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Abstract: For a signed ring family F C 3 (closed with respect to the reduced union and intersection)
and for a bisubmodular function f : F — R with (0,0) € F and f(0,0) = 0, the bisubmodular polyhedron
associated with (F, f) is given by

Po(f) ={z|z e R"V(X,Y) € F: 2(X,Y) < f(X,Y)},

where z(X,Y) = 3 _cx z(e) — X .cy ®(e). We define the convolution of a bisubmodular function f and a
special bisubmodular function w called a box-bisubmodular function determined by upper and lower bound
vectors wt and w~. We show that the convolution is a bisubmodular function, too. The bisubmodular
polyhedron associated with the convolution is shown to be the intersection of P4 (f) and the box determined
by the upper and lower bound vectors wt and w~. This also generalizes some known min-max results on
bisubmodular functions and ordinary submodular functions. Moreover, we consider the Dilworth truncation
of bisubmodular functions, which generalizes the Dilworth truncation of submodular functions.
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Introduction

A bisubmodular function is a generalization of an ordinary submodular function and some of
the results on submodular functions can naturally be generalized to those on bisubmodular
functions (see [3, 4, 6, 7, 9, 10, 11, 13, 14, 23, 25, 26, 27]). A characterization of b-matching
degree-sequence polyhedra is nicely given by means of bisubmodular functions in [12]. Also,
a min-max theorem with respect to the ¢; norm for bisubmodular polyhedra is given in [18]
as a generalization of a min-max relation shown in [12].

The convolution of a submodular function and a modular function plays a fundamental
role in the theory of submodular functions (see [15, 17]). In the present paper we consider
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the convolution of a bisubmodular function and a so-called box-bisubmodular function and
reveal its implications. The result implies the min-max theorem given by W. H. Cunning-
ham and J. Green-Krotki [12] associated with b-matching degree-sequence polyhedra as well
as the well-known min-max relations concerning a vector reduction of polymatroids and
submodular systems ([15, 17]). We also consider the Dilworth truncation of bisubmodular
functions which generalizes that of submodular functions.

In Section 2 we give some basic definitions about bisubmodular functions. Section 3
treats the convolution of bisubmodular functions and gives a formula for the convolution
and its implications. In Section 4 we consider the Dilworth truncation of bisubmodular
functions.

Basic Definitions
For a finite nonempty set E define
3F={(X,)V)| X,)YCE,XNY =0} (2.1)

Note that each element (X,Y’) € 3F can be made one-to-one correspond to its characteristic
vector x(x,y) € {0, +1}¥, where

1 feeX
0 otherwise

We call an element of 3F a signed set. For any (X;,Y;) € 3% (i = 1,2) we write (X1,Y;) C
(XQ,}/Q) if X1 Q X2 and Yl Q Yé Also we write (Xl,Yl) [ (XQ,}/Q) if (Xl,Yl) E (XQ,YQ)
and (X1,Y7) # (Xa,Y2). The binary relation C is a partial order on 3%. We call (,0) € 3¥
the null signed set.

We consider two binary operations U (reduced union) and M (intersection) on 3F defined
as follows. For any (X;,Y;) € 3F (i =1,2),

(X1, Y1) U (X2, Y2) = ((XK1UX2)\ (Y1UY2), (Y1UY2) )\ (X1 U X2)), (2.3)
(X1,Y) N (X2, Ya) = (X1NXs,Y:NYa). (2.4)

Let F be a family of signed sets in 37 that is closed with respect to the reduced union LI and
the intersection M. We call such a family F of signed sets a signed ring family. A function
f ' F — R on a signed ring family F is a bisubmodular function if for each (X;,Y;) € F
(1 =1,2) we have

f(X1, Y1) + f(X2,Y2) = f((X1, Y1) U (X2, Y2)) + (X1, Y1) M(X2, Y2)). (2.5)
It should be noted that we have the following equations:
X(X1,¥1) T X(X2,Y2) = X(X1,Y1)U(X2,Y2) T X(X1,Y1)N(X2,Y2) (2.6)
and for any z € RF
(X1, Y1) 4 2(Xo, Y2) = (X1, Y1) U (X2, ¥2)) + 2((X1, Y1) 1M (X2, Y2)),  (2.7)
where for any X C E 2(X) =Y .y z(e), z(0) =0, and for any (X,Y) € 3%

2(X,Y) = 2(X) — z(Y). (2.8)
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In the following we assume that (0, #) € F and f(0,0) = 0. Then the pair (F, f) is called
a bisubmodular system on E (see [3, 4, 6,7, 17, 18]). When F = 3, a bisubmodular system
is called a polypseudomatroid ([11, 23]) (also see [17, Sec. 3.5(b)] and [3] for properties of
bisubmodular functions and related concepts).

