular Toeplitz anti-j-self-conjugate solution set of Eq.(3.60)
can be represented as

X
Y

1" 1"

),<X,YeAJQz;”)7W'=<S JE(R)+(Lin—(S")H(S™))y, Wy € R}
(4.50)

AAJ/L:{Wj|sz(
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Moreover, the minimal norm lower triangular Toeplitz anti-j-self-conjugate solution satisfies
Yag, = (S")TE(R). (4.51)
Theorem 4.16. Let M, N,G, R € Q™*"™, denote

§" =[Ga x vB(M) x K — CAT‘; X Win) X Wigne] X 0(N) x 07 x f(,—é;’ x vE(G) x K]H',
(4.52)

where /GVQ7 évlg, C:'Z’ have the same structure as G, G in Lemma 2.19 excepting for the
0 R(X
dimenston, and P! = [ Z% ((Y§ } . Then the set AJy of solution can be written as
X

AJU:{WJWJ:<Y

S ~ et~
>’(X3Y€AJQ7[}>7<’R)7¢j =8" 0 (R)+(Isn—5" S")y, YyeR"},

(4.53)
and the minimal norm least squares upper triangular Toeplitz anti-i-self-conjugate solution
YAy, satisfies

Yag, = S"+UR(R)7 (4.54)

in which

(4.55)
and
g 04><4nv r>m,
Krm - { (5::1_7.4_1):’1 ® .[4, r S m. (456)

k-self-conjugate and anti-k-self-conjugate solutions

Similar to the solution process of (anti)i-self-conjugate solution, according to the properties
of (anti)k-self-conjugate matrix, we can get the relevant (anti)k-self-conjugate solution.

Theorem 4.17. Suppose that X = (2¥) € KQ}5"™ with x = x§' + x5t + 5% + 2§'k,
denote

vP(X) = [zt bt 2t 2T (4.57)
then the relation
vE(XF) = 0 ol (X) = Ko (X) = 1 KJof'(X) (4.58)
holds, in which

n =1Ie® (R, (RY) = and J = 83,2[1,4,5,8,...,4n]. (4.59)

o O oo
o o oo
_— o o o

o O O
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Theorem 4.18. Let M,N,G, R € Q™*", denote

T = [Ga x v(M) x K — Gy x Wiy X Wignz) X 0 (N) x ' x K, —Gy x vf(G) x K]J,
(4.60)
where Ga, G;, Gg have the same structure as G, G in Lemma 2.19 excepting for the

R
dimension, K is the same as Theorem 3.1, and % = [ U%(X) } . Then the set K of

Uy (Y)
solution can be written as

X
Y

’

>7(X7Y€KQ7£§“H)7¢,€:(T ) Fof (R)+ (L — (T')T(T'))y, Vy € R*"Y,

(4.61)
and the minimal norm least squares lower triangular Toeplitz k-self-conjugate solution Vi,
satisfies

KL:{Wk|Wk:(

Vi, = (T ol(R). (4.62)
Corollary 4.19. Let M,N,G, R € Q™*™, T and ¥* be the same as Theorem 4.18. Then

Eq.(3.74) has a lower triangular Toeplitz k-self-conjugate solution if and only if

’ ’

(T')(T')* = Ly 0B (R) = 0. (4.63)

If (4.63) holds, the lower triangular Toeplitz k-self-conjugate solution set of Fq.(3.74) can
be represented as

X
Y

/

)mmmz;’l)?w:<T’>+v5<R>+<f4n—<T V£ (T )y, VyeR™).

(4.64)
Moreover, the minimal norm lower triangular Toeplitz k-self-conjugate solution satisfies

E:{W’ﬂw’c:(

Vi, = (T) 0l (R). (4.65)

Theorem 4.20. Let M, N,G, R € Q"*"™, denote

T =[Gy x vE(M) x K — 672 X Wi X Wignz] X 0F(N) x 7' % [N(,—CA?;' x B (G) x K)J,
(4.66)
where 6’;, Gy, G5 have the same structure as G, G in Lemma 2.19 excepting for the
R
0 (X)

dimension, and ¥ =
o= i

] . Then the set Ky of solution can be written as
X

_ k k_
Ky ={W*w _<Y

),<X,YeKQzXT”>,w=T' OR(R)+(Lin T T')y, Yy R},

(4.67)
and the minimal norm least squares upper triangular Toeplitz k-self-conjugate solution Y,
satisfies

Vi, =T vE(R), (4.68)
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in which

(4.69)
and
O4xan, T >m,
Ky = 4.70
{ (5;nfr+1)T ® 1'4’ r<m. ( )

In order to research anti-k-self-conjugate solution, according to the characteristics of
anti-i-self-conjugate matrix, by adjusting some elements of Rff’) in Theorem 3.13, we can
get the following Theorem 4.21. Meanwhile, by combining the above conclusions with the
Theorem 3.1, we extract independent elements and reduce the calculation scale, then derive
the following theorems.

