A2 Py, 4,

“ Yokohama Publishers

Aol /SSN 1349-8169 _ONLINE JOURNAL

Yok, %

PERTURBATIONS OF GROUP INVERSES OF QUATERNION
TENSORS UNDER THE QT-PRODUCT

DANDAN WANG* AND HAIFENG MAf

Abstract: In this paper, we study the properties and perturbations of group inverses of third-order quater-
nion tensors under the QT-product (called QT-group inverse). First, we give the definition of the index of
quaternion tensors under the QT-product. And we define drazin inverses and group inverses of quaternion
tensors and prove their existence and uniqueness. Secondly, the core nilpotent decomposition and Jordan
decomposition of quaternion tensors under the QT-product are given. By virtue of the QT-Jordan decompo-
sition, the expression of the group inverses of quaternion tensors is given. And we give the limit expression
for QT-Drazin inverses of quaternion tensors. Finally, the perturbation analysis of the one-sided and two-
sided conditions of the quaternion tensor is carried out. Therefore, the expression and the perturbation
bounds of the QT-group inverse of the perturbed quaternion tensor are obtained.
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Introduction

In the actual measurement, due to the possible error of the measured value, the matrix
elements will change, resulting in the change of the solution of the equations. It is necessary
to use Drazin inverse to study linear differential equations and finite Markov chain processes,
so that the solutions of the equations can be represented by Drazin inverse. In 1967, Erdelyi
defined the concept of group inverses of matrices [17], which is a special case of the Drazin
inverses of matrices. Wei discussed perturbation of group inverse and oblique projection
of complex matrices in [49]. Then, Li and Wei derived new general upper bounds which
are sharper than the results of Wei such that the continuity of the group inverse directly
follows [28]. In 2017, Wei studied the acute perturbations of the group inverses of complex
matrices [50]. The group inverses of matrices are applied in many fields, such as least squares
problems, Markov chain, etc [1, 2, 6, 33].

Tensors are high-dimensional generalization of vectors and matrices. In recent years,
generalized inverses of tensors have been playing an increasingly vital role in computational
mathematics and numerical analysis. More and more scholars have begun to study the
tensors and their generalized inverses [5, 6, 9, 13, 37, 35, 47, 51, 52]. Some scholars have
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studied the generalized inverses of complex tensors based on the Einstein product proposed
by Einstein in [15, 30, 41, 45, 46, 48]. In 2011, Kilmer and Martin defined another product
which called the T-product of complex tensors [26]. Since then, scholars have begun to study
tensors and their generalized inverses under the T-product [3, 7, 8, 11, 25, 29, 32].

Quaternion, first proposed by Hamilton in 1843 [19], is associative and non-commutative
division algebras over real number field. At present, quaternion and quaternion matrix play
an important role in computer science, signal and color image processing, quantum mechan-
ics and so on [4, 10, 23, 24, 27, 42, 55]. The concept of dual number was first proposed by
William Clifford in 1873 [12], and its earliest application was used to represent geometric
angles in spatial geometry [43]. In 2018, Falco discussed the mathematical condition for the
existence of generalized inverses of dual matrices [14]. In 2021, Qi defined the right eigen-
values and subeigenvalues of the dual complex matrices, and proposed the concept of dual
quaternion matrices, hoping that the existing concept can also be true for dual quaternion
matrices [38]. In 2022, Zhong defined the group inverses of dual matrices, and studied the
existence of dual group inverses, computational methods and applications in solving linear
dual equations [56]. In 2023, Qi extended the Perron-Frobenius theory to dual number
matrices with primitive and irreducible nonnegative standard parts. And he obtained the
perturbation relation in the Markov chain process by the group inverses of the dual number
matrices [36]. In 2023, Qi gave the definition of the dual quaternion Laplacian matrices,
and proved a Gershgorin-type theorem for square dual quaternion Hermitian matrices, for
studying properties of dual quaternion Laplacian matrices. The role of the dual quaternion
Laplacian matrices in formation control is discussed [39]. It is possible to extend the theory
of dual complex numbers to dual quaternions, due to the relationship that the dual complex
number is a special case of the dual quaternion.

In present, quaternions have proven to be a very suitable framework for encoding color
pixels. Quaternion technique has been widely used in color image processing and has ob-
tained outstanding performance in various color image processing tasks, but there is no
much work focusing on the color video inpainting problem [44, 34, 31, 18]. In [16], Ell used
quaternions to define a Fourier transform for color images. Jia studies robust quaternion
matrix completion for image restoration in [22]. He studied the eigenvalues of quaternion
tensors, presented the k-means method for quaternion tensor and used it to color video
clustering [20]. Jia can inpaint color videos under the condition of all of frontal slices should
miss pixels at the same positions [21]. However, in 2021, Zhang proposed the QT-product
of quaternion tensors based on the T-product of complex tensors, and gave the singular
value decomposition of quaternion tensors [40]. Hopefully, the accompanied technique can
be applied to color video inpainting problems with no extra restriction.

In this paper, we first introduce some symbols that need to be used, and briefly review
some relevant knowledge. Further, we define drazin inverses and group inverses of quaternion
tensors and prove their existence and uniqueness. Next, some properties about the group
inverses of quaternion tensors are proved. On this basis, the QT-Jordan decomposition of
quaternion tensors under the QT-product are given. Then, we give the expression of group
inverses by the QT-Jordan decomposition. Further, we define the QT-core nilpotent decom-
position of quaternion tensors under the QT-product. And we give the limit expression for
drazin inverses of quaternion tensors. Then, some related properties about the core part
of quaternion tensors are proved. Finally, under the one-sided and the two-sided perturba-
tions, the expressions and perturbation bounds of the group inverses of quaternion tensors
are given, and some numerical examples are given to verify the results.
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Preliminaries

In this paper, R represents the field of real numbers, C represents the field of complex
numbers, H represents the set of quaternions, H™*™ represents the set of m x n quaternion
matrices, and H™>*"™*P represents the set of m X n X p quaternion tensors. A quaternion x
has the following form

T =x9+ 210 + 227 + w3k,
where xg, 1, T2, r3 are real numbers and 1, j, k satisfy

=5 =k =-1,
ij = —ji =k, jk=—kj=1iki=—ik = j,

the conjugate of z is * =xo—x1i—z2j—x3k, and its norm |x‘ =Va*r=\/23 + 2} + 2} + 23.
For any quaternion x, we can write it as x = a + jb, where a = x¢ + x1¢,b = 5 — x3i.
A quaternion matrix A € H™*™ has the following form [53]

A= Ag+ Ayi+ Axj + Ask,

where Ag, A1, Az, A3 € R™*™. Its conjugate transposition A* = Af — Aji— A%j— A%k. Any
quaternion matrix A can be written as A = A’ +jA”, where A’ = Ag+ Ayi, A” = Ay — Ast.

Definition 2.1 ([53, 54]). Given a quaternion matrix A € H™*™, if the non-zero quaternion
vector x € H"” and the constant A € H satisfy

Az =z (Az = A\x),

we define that A is the right (left) eigenvalue of A and z is the corresponding right (left)
eigenvector.

Since the quaternion does not satisfy the commutative law of multiplication, the eigen-
values of the quaternion matrix are divided into left and right eigenvalues. In general, there
is no direct relationship between the left and right eigenvalues of quaternion matrices. For
this paper, we use the right eigenvalues.