It should be noted that the argument throughout this paper is valid when R is any totally
ordered additive group such as the sets of reals, rationals, and integers.

The bisubmodular polyhedron P, (f) associated with the bisubmodular system (F, f) on
FE is given by

P.(f) ={z e R¥ |V(X,Y) e F:z2(X,Y) < f(X,Y)}. (2.9)

It is known that we have P, (f) # 0 for every bisubmodular system (F, f) on E (see [2, 17]).

The Box Convolution of Bisubmodular Functions

Let (F,f) be a bisubmodular system on E and suppose that we are given two vectors
T e RE and w— € RE with wt > w™. A boz-bisubmodular Sfunction w : 3E 5 R is defined
in terms of such two vectors wt and w™ as follows. We define for each (X,Y) € 37

w(X,Y) = wH(X) —w (Y). (3.1)

We can easily see that the function w : 3¥ — R is bisubmodular and that its associated
bisubmodular polyhedron is a box in R¥ given by

P.(w)={z eRF |w™ <z <w'}. (3.2)

We define the convolution, denoted by f o w, of the bisubmodular function f and the
box-bisubmodular function w determined by upper and lower bound vectors wt and w™ as
follows. For any (X,Y) € 3%,

fow(X,Y)=min{f(X,V)+w(X\ X, Y\YV)+w(\Y,X\X)|(X,Y)eF}. (3.3)

Here, note that we do not impose restrictions such as X € X and Y C Y. Equation (3.3)
can be rewritten as

fow(X,Y) = min{f(X,Y)4+wH(X\X)—w (Y \Y)
+wt(V\Y)—w (X \X) | (X,Y) e F}
= min{f(X, Y)+w+((XuX)\X) w (Y \(YHY))
wh(Y\ (Y NY)) - ((XuX>\X>\( Y) e F}
= min{f(X, Y)+w ((XUX)\X)—w (XUX)\X)
wr(Y\ (Y NY)—w (Y \ (Y NY)) | (X Y)ef}
= min{f(X, Y)+w (X\X) —w (X\X) +wf (Y \Y) —w” (Y \Y)
| (X, Y)e F,X2XUX,YCYNY}, (3.4)

where the last equality is due to the non-negativity of the difference vector wt — w~.
We use the following lemma to show the bisubmodularity of f o w.

Lemma 3.1. Let  be a vector in R¥ and A, B,C, D be subsets of E such that A D B and
C D D. Then we have

2(A\ B) +2(C\ D) =2((AUC)\ (BUD)) + z((ANC)\ (BN D)),  (3.5)
2(A\B) +z(C\ D) =z((A\ D)\ (B\C)))+z((C\B)\ (D\A4)). (3.6)
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Proof. The validity of (3.5) and (3.6) can easily be seen by drawing the Venn diagram of
the four sets A, B,C, D with A D B and C D D. O

Now, we have the following theorem.
Theorem 3.2. The function fow :3F — R defined by (3.3) is a bisubmodular function.

Proof. Tt follows from (3.4) that for any (X,Y), (V,W) € 3% there exist X;,Y;,V;,W; C E
(i = 1,2) with

(X1, Y1), (Vi, W) € F, (3.7)
X, DXUX,, CYNY,, V,DVUVL, Wy CWAW, (3.8)

such that
fow(X,Y) = f(X1,1) + w(X2 \ X1,Y \ Y2) + w(¥71 \ Y2, X5 \ X), (3.9)

fow(V,W) = f(Vi,W1) + w(Va \ Vi, W\ Wa) +w(Wq \ Wa, Vo \ V). (3.10)
From (3.8) and (3.5) in Lemma 3.1 we have

wh(Xo\ X1) +wt (Vo \ V1) = wt (Xo UVo) \ (X1 UW)) +w T ((X2nVe)\ (X1NV7)), (3.11)
wh (Y1 \Ya) +wh (Wi \Wa) = w (YiUW1)\ (Y2UWa)) +w™ (YinW)\ (YanWa)), (3.12)
w (Y\Y2) +w” (W\Wa) =w (YUW)\ (Y2UWa2)) +w™ (Y NW)\ (YanWa)), (3.13)

w (Xo \ X) 4w (Va\ V) =w (X2 UV) \ (X UV)) +w (X2 NVR)\ (X NV)). (3.14)