Theorem 4.21. Suppose that X = (z9) € AKQ}X" with 2%t = 25t + a8t + 25'j + 2§'k,
denote

vf, (X) = [o3t, 2t o ant 2T (4.71)
then the relation
VB(XF) = 5 vB(X) = 0" KoR(X) = 0" KV vB(X) (4.72)
holds, in which
0 0 0 O
n =ILee (R, (RY) = 8 _01 31 8 and J = 65,2[2,3,6,7,... 4n — 1].
0 0 0 0

(4.73)
Theorem 4.22. Let M, N,G, R € Q"*"™, denote

’

T" =[Gy vE(M) x K — Gy 5 Wiy % Wign) X vE(N)

r

x K, —Gy x vF(G) x K|J,
(4.74)
where Ga, Go, G4 have the same structure as G, G in Lemma 2.19 excepting for the

' 10
dimension, K is the same as Theorem 3.1, and ¥* = [ Z%‘((Y)) } . Then the set AK of
b/

solution can be written as

X

_ k k_
AK ={Wh[W _(Y

Y € ARQE) 0¥ (VB () + L= (VT Ve R,
(4.75)

and the minimal norm least squares lower triangular Toeplitz anti-k-self-conjugate solution
YAk, satisfies

VYax, = (T")ToB(R). (4.76)
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Corollary 4.23. Let M, N,G, R € Q"*", T" and 1/)’“/ be the same as Theorem 4.22. Then
Eq.(3.74) has a lower triangular Toeplitz anti-k-self-conjugate solution if and only if
(4.77)

"

(T")T")F = Lin2)vE(R) = 0.
If (4.77) holds, the lower triangular Toeplitz anti-k-self-conjugate solution set of Eq.(3.74)

can be represented as

— X
AKL—{Wk|Wk—< ),(X,YGAKQ"X”),
Y v (4.78)

OF =(T" V0B (R)+ (L — (T (T"))y Wy € R
Moreover, the minimal norm lower triangular Toeplitz anti-k-self-conjugate solution satisfies

Yar, = (T")*vE(R). (4.79)
Theorem 4.24. Let M, N,G, R € Q"*"™, denote
T" =[Gy x vB(M) x K — (372 X Wi X Wianz] X 0 (N) x5 x IN(,—C?Q' x vE(G) x K|J,
(4.80)

where CTQ, Gy, G5 have the same structure as G, G in Lemma 2.19 excepting for the

vg(X) . .
vy | Then the set AKy of solution can be written as

b/

’
dimension, and *

I ~
ARy = {WHW* = ("; >,(X,Y€AKQ§}XT"),1/)’“ T R (R (LT )y, Vye R,
(4.81)

Moreover, the minimal norm least squares upper triangular Toeplitz anti-k-self-conjugate

solution Yk, satisfies
(4.82)

~
U}AKU =T U?(R),

in which
oB (X)) vB(Y7) K, Kim
VRX) = [ vB(X) | 0B (V)= | 0 (V) | K= | K | K= | Kpn | om=1,2,...1,
vE(X,) vE(Y,) [/(vn m
(4.83)
and
(4.84)

{ O4xdn, T >m,

K’rm = (6:{7’_7,_;’_1)7“ ® 147 r<m.

Conclusion Remarks

In this paper, we study the least squares problems of non-homogeneous Yakubovich-
(conjugate) quaternion matrix equation (1.1). According to the structural characteristics



STP METHOD FOR TOEPLITZ SOLUTIONS 335

of the lower(upper) triangular toeplitz matrix, the problem of solving the quaternion ma-
trix equation is transformed into the corresponding problem in the real number field by
using STP method and real vector representation. We investigate the minimal norm least
squares lower(upper) triangular toeplitz solution of (1.1) and the minimal norm least squares
lower (upper) triangular toeplitz {4, j, k }-conjugate solutions of its corresponding quaternion
matrix equation, and the necessary and sufficient conditions and expressions for the exis-
tence of solutions are derived. In addition, we also study the minimal norm least squares
lower(upper) triangular toeplitz self-conjugate solutions and anti-self-conjugate solutions
of the studied quaternion conjugate matrix equation. This method can be used to solve
different quaternion linear systems, for example, Stein quaternion matrix equation.
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