For any quaternion tensor A € H™ *"2X"s whose i-th frontal slice is denoted by A €

H™*"2 5 =1,2,...,n3, and the frontal slices are shown as follows:
'(\,‘b
. A(n3)
4
Y/
Ny 1
7 . |
A ]
1
g | — £
. | -
: LA : A
o~ I ~
v—r :- v—(h
I oo TTTTTTETT -~ Il
. ’ e
4
4 —
4

j:1727"'7n2 j:1525"'an2



340 D. WANG AND H. MA

The following slices are all the frontal slices of the tensor, and the three operations
“cire”, “unfold”, and “fold” are defined below [40]:

A Alns)  Alns=1) .. A(2)
A AL gme) 4B

Ci’f‘C(A) = ) ] ) . . € [{™1ns Xn2ns
Ama)  Ana—1)  g(ma=2) ... ()

is a block circulant matrix, “fold” is the inverse operation of “unfold”,

A
A2

unfold(A) = . e H™mms*"2 fold(unfold(A)) = A.
A&p)

For any third-order complex tensor A € C™*"2%"3 jtg block circulant complex matrix can
be diagonalized by the Discrete Fourier Transformation (DFT) matrix , then we get

AW
e A
(Fry ® Iy, )eirc(A)(F, @ In,) = . = diag(A),
Alna)
where F,, € C"*" is the DFT matrix,
1 1 1 1 1
1 w w? w3 w1
1 1 w2 U)4 U)6 Ce w2(n371)

Fn3 = /N3 1 U/3 ’[1)6 U/g wg(n371) ?

1 wnal g2na=1)  gBma=1) ... ma—Dna-D)

where w = e~ 2™/ is the primitive ns-th root of unity in which i = /—1.
There are some relevant concepts for the QT-product of quaternion tensors as follows.

Definition 2.2 ([40]). (QT-product) For A = Ay + jAy; € H"*"™*" and B € H™*"2*"3,
the QT-product A xg B is an n1 X na X ng quaternion tensor defined by

Axq B = fold((circ (Ar) + jcirc (A2)(Pn, ® 1)) unfold (B)) € H™*™2x"s,

where the third-order tensors Ap, Ay € C™"1*"*"3 the symbol “®” represents the kronecker
product, and the matrix P,, = (P;;) € R"*"3 is a permutation matrix, where if i + j =
ns +2,2 < Z,j < ns, then P11 = Pij = ]., otherwise Pij = 0.

The definitions of the unit quaternion tensor, invertible quaternion tensor, unitary quater-
nion tensor and conjugate transpose of quaternion tensor under the QT-product are reviewed
below.

Definition 2.3 ([32]). (Unit quaternion tensor) The n x n x ng identity quaternion tensor
ZLnnns is the tensor whose first frontal slice is the identity matrix and other slices are zero
matrices.
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Definition 2.4 ([57]). (Invertible quaternion tensor) For A € H"*"*"3 if there exists
B € H**"*"3 gsuch that

AxgB=Bxq A=1,

where Z € H"*"*"3_then A is said to be a invertible quaternion tensor and denoted by

Al =8

Definition 2.5 ([40]). (Conjugate transpose) The conjugate transpose of a quaternion
tensor A = A; + j Ay € H™™*"s is denoted as A* € H"*"*"s satisfying un fold(A*) =
unfold(Af) — (P, ® In)unfold(A3)j.

Definition 2.6 ([40]). (Unitary quaternion tensor) The n x n X ng quaternion tensor U
is a unitary quaternion tensor if

Definition 2.7 ([40]). (F-diagonal quaternion tensor) The n x n x n3 F- diagonal quater-
nion tensor Ppnnn, is the tensor whose every frontal slice is the diagonal quaternion matrix.

Definition 2.8. (F-upper triangular-bidiagonal quaternion tensor) The n x n x ng F-
upper triangular-bidiagonal quaternion tensor Py, is the tensor whose every frontal slice
is the upper triangular-bidiagonal quaternion matrix.

Lemma 2.9 ([57]). LetA.A = Ay +jAy € HM*"m*"s B e H*"*"s  where Ay, Ay € C>*n*"s
the quaternion tensor A € H"*"*"3 is the result of DFT of A, and F,,, € C"3*"s s a DFT
matrix. Then

() Al:) = TP Al 3.9, € [n], € o],

(ii) unfold(A) = V13 (Fr, @ In)unfold(A),

(iii) unfold(A) = unfold(Ay) + j(Pn, ® I,)unfold(As),

(iv) unfold(.A xg B) = diag(A )unfold(fj'\),

(v) diag(A) = diag(Ay) + j(Pp, © I,)diag(A3) (P, © I,),

(vi) diag(A") = diag(ﬁn* — (Pay ® L)diag(A) (P, 1)),

(vii) A = fold((F}, )ﬁdiag(ﬁ)(e ® I,)), where e is an ng dimensional column

vector with all elements being 1.

Lemma 2.10 ([40]). Let A,B,C € H"*"*"s  qand .,Z, BA,CA are the DFT of A, B,C, respec-
tively. Then

Axg B =C < diag(A)diag(B) = diag(C).
Lemma 2.11 ([40]). (QT-SVD) Let A € H"*"*"3. Then A can be factored as
A=U *Q S *Q V*7

where U,V € H"*"*™s qgre unitary quaternion tensors and S € H™*"*"3 4s an F-diagonal
quaternion tensor.
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Definition 2.12 ([40]). (QT-rank) For A € H"™*"*"s and its QT-SVD is A = U *g
S xg V*, the QT-rank of A, denoted as rankgr(A), is the number of non-zero elements of

{S(ivia :)}?:1'
Definition 2.13 ([57]). Let A € H"*"*"3. Then

-~

(i) the QT-range space of A is defined as R(A) = Ran(diag(A)),

(ii) the QT-null space of A is defined as N (A) = Null(diag(.A)),

(iii) the QT-norm of A is defined as ||A|| = ||circ(A)||, where ||circ(A)|| represents the
2-norm of the quaternion matrix circ(.A).

If 7 is an arbitrary dimensional unit quaternion tensor, then ||Z|| = 1. Here is a lemma.
Lemma 2.14 ([57]). Let A € H™*™*"s ||A|| < 1. Then I + A is an invertible tensor, and

1

T+A < —-+.
11( ) Tl

Proposition 2.15 ([57]). Suppose A, B,C € H"*"*"s_ Then

(i) diag(A*) = diag(A)*,

(ii) (Axg B)* = B* g A*,

(i) (Axg B)*gC=Axq (B*gC),
(iv) Axg (B+C) = Axq B+ AxqC,
(V) (B+C)xq A=Bxg A+Cxq A,
( _
(

vi) diag(A/+\B) = diag(A) + diag(B),

vii) [[Axq B]| < [|4] ||B]]

(viii) HCiTc(.A)H = Hdiag(uzl\)H )
Lemma 2.16 ([57]). Let U € H"*"*"s Y € H"*"*"3  qnd T be the unit quaternion tensor

of the corresponding dimension, if T+U xqV and T+V xqU both are invertible quaternion
tensors. Then

() UxQ (ZT+VrU) ' =(T+UxqV) ' xU,
(i) T+UxV) ' =T —-Uxq(ZT+VxoU) txgV.

Main Results

Before giving the definition of the group inverses of the quaternion tensors under the
QT-product, the definition of the index of the quaternion tensor is given.

Definition 3.1. (QT-Index) For A € H"*"*"3  the smallest non-negative integer k, such
that rankgr (A**1) =rankgr(A¥), denoted by Indgr(A) = k, is called the index of A.
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Definition 3.2. (QT-Drazin inverse) Let A € H"*"*"s with Indgsr(A) = k. The quater-
nion tensor X € H"™*"*"s which satisfies:

AP sg X xg A=AF,  XxgAxgX =X, AxqX=XxgA (3.1)
is called the QT-Drazin inverse of A, denoted by A”.

In particular, the definition of the QT-group inverse of the quaternion tensor when k& = 1
is given below.

Definition 3.3. (QT-group inverse) Let A € H"*"*"3 with Indgr(A) = 1. The quaternion
tensor X' € H"*"*"s which satisfies:

Axg X xg A=A, Xxg Axg X =X, Axg X =Xxg A (3.2)
is called the QT-group inverse of A, denoted by A#.

Theorem 3.4. Let A € H™*™*"s with Indgr(A) = k. Then the QT-Drazin inverse of A
exists and is unique.

Proof. For any quaternion tensor 4, by Lemma 2.9, there is

-~

A= fold((F:, @ In)\/%diag(A)(e 1),

where
e
R A®
diag(A) =
Aln3)

For any AW ¢ H"*" § = 1,2,--- ,ng, there always exists X0 = (g(i))D € H™ "™ that
satisfies

(AW X 1) A1)
(E(Q))k)?@)j@)
(;T(HS))’CX’(M)A\(M)
(AD)k
(A®)"
(ﬁ(ns))k
PN )
X@ A X2 X@

)/(\'("3);[("3))?(”3) )/(\'("3)
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A0 KW T A0
A2 %@ @ 4@

A\(n3))?(”3) )?("3);{("3)
SO
<
N X® N
diag(A)P = ) = diag(X).
)/(\'("3)

Then we can get X' = fold((F;, ® I, ) L_diag(X)(e ® I,,)) satisfies all three equations in

V/n3
(3.1), so X = AP. Next we prove uniqueness of the QT-Drazin inverse of A.

If X; and X, are both QT-Drazin inverses of A, then diag(/'/\f\l) and diag(/'/Y;) are both
Drazin inverses of the quaternion matrix diag(A). Now let

diag(A)diag(X1) = diag(Xy)diag(A) = diag(

-~ — — -~

diag(A)diag(Xz) = diag(Xs)diag(A) = diag(

o)

b

Rl

b

~

obviously, diag(€)? = diag(&), diag(F )2 = diag(]?). So

)
£) A)diag(Xy)
A)*diag(Xy)*
kdiag(Xp)diag(A)diag(X;)"
>dmg<x2>dwg< A)*diag(Xy)*
)diag(A)diag(X,)
)

diag(& )

diag(€) = diag
= diag
= diag

(
(A
(
= diag(
(
(

)v>\./\_/

= diag

RIS

= diag
and
diag(F) = diag Xg)
= diag Xg)kdza
)
)"

(Xs)diag(A
(

= dzag(XQ
(
(F

\_/>\-/

(
( )kdzag(Xl)dzag(A)
diag(A)diag(?)
P)diag(€)

it means that diag(€) = diag(F). Further, we have

kdiag
= diag XQ
= diag

)

-~

(A)diag(Xy)? = diag(E)diag(Xy)

= diag(F)diag(Xy) = diag(Xz)diag(A)diag(X)
= diag(Xy)diag(€) = diag(Xp)diag(F)

= diag(X,)*diag(A) = diag(A)diag(X,)?

= diag(Xy).

dz’ag(j(;) = diag(A
7
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So we obtain X; = /'/V; Due to condition (vii) of Lemma 2.9, we get the desired result
X = As. O

Corollary 3.5. Let A € H"*™*"3 with Indgr(A) = 1. Then the QT-group inverse of A
exists and is unique.

Lemma 3.6. Let A € H""*"s  Then a quaternion tensor A is invertible if and only if

-~

diag(A) is invertible.

Proof. Since A € H"*™*™3 is invertible, there exists a quaternion tensor B € H"*"*"s such
that
AxgB=B*xg A=1.

By using Lemma 2.10, we can obtain

~ -~ ~ -~ ~

diag(A)diag(B) = diag(B)diag(A) = diag(Z),

-~

therefore, diag(.A) is invertible.

-~ ~

Since diag(A) is invertible, there exists a quaternion matrix diag(B) such that

-~ ~ -~ -~ -~

diag(A)diag(B) = diag(B)diag(A) = diag(Z).
According to Lemma 2.10, we can get
AxgB=B*xg A=1I,
so A is invertible. O

Theorem 3.7. (QT-Jordan decomposition) Let A € H"*"*"3_ Then there exists an invert-
ible quaternion tensor P € H"*"™*"3 sych that

A=PxqJxq P, (3.3)

-~

where A can be transformed into diag(A), the form is as follows,

A
~ A®) e
diag(A) = , JAD e HY? =1, ng,
Aln3)
the distinct right eigenvalues of AD gre )\gi), )\g), ey ,\S'% s < n, whose imaginary parts are

nonnegative, and J € H"*"*"s jg the F-upper triangular-bidiagonal quaternion tensor, and
the main diagonal elements of J) are /\ﬁ”, )\él), ey AS).

-~

Proof. Since quaternion tensor .4 can be converted to diag(A), there exist invertible quater-
nion matrices P(*) € H"*" such that

A6 — ﬁ(i)j(i)(ﬁ(i))_17 i=1,2,...,n,
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where J() are upper triangular-bidiagonal quaternion matrices, and the main diagonal ele-

ments of its are )\gi), )\;i), ceey ,\Sl respectively. That is

PO JO (P~

R P® J@)(p@)-1
diag(A) =
ﬁ(ns)j(ns)(ﬁ(ns))—l
2] Jo
P 7
Plna) J(ns)
(PO~
(Pt
(P~
= diag(P)diag(T)diag(P—1). (3.4)

-~

So we get diag(J) is an upper triangular-bidiagonal quaternion matrices, and the main
diagonal elements are /\gi)7 /\gi), el ALY By condition (vii) of Lemma 2.9, we get J is an F-
upper triangular-bidiagonal quaternion tensor. Because PO s invertible, we have diag(ﬁ)
is invertible. Using Lemma 3.6, we get P is invertible. By Lemma 2.10 for (3.4), we obtain

A:'P*QJ*Q'Pil.
The conclusion is valid. O

Corollary 3.8. Let A € H"*™*"s with Indgr(A) = 1. Then the form of J in the QT-
Jordan decomposition of A can be written as

(5 0)
JO ¢ 0(2)
A 7@ (% o)
diag(J) = ) = © 0 ’
J(ns) &) O
0] 0
where C'9) corresponds to the non-zero eigenvalue of A\(i), i=1,2,...,n3.

Proof. According to Theorem 3.7, we can know that there exists a invertible quaternion
tensor P € H"*"*"s such that A = PxgJ *gP~'. Then by Lemma 2.10, we get diag(A) =

—~ P —

diag(P)diag(J)diag(P—1), so

SN ~ . (C®» O s
AW — p(l)J(t)(p(Z))—l — p® ( Nt ) (P(1)>—1
0O NO ’
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where C® corresponds to the non-zero eigenvalue of AW N corresponds to the zero
eigenvalue of A®. Because Indqr(A) = 1, we have rankgr(A?) = rankqr (A). Further, we
obtain

rankQT(J2) = rankqr(J).

So rankQT(jQ) = rankQT(j). If rank(J®) # rank ((J()) ), and rank ((j(i))2> <
rank(J(®), that is rank ((j(i))2) < rank(J®). So we have rankQT(jz) < rankQT(j),
this is contradictory to rankqr(72) = rankqr(J), so

rank((f(i))Q) = rank(j(i)).
This means that in the Jordan decomposition of g(i), NGO = 0O, so

A6 — po) (C(;“ g) (POt

that is
AWM
Ana)
ch o
20 0 0 PO B
Plns) Os) O Plns)
O O
According to Theorem 3.7 and Lemma 2.10, we get
chH o
Jm O O
J(ns) Ons) 0O
O O
Hence the proof is complete. O

Proposition 3.9. Let A € H"*™*"s with Indgr(A) =1. Then

—

i) if A is invertible dmg(A) = diag(A~1),
ii) diag(A)# = dzag(A#)
iii) (A%)# = A,

(
(
(
(iv) A+ B =C & diag(A) + diag(B) = diag(C), for B,C € HM*mxns,
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Proof. For any quaternion tensor A € H"*"*"3_the quaternion tensor A € HPXnXns ig the
result of DFT of A, we can get

AW

diag(A) =
Alns)

(i) For a quaternion matrix AW e H™ ™ there exists an invertible quaternion matrix
P ¢ gn*n j =12, ... ns, such that

PO T (ﬁ(l))—l

diag(A) =
ﬁ("s)j("s)(ﬁ(ns))—l

P T (PM)=1
P(ns) J(ns) (ﬁ(ng))ﬂ

P Jm P -t
Plns) J(na) Plns)

PO e
Let diag(P) = ,diag(J) = , 80 we have
Pna) J(ns)

diag(A) = diag(P)diag(T)diag(P)~".
Because A =P xg J *g P!, and by Lemma 2.10, we can get

~ ~ -~ —

diag(A) = diag(P)diag(J)diag(P~1).

Therefore, diag(”ﬁ)’1 = diag(ﬁ*\l). Further, we obtain diag(A)~! = diag(.Z*\l).

(ii) Because Indgr(A) = 1, Ind(diag(A)) = 1. For the quaternion matrix diag(A), we have

-~ -~ -~ -~ -~ -~ -~ -~

diag(A)diag(A)# diag(A) = diag(A), diag(A)*diag(A)diag(A)* = diag(A)*,
diag(A)diag(A)#* = diag(A)#diag(A).

For the Drazin inverse A% of the quaternion tensor A satisfies the equation (3.2), and using
Lemma 2.10 for the equation (3.2), we obtain

diag(A)diag(A#)diag(A) = diag(A), diag(A#)diag(A)diag(A#) = diag(A#),

-~ -~

diag(A)diag(A#) = diag(A#)diag(A).

Because the Drazin inverse of the quaternion matrix diag(ﬁ) is unique, we can get diag(ﬁ)# =
diag(A#).
(iii) For the group inverse A% of A, there is

A#*QA*QA#Z.A# s A*QA#*Q.AZA, .A#*QAZA*Q.A#.
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Therefore, we have (A%)# = A.
(iv) Using Lemma 2.9, we can know
1 ~

\/ﬁgdiag( )e®I,)).

Now, we impose “unfold” on both sides of the equation A + B = C, then

A= fold((F:, ®I,)

1 . T
—anwg( We® )+ (F, ® I,) —ngdzag(lg)(e ®I)

1
\/ni?)dzag(C)(e ® I,).

Multiply both sides by \/ns (Fji, ® In)_l on the left hand side and (e ® I,,)* on the right
hand side of (3.5), we get

(3.5)

= (F;Ls ® I")

~ ~ ~

diag(A) + diag(B) = diag(C),

where e is an n3 dimensional column vector with all elements being 1.

For diag(A)+diag(B) = diag(C), multiply both sides by \/% (Fy, ® I,) on the left hand
side and e ® I,, on the right hand side of it, then we get (3.5). According to Lemma 2.9, we
impose “fold” on both sides of (3.5), so we get

A+B=C.
The proof is complete. 0

Some properties that will be used in subsequent proofs are given below.

Theorem 3.10. Let A € H"*"*"s with Indgr(A) = 1. Then the QT-group inverse of A
has the following form

A#:P*QJT*QP—l.

Proof. By Lemma 2.10 for (3.3), we can get diag(A) = diag(P)diag(J)diag(P)~*, where

P
ﬁ(’%)
and
T
~ ) O(i)
diag(7) = = (S 9)
J(ns)

here, o) corresponds to the non-zero eigenvalue, ¢ = 1,2,...,ns. Further, we get

diag(A)# = diag(P)diag(T) diag(P)~1,
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where
a7
diag(A)# = diag(ﬁ) = )
"
and
jﬁ(l) R
~ —~(3) (i)y—1
diag(])Tz T :<(C ) O)’i:17"'an37
(n) 0 o
g
that is
a7 pogiY ()1
: = (3.6)
——(n3) ~ o (na)
A# pa) gt (p))—1

Multiplying both sides of (3.5) by e® I,, to the right hand side, where e is an n3 dimensional
column vector with all elements being 1, then we get the following equation

a7\ (pogit (PV)-1

/\-(ns)

AF Pl 77" | \(PC=))~!

So we have
unfold(A#) = diag(’/s)diag(ﬁ)unfold(ﬁ). (3.7)
By Lemma 2.10, we get
diag(P)diag(T1) = diag(P xq J7). (3.8)
According to condition (iv) of Lemma 2.9, we have
diag(P?Q\JT)unfold(ﬁ—\l) = unfold(P g m P-1). (3.9)
By equation (3.6), (3.7) and (3.8), we get
unfold(A#) = unfold(P g m P-1).
Using condition (ii) of Lemma 2.9, we have
un fold(A#) = /n3(Fn, @ I,)unfold(A#),
and
unfold(P xq Tt g P=1) = \/iiz(Fny @ L )unfold(P +q J' xo P~1).
Therefore,
unfold(A#) = unfold(P xq T xq P71).
In conclusion, A% =P xq J'xq PL. O
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Remark 3.11. Let A € H"™", Ind(A) = k if and only if C" = R(A*) & N(AF).
For A € H"*", we can have
N(AF) € N(AFY) & R(AM) ¢ R(AF) & rank(A*T1) < rank(AF).

Then we can use proof by contradiction to reach the conclusion. Assume Ind(A) # k, we get
rank(AFt1) < rank(AF) < There exists x such that A¥*lz = O, A¥z # O. Let y = AFz,
then A*y = A%*z = O. That is y € N(AF). Tt follows that O # y = Akz € R(A*) N N(AF)
contradicts O™ = R(A*) @ N(A*). Therefore, Ind(A) = k.

Remark 3.12. Let A € H**", Ind(A) = k. Then there exists P € H"*", C € H™*" such

that
c—t o
D _ —1
A _P<O O)P .

Since Ind(A) = k, we know from Remark 3.11 that C" = R(A*) @ N(A¥). Let P =
(V15 -+, Vpy Vpg1s - - -, Un), where {vy, ..., v} and {v,4 1, . .., v, } are basis of R(A¥) and N(A¥),
respectively. Let

P=(P,P),
Pl = (Ula-"av’r)a
Py = VUr41y---,Un.

Since R(A*) and N(A*) both are invariant subspaces of A, there are C € H™*" and N €
H(=")*("=7) such that

AP, = P,C, AP, = P,N

So A has the decomposition

_p(C O)
aer(G Q)

Because A*N(AF) = O, we get O = A¥P, = P,N¥. Therefore N* = O. Further, we can
get

k
AkF=p (CO 8) Pl

And because r = rank(A*) = rank(C*) < rank(C) < r, we can know rank(C) = r. So C is
a non-singular quaternion matrix of order r. Let

__(Cc7t 0o\ .
X—P<O O)P,

it is easy to get that x satisfies the definition of drazin inverse of the quaternion matrix A.
So X = AP,

Definition 3.13. Let A € H"*"*"s with Indgr(A) = k. The quaternion tensor
CA :.A*Q AD *QA:.A2 *Q.AD :AD *Q.A2 eHanXng,

is called the QT-core part of A.
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Definition 3.14. (QT-core nilpotent decomposition) Let A € H"*"*"3 with Indgr(A) = k.
The quaternion tensor

NA:.A—CAZ(I—A*QAD)*QAGHanXn3

is called the QT-nilpotent part of A, and A = C4 + N4 is the QT-core nilpotent decompo-
sition of A.

Definition 3.15. If A € H"*"*"s (C4 and N4 are the QT-core and QT-nilpotent part of
A, respectively, then for integers m > —1, we define

AP, if m=-1
Cq = At aq AP = S Axg AP, ifm=0
Cc, ifm>1
and
0, ifm=-1 [© ifm=-1
ij):{Am o =T —Axqg AP, if m=0
—Cy’, ifm>0 ™ ifm>1

Theorem 3.16. Let A, T € H"*"*"s with Indgr(A) = k. For every integer | > k,

AP = lim (AT 4+ e7) 7 5o AL (3.10)

e—0

For every non-negative integer [,

AP = Tim (A + 7))L xg €Y. (3.11)

e—0

Proof. If k = 0, then A is non-singular, and the result is evident. For k > 0, use Lemma
2.9, Lemma 2.10 and Remark 3.12, we can get

. N Wy p ((CHF+e)7iCt O\ -
diag((AH! +eZ)~1 g Cy') —P< 0 o) P L

And we can obtain
lim(C' e~ = 7L
e—0

Using (vi) of Proposition 2.15, (i) of Proposition 3.1 and Lemma 2.10 for
diag((AH! +Z)~1 xq Cx)), we get

diag((AH! +eZ)~1 xq Cﬁ)) = diag((Al“/Jr\eI)*l)diag(Cfi))
= diag (Alﬁsl) 71diag (Cﬁ))

= [diag(@) + diag(e1)]" ' diag (Cfi))

—

= [diag(ﬂ) +ediag(Z)| " diag (Cﬁ))'
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Then we get

hm dzag((Al+1 + EI) Lxg C ) = 1in(1)[diag(@) + ediag(ZT)]” 1dzag(C(Z))
e—
_p(C7" O\
_p ( ; O) P
= diag(A)P
Further, by virtue of Lemma 2.10, we have

AP = lim (AT 4 7)1 xg CX)

e—0

That is, equation (3.11) is true. When [ > k, we obtain
Cl) = A+ g AP = AL
So equation (3.10) is also true. This proof is complete. O

Since it is obvious that n > k, we immediately get the following inference.

Corollary 3.17. Let A € H"*"*™s_ Then

AP = lim (A" 4+ eT) " xg A™

e—0

Lemma 3.18. Let A € H"*"*"3 with Indgr(A) = 1. Then

12 = Axq AF|| = || A xq A%|l.
Proof. By Lemma 2.10, condition (iii) of Definition 2.13, and conditions (vi), (viii) of Propo-
sition 2.15, we can get

I — A A*|| = |[diag(T — Axg AF)|

7) — diag(A *g A#)H
7) — diag(A)diag(A7)||
1)~

(
= [|diag(
(
(Z) — diag(A)diag(A)¥|
(
(

= ||diag
= ||diag
= ||diag(A)diag(A)*||
= ||diag(A)diag(A)|
= ||diag(A#q A#)||
=[|Axq A%

Hence the proof is complete. O

Theorem 3.19. Let A € H"*"*"s with Indgr(A) = 1. Then

(i) Caxg Axg A¥* = Axg A# g Ca = Cy,
(i) (AF)# =Cq,
(iii) (A%)* = (A")*
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Proof. (i) By the Definition 3.13, we get C4 = A xg A¥ xg A, then

CA*Q.A*Q.A#Z.A*QA# *QA*Q.A*Q.A#
Z.A*QA# *Q.A*Q.A# *Q.A
Z.A*QA# *Q.A
=C4.

Similarly, we can prove that
Ca = Axg A% % Ca.
(ii) By virtue of Definition 3.13 and condition (iii) of Proposition 3.6, we get
Ca=Axg A% xqg A= A= (AF)*.

Therefore, (A#)# = C4.
(iii) For the group inverse A% of A, since

A*QA#*QAZA, A#*Q.A*Q.A#ZA#, A*QA#Z.A#*QA7

we have
A s (AF)" 2 A" = (Axg A* 2g A = A,
(A#)* g A* g (AF)" = (AF % Axq AF)" = (47)",
A" xq (AF)" = (A% 5 A)" = (Axq AF)* = (A%)" % A"
Therefore, (A#)* = (A*)7. O

Next we will discuss perturbations of group inverses of quaternion tensors under the
one-sided and the two-sided conditions based on the QT-product.

Theorem 3.20. Suppose that A € H"*™*™ with Indgr(A) = 1, € € H»™*™, B =
A+E e ™ s, Let £ = Axg A% g € = Exg A¥ xg A and || € ||| A* ||< 1. Then

B* = (I+A# *Qg)il *Q.A#:A# *Q (I+5*Q.A#)71,
Bxg B = Axg A%,
B# — A* = —B# () € xg A* = —A¥ xq € % BY,

and
# #
1+ || A# xq € || 1= | A# %o £ ||
IBF —A* || _ A€
[A# || 7 1= A#F %o &

Proof. For || A% xg £ ||< 1, by virtue of Lemma 2.14, we have Z + A% x¢ € is invertible. So
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we obtain
Big (T+ A% xq &) %o A% ¢ B
= (A+E)xg (T+A* 0 &) xg A# xq (A+E)
= (A+ Axg A* g &) xq (T+A* %0 ) % A% xq (A+E)
= Asq (T+A* g €) xq (T+AF 4 €)™ +q A 4q (A+€)
ZA*Q.A#*Q (A+E)
—A+€E
:B,

(T+ A# 5q €)' g A g Brg (T+ A# %0 €)' g A*

= (T+A* g E) xq A g (A+E) xq (T+ A* %0 ) %o A*

= (T+A* 50 ) xg (A xg A+ A% xg Axg A# 4 €) xq (T+ A* %0 £) 7 xq A*
= (Z+A% 4 &) g A xq Axg AF

= (T+ A% 2 &) xq AP,

Big (T+A* xq &) xq A# = (A+ Axq A xq €) xq (T+ AF xg €)' g A*
= Axq (T+ A% xq &) v (T+ A# g £) ' %o A*
= Axg A*
= A* xg A.
Using conditions (vii) of Proposition 2.15, we get
1€ *q A%|| < ||E][[|AF|] < 1.

By Lemma 2.14, we obtain Z 4 & ¢ A#is an invertible quaternion tensor. From Lemma
2.16, we have

(T+AF 5 ) " 1q AF g B= (T + A% 1q €)  3q A¥ xq (A+£)
= (T+A* g €) " xg A* xg (A+E xg A %o A)
= A xq (T+Exq A#) xq A# 5q (A+ £ xq A 4 A)
= A% % A.
Therefore,

Biq (T+A* g &) wq A# = (T+ A% 1q ) g A¥ 4o B.

By Definition 3.3, we have (I + A¥ xg 5)_1 xg A% is the group inverse of B. Similarly, we

can prove that A# *Q (I +E&x*q A#) ~!is also the group inverse of B. According to Lemma
2.16, we obtain

B = (T+ A% 5 €)' xg A* = A# xo (T + E % A#) .
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Let £ = P xq € g P! is the QT-Jordan decomposition of £, by Lemma 2.10, we have

—~ /-\

diag( ):diag(ﬁ)dzag( E)diag(P~1),

where

~(1)
E

=~ ~ (i) (9) ()
diag(€) = Eo= (B B 1o
E21 E22

~(n3)

By virtue of Theorem 3.10, there is
A*QA# =Pxq J *Q gt *Q’P_l.

Since £ = A xg A# g €, we have € = P xg J g J' *g € %o P, that is,

-~

diag(€) = diag(’ﬁ)diag(j)diag(ﬁ)diag(g')diag(ﬁ)fl.
Hence,
diag(€) = diag(7)diag(T)diag(€).
It means that

~(1) N . ~(1)
E J JT(l) E

= (ns) T(n: —(ns) = (ns)
Ens J( 3) Ti 13 E”s

~(0) 020
By E :J)J’f ,1=1,2,...,n3, we get

(5 )@ 9y 9 @)
7 K (2 2
By By o 0 o O) \Ey Eyy
_ (B B
@) o)’
Therefore, Eéll) =0, ESQ) = 0.

Similarly, since £ = & xq A* g A, we also get E; =0, E(l) = 0. Thus, we obtain

~(0) (i)
E :<E51 g),i:LZ,...,ng.

Since T + € g A¥ is invertible, we know diag(Z —&—?5.,4#) is also invertible by condition
(iii) of Lemma 3.6. According to

diag(Z —I—%A#)
= diag(T) + diag(é\)diag(jl;)
= diag(P)diag(Z)diag(P) ™" + diag(P)diag(E)diag(P) ' diag(P)diag(J)  diag(P)~"

= diag(P) <dz‘ag(f) + diag(& )dzag(j) > diag(P) ™,
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~

we get diag(Z) + diag(E)diag(J)' is invertible. Due to

~

diag(f) + diag(E)diag(j)T

I, O
O I’I’L*Tl

5 0 () o)
(0 0) 0 0

ey o)

0 T,

(6<ns>) ~ 0
0 Ly,
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where r; is the number of non-zero eigenvalues of A%, i =1,2,...,n3. So we know o —|—Eﬁ)
is invertible. Because

B=A+E=Puq (T +&)+qP ",

according to Lemma 2.10, we get

-

diag(B) = diag(P)diag(J + &)diag(P)~",
where

(€0)

—

j(l) + E (1) (1)
= . (i A (4) 4
diag(J +€) = T+ B :(O o 8),
~(n3)

J0s) 4 E

i=172,...7ﬂ3.

By Theorem 3.10, we can get B# = A+ =P xq (J + g) xq P~1. Since

— —
~ —

diag(B)diag(B#) = diag(P)diag(J + &)diag(P) ' diag(P)diag(J + &) diag(P) "

cw+e® o
0] O

~

= diag(P)

C(ng) +E§T1L3) o)
0] 0]

(CO+ER) 0
0] 0]

~

diag(P)~!

(Cr+ B~ 0
0O @

I, O
0O O

= diag(P) diag(P) ™"

I, O
O O
= diag(ﬁ)diag(f)diag(ﬁ)_ldiag(ﬁ)diag(j)fdiag(ﬁ)_1

-~

= diag(A)diag(ﬁ),
we have B xg B# = Axg A¥. According to
B* — A% = B* — A% + B# x (B — A) xg A" — B* % £ xg A*
= B# — A* 4+ B xg Bxg A* — B xg Axq A* — B# xq € xo A
=B* — A* + A% xg Axq AT — B xg Bxg BT — B¥ g £ g A*
= B xg £ xg A%,
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and
B# — A* = B¥ — A + A% % (B — A) xq BT — A% %o £ xg B
=B* — A* + A% xq Bxg BY — A% xg Axg BY — A* xg € xq B
=B* — A* + A% xq Axq AT — B g Bxg BY — A% xg £ xg B
Z—A# *QE*Q B#,

we can obtain B# — A% = —B# xq € xq A% = —A¥# xq € xg B¥. By condition (vii) of
Proposition 2.15, we have
|B# — A#|| = |- A% xq € xq BF|| < [|A% «q €] [|B#|,

SO

I — A% _ 4% g ] 5]
(2l A%
By the equation B# = (Z+A#xg&) " 1xqA#, Lemma 2.14 and condition (vii) of Proposition
2.15, we have
|1B#|| = ||(T + A# xq &)~ xq A%

< [T+ A% o &) 7| [[A7]]

e

T AT €

Therefore,

B — A%|| A" o€
# - 1-= # )
[
Since B# — A% = —B# xq € xg A¥, A¥ = B# xo (I + € *g A¥) and condition (vii) of
Proposition 2.15, we get
A7 [ = [[B% %o (T + € xq AF)|| < B[ |2 + € xq A%]|.

Hence,
A% ]
— 0 < ||B#].
1&g 7] < 151
Because HI+ & *g A#H <1+ Hé‘ *Q A#H <1+ HEH HA# , then we obtain
A AR
L[[Ef JAF] 7 (|2 + & »q A%
So
1B > AR AR AR A7
T T+Ex AT T 1 [lE[[ AT 1+ [lAF[[E] T 1+ (AT s £
Therefore,
A7 ]] A% ]]
— L <t < —
47 g ] =PI = T am g g
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Example 3.21. Suppose A € H?*2*3 with elements of the frontal slices as follows,

q0 _ ((Brdivi—k
“\1-2i—2j+8k

2 —i+5j+3k
44 5i+2j — 4k

AB) — <5+7i+4j—3/€

A2 —

74 3i+45 — 2k

2+ Ti+ 35 + 4k
d4i—j—3k )
11+ 7i — 35 + 9k
8+i+4j—3k )
A+4i—j+ 6k
2+ 5i — 8j

By calculating, it is obtained that rankgr(A) = 2 and rankgr(A?) = 2, then Indgr(A) = 1.
Next, by the QT-Jordan decomposition, we obtain

A:'P*QJ*Q'Pil.

where the elements of frontal slices of P, J and P! are

0.1550 + 0.33167 + 1.00007

p(@) _ ((—0-6419 + 0.5482i — 0.8847; — 0.2128k
~ \ 0.4675 + 0.1400i — 0.00005 + 0.0000k

pB) _ —0.6949 — 0.0141¢ — 0.08305 — 0.0382k
~\ 0.0675 — 0.35617 + 0.00005 + 0.0000%

70— (—8.6366 +7.3073i

p) _ <—0.2079 +0.0763¢ + 0.01815 — 0.2243k

0
(2) _ ((3-7230 — 0.2942
7 ( ]
76 _ (1.6142 +4.41156
N 0
and
(P~

0.1640 4 0.06637 — 0.0949;5 + 0.0255k
—0.2304 — 0.10457 + 0.09905 — 0.0507k

(P7H®

_[(—0.2356 + 0.0211% + 0.2728;5 + 0.0846k
~\ 0.1395 — 0.0180z — 0.19485 — 0.0729k

(P7H®

_(—0.1078 — 0.1399¢ — 0.00195 — 0.0230k
~\ 0.0629 4 0.1383i + 0.0904; + 0.1394k

—2.8008 — 0.9598¢ + 1.00005

—3.4450 — 2.5968¢ + 0.16595 — 1.1271k
—2.6713 — 0.8138¢ — 0.00005 + 0.0000% / °

—3.2246 — 2.8653¢ — 0.19545 — 1.6562k
—3.0447 — 1.3790¢ + 0.00005 + 0.0000% / ’

0
15.6366 + 15.5425i> ’

0
2.9438 — 0.3547i> ’

0
8.7189 + 6.9395i> ’

—3.9419 — 2.4556¢ — 0.31335 — 1.1588k>

0.0432 — 0.07577 — 0.3048; + 0.0166k
0.0582 — 0.0201¢ — 0.25345 — 0.0022k )’

0.1236 4 0.1721¢ — 0.03785 + 0.0434k
—0.1926 + 0.1148¢ + 0.18335 — 0.0826k / ’

0.1081 — 0.04837 + 0.04445 — 0.0244k
0.0846 — 0.06567 + 0.06835 + 0.0752k /

According to the Theorem 3.10, it is obvious that A% =P xq JT xg P!, where

(THo = (—0.0520 — 0.0546i

0

(7H® = (—0.0017 —0.0106i

0

i) _ (0.0303 — 0.0156i
g

0
0.0283 — 0.0323i) ’

0
0.0063 — 0.00452') ’

0
—0.0125 + 0.0188i) '
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Therefore, it is obtained that the QT-group inverse of A and its elements of frontal slices

are

(A#)(l)
_(—0.0135 4+ 0.0032¢ — 0.00665 + 0.0243%
~ \—0.0165 — 0.0034: — 0.02635 + 0.0100%

(.A#)(Q)

~( 0.0278 — 0.0244¢ + 0.00785 — 0.0018k
~ \—0.0071 — 0.0043¢ + 0.03045 — 0.0194k

(A#)(S)

_(—0.0166 + 0.0078¢ — 0.00465 + 0.0149%
~\ 0.0242 — 0.0035: — 0.00065 — 0.0223k

Further, the frontal slices of perturbation £ are

() _ (0-08+0.008i + 0j + Ok
= \ 0+ 0.04i + 0.0028; + 0k

£ _ (0 4 0.28i + 0.0068; + 0.024k

0+0:4 05 —0.01%

0.0190 + 0.0203¢ — 0.00465 — 0.0425k
—0.0102 + 0.0165¢ — 0.00785 4 0.0142k / °

0.0267 — 0.0124¢ — 0.01585 + 0.0034k
0.0107 — 0.0036¢ — 0.00815 + 0.0261k / ’

0.0103 — 0.0034¢ — 0.00055 — 0.0055k
0.0006 — 0.0175¢ + 0.01815 + 0.0010k /

0+ 0i + 05 + Ok

0.0008 4+ 0.00647 4 05 + 0k> ’

—0.0084 + 07 + 05 + Ok
0.046 + 07 + 0.0045 + 0k J °

£B3) — (0.003 +0.0001¢ + 0.0365 + 0k 0.005 + 0z 4+ 0.0075 + 0.026k

0+ 0.0127 4+ 0.035 — 0.004%

0.0001 4 0z + 0.0755 — 0.05k> ’

Then by computing, it is obtained that the perturbation & satisfies the condition & =
Axg A# xq € = E xqg A# xg A and || € ||| A* ||=0.0385 < 1.
Let B= A+ &, by Theorem 3.20, it can be obtained that B# and its frontal slices are

(B#)(l)
_ (—0.0138 4 0.0029¢ — 0.00715 + 0.0242k
~— \—0.0166 — 0.0031¢ — 0.02645 + 0.0101%

(B#)(Q)

_( 0.0282 — 0.0243: + 0.00785 — 0.0020k
~ \—0.0074 — 0.0043i + 0.03045 — 0.0200k

(B#)©®)

_(—0.0165 + 0.0078¢ — 0.00425 + 0.0150%
~\ 0.0245 — 0.00347 — 0.00045 — 0.0219%

By calculation, we can have

0.0187 + 0.0202¢ — 0.00445 — 0.0428k
—0.0098 + 0.0164¢ — 0.00785 + 0.0141k / °

0.0265 — 0.0122¢ — 0.01605 + 0.0034k
0.0107 — 0.0039¢ — 0.0078;5 + 0.0262k ) °

0.0102 — 0.0033¢ — 0.00095 — 0.0052k
0.0003 — 0.0173¢ + 0.01825 + 0.0012k /

HIIﬁELQEII = 0.1067, ||B*|| = 0.1090, 1_”';% =0.1121.
So
| A# | <| B* |< | A* | .
I+ || A% xq € | I- | A# xq & |
And we can calculate that
B# — A# A# 5 €
[IB™ — A7 T 1~ 0.0150, 1|—||A#Q*Q”5|| — 0.0254.
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That is
| 8% A* | _ | A*sgE
TA#| T 1= AF & |
Theorem 3.22. Suppose that A,E € H"*™*" Indgr(A) = 1,B = A+ E € H™*n"s,
E=Exg Axg A% and || € xq A* ||< 1. Then
B# =A% — A% xq € xg A% xq (T + & xg A*) 7! (3.12)
— (T~ Axq A") xq (T +Exq A7) L xq AT xq (T + € xq AF) 7,

and
| B = A* || __[|[ExqAF | || AsgA*| 13
TA# | T 1= [ Exq AF || (1= || Exq AF |))* '
Proof. For any quaternion tensor B, on the one hand, we know
# Bf&
diag(B)" =
B#*
n3
On the other hand, we can obtain
(z& + E1)#
oA # N L \#
diag(B)" = diag(A+ &) = (dzag( ) + diag( )) =
(An3 + ns)#
Therefore,
E# (21 + E1)#
B#s (Ans + Ens)#

that is B; = A;+E;, i = 1,2,...,n3. By Indgr(A) = 1, we have rankgr(A)? = rankgr (A).
Further more, r:annkQT(.,éT)2 = rankQT(“Zl\), we have rank((//l\(i )?) = rank(A®), it means
that Ind(A®) = 1. Since £ = £ xg A xg AT, we get diag(€) = diag(E)diag(A)diag(A)#.
Therefore, E® = E@ A (A\(i))#.

According to || € xg A% ||< 1, we get

1€ v A ||=| diag(€ *q A#) |= ||diag(€)diag(A#)|| < 1,
then ||E@A%"|| < 1. So
Bf = AF APEAF(E+ BAP (- AAPE + BAR VARG + BAF
Thus, we can get
. N\ . i . N LA . N i - 1
diag(B)" =diag(A)" — diag(A)" diag(E)diag(A)" diag(A)" diag(Z + & xg A#)
— diag(Z —EA#)diag(I —l—mA#)_ldiag(ﬁ)#diag(I —&-?%A#)_l.
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By virtue of Lemma 2.10, we have
B# =A% — A% xq £ xq A¥ xq (T4 E %o A*) ™!
— (T — Axg A%) xq (T +Exg A7) L xg A% g (T+ & xg AF) L.
So according to Proposition 2.15, we get
| BY — A% [[= || A¥ — A% xq € 2q A¥ 2 (T + € %q A¥) ™!
— (T = Axq AF) xq (T +Exq A7) wq AT xq (T+ Exq AF) ™ — AT ||
= || —A" xq £ xq AT xq (T + E xq AF) ™!
— (T - Axg A%) xq (T +E g AF) Lxg A% %o (T+ E xg AF) |

MNAFNExq AF || | | T = Axg A ||| A* |

T 1- [ Exq A% (1= || € xg A# ||)°

AT Exq AF || | || Axq A7 || A* ||
1= || €xq A# | (1= || € xg A# )

Hence, we obtain

IB7 —AF || _ € AT N [ A*qAF|
A= T A= Ex AF | (1= Exq A# [|)?

Therefore, the conclusion holds. O

Example 3.23. Suppose A € H2*2%3 with elements of the frontal slices as follows,
A0 — 3+4i+3j—k 240i+25+0k
T \1-2i—-2j+0k 0+4i+05+0k /)’

A® _ (2-i+0j =4k 0+ 0i+0j+ 0k
T \0+0i+25+0k 3+i+45-3k )

4@  (~LH0i 4540k 0+ 0i+0j +0k
T\ 0+0i+4j—2k —4+6i+3j+0k)

By calculating, it is obtained that rankgr(A) = 2 and rankgr(A?) = 2, then Indgr(A) = 1.
Next, by the QT-Jordan decomposition, we obtain

A:'P*QJ*Q'Pfl.

where the elements of frontal slices of P, J and P~ are

p1)

_(0.8772 —0.9741% — 0.28995 + 0.6332k  0.4920 + 0.2815¢ + 0.26085 + 0.6960%

- —0.3292 + 1.4692¢ + 1.00005 —0.6638 + 0.2659: + 1.00005 ’
P2)

_(—0.4994 — 0.76837 + 0.05245 + 0.2324k  0.4131 + 0.0614¢ + 0.27365 + 0.3393%

~\ 0.8109 + 1.36167 — 0.00005 + 0.0000k  0.0591 + 1.20407 — 0.00005 + 0.0000k / *
pB)

~{ 0.4401 — 0.0202¢ — 0.26685 + 0.3343k  1.4308 + 0.1619¢ + 0.74115 + 0.1280k
~ \—0.1267 + 0.6227i + 0.00005 4+ 0.0000k 0.2262 4 0.2311¢ + 0.00005 + 0.0000% / ’
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) _ (11975 +8.7451i 0
- 0 4.1975 + 7.5811i ) °
) _ (06384 +1.8666i 0
- 0 0.3283 + 3.2028i ) °
() _ (03754 = 0.9960i 0
0 —1.3421 + 0.0654i ) °
and
(P=H
_( 0.1819 4 0.21447 + 0.06095 + 0.1403k ~ —0.0143 — 0.0399i — 0.3356; + 0.0979k
~ \-0.1721 — 0.1600i — 0.1013j — 0.1929k  —0.0675 + 0.0553i — 0.05625 — 0.1079%k ) °
(P7H®

_(—0.0851 — 0.0737¢ + 0.17115 — 0.0390k  0.0924 — 0.1501¢ + 0.23465 + 0.2485k
~\ 0.0321 — 0.0030¢ — 0.16745 + 0.0926k  0.0890 — 0.0942¢ — 0.09595 — 0.0242k / °

(P~H®
_ (—0.2377 - 0.0361¢ — 0.16555 + 0.0036k —0.1596 — 0.0919¢ + 0.02265 — 0.2612k
~\ 0.3591 — 0.03057 + 0.03705 — 0.0011%k  0.2054 + 0.0312¢ 4 0.10245 + 0.0394k | °

According to the Theorem 3.10, it is obvious that A% = P g JT xo P!, where

(7hH = (00122 = 0.1070i 0
- 0 0.0524 — 0.0902i ) °
(7@ — (00132 +0.0183i 0
- 0 —0.0329 +0.0213i ) ’
(7@ — (~0-0030 = 0.0152i 0
- 0 0.0054 — 0.0160i ) °

Therefore, it is obtained that the QT-group inverse of A and its elements of frontal slices
are

(A#)(l)
0.0245 — 0.04907 — 0.01815 — 0.0136k 0.0139 + 0.01347 + 0.01795 + 0.0024%
0.0359 + 0.01714 — 0.01325 4+ 0.0127k  0.0158 — 0.0251¢ — 0.00585 — 0.0166k /’
(A#)(Q)
—0.0017 + 0.00757 + 0.02005 + 0.0642k  0.0120 + 0.0048: + 0.00365 — 0.0000k
—0.0078 — 0.01267 + 0.00225 — 0.0215k —0.0471 — 0.0611% — 0.03975 + 0.0352k } ’

(A#)(B)

_ [ 0.0104 + 0.0028¢ — 0.07745 — 0.0048k  —0.0080 — 0.0041¢ — 0.01315 — 0.0117k
~ \—0.0264 4 0.0394i + 0.01595 + 0.0215k  0.0211 + 0.0144¢ — 0.0028;5 + 0.0096k |
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Further, the frontal slices of perturbation £ are

0+ 0i +0.01j —0.02k  0.03+ 0i + 0j + Ok

e@ _ [ 0+0i+0j+0k 0+ 0i +0.0965 + Ok
~\0+0.02i +0j — 0.62k  0.028 + 0.04i + 05 + 0k ) *

() — 0.039 — 0.057 + 05 + 0.048k 0.04 + 07 + 0.0025 + Ok
- 0+0¢+ 05 —0.012k 0+ 0.037 — 0.0025 — 0.006k )

e _ (0.01 +0i +0j —0.004k 0 —0.05i + 0j + Ok)

Then by computing, it is obtained that the perturbation & satisfies the condition £& =
Exg Axg A" and || € xq A7 ||=0.0936 < 1.
Let B = A+ &, by Theorem 3.20, it can be obtained that B# and its frontal slices are
(B#)(l)

~(0.0247 — 0.0494¢ — 0.01925 — 0.0126k  0.0138 + 0.01397 4- 0.0176;5 + 0.0023k
~\0.0355 + 0.0165¢ — 0.01285 + 0.0133k  0.0166 — 0.0264¢ — 0.00505 — 0.0166k / ’

(8#)(2)

_(—0.0020 4 0.00697 + 0.01905 + 0.0629k  0.0123 + 0.0041¢ + 0.00335 — 0.0000%
~ \—0.0064 — 0.0088¢ + 0.00205 — 0.0218%k —0.0477 — 0.0614¢ — 0.0392; + 0.0337k ) ’

(B#)3)
_{ 0.0098 + 0.00427 — 0.07695 — 0.0050k  —0.0076 — 0.0029: — 0.01255 — 0.0117k
-~ \—0.0253 + 0.03744 + 0.02015 + 0.0242k  0.0212 + 0.0148; — 0.00295 + 0.0100k | °

By calculation, we can have

|B# — A#|| | € +q A% || | Axq A* ||
2 2 N —0.0540, — 97 1 —(.1033, = 1.2173.
|[A#] 1= || Exq A* || (1= || € xq A# ||)?
That is
IIB?‘VE—«‘l#II< | € xq A% || . | Axq A || .
[A# [~ 1= [|Ex AF ||~ (1— || € xq A# ||)?
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