Moreover, since

XoUVo D XUV, XoNVy D XNV, (3.15)
YiUW, DY, UWa,  YiN W D Yen W, (3.16)
YUWDY,UWa, YNWDYonWa, (3.17)
X2UV D XUV,  XonVa2XNV, (3.18)
we have from (3.6) in Lemma 3.1
U}+((X2 U ‘/2) \ (Xl U V1)> + w+(Y1 U Wl) \ <Y2 U WQ))
=wh((X2UVa) \ (Y2U W)\ (X1 UW)\ (Y1 UWL)))

Fwt (YL UW)\ (X1 UW))\ (Y2 UT2) \ (X2 U TR)))), (3.19)
wh((Xa N Vo) \ (X1 N W) +wt (Yo n W)\ (Yo N Wa))
=wh((X2nVa) \ (YanWy)) \ (X1 N1Y))

Tt (Yin W)\ (YanWe) \ (X2 N 13))), (3.20)

w (Y UW)\ (Y2 UWa)) +w™ (X2 U Vo) \ (X UV))
=w (YUW)\ (X UV)\ (Y2 U W)\ (X2 UV3)))
+w” (X2 UV2) \ (Y2 U W) \ (X UV)\ (Y UW))), (3-21)
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wo (Y NW)A\ (Y2 Wa)) +w™ (X2 NV2) \ (X NV))
=w (Y OW)\ (Y2 nWa) \ (X2 N V3)))
T (X2 NV2) \ (Y2N W) \ (X NV)). (3.22)

Also, by the bisubmodularity of f we have

F( X1, Y1)+ f(Vi, W) > f((XiuVi)\ (YTUTW), YT UW)\ (X1 UW)) + f(Xy ﬂVl,Ylﬂ(Wl))-
3.23
Combining (3.9)—(3.23), we have

fow(X,Y)+ fow(V,W)
> f((X1 UV)\ (Y1 UWA), (Y1 U W)\ (X1 U W)
wh(((Xa U Vo) \ (YaUW2))\ (X1 UV1)\ (Y1 UWY)))
w ((X2UVa) \ (YaUW2))\ (X UV)\ (Y UW)))
wh((YiUW) \ (X1 U V) \ (Y2UWa) \ (X2 UVR)))
w ((YUW)\(XUV)\ (YaUWa)\ (X2UV2)))
+f(X1 NV, Y1 NWwy)
Fwt ((XaNV2) \ (YanWa))\ (X1 N V1))
w ((X2NVa) \ (YanWa)) \ (X NV))
+w+((Y1 N\ (Y2nW2) \ (X2 NV2)))
(Y W)\ (YanWy)\ (X2 N1R))), (3.24)

—w
where

(XoUV)\ (Yo UWo) D (XUWMN\ (Y UW))U (X1 UW)\ (YL UWy)),

(Xon Vo) \ (YanWo) D (X NV)U(X1NW),
(YanWa)\ (XanVa) C (Y NW)U (Y1 NW).
From (3.24)—(3.28) and (3.4) we have the following inequality.

( ( (

(Y2 UWy) \ (Xa UVe) € (Y UW)\ (X UV))N((YiUW)\ (XpUW)), (3.
) )u (
(

fow(X,)Y)+ fow(V,W) > fow((X,Y)U(V,W))+ fow((X,Y)N(V,¥)). (3.29)
This completes the proof of the present theorem. O

Remark 3.3. Theorem 3.2 is valid without the assumption that P..(f) NP.(w) # 0 (which
will be imposed in Theorem 3.4), so that we may have f ow(0,0) < 0 here. It should be
noted that if Q = {z € RF | V(X,Y) € F\{(0,0)}: 2(X,Y) < fow(X,Y)} is nonempty,
then @ is the polyhedron of the Dilworth truncation of f o w, which will be discussed in
Section 4 (see Theorem 4.2).

Moreover, we have the following theorem.

Theorem 3.4. Suppose that P.(f) N P.(w) # 0. Then we have fow(D,0) = 0 and the
bisubmodular polyhedron associated with the convolution f ow is given by

P.(fow) = P.(f)NP.(w)
= {z]|zeP.(f), w <z<wt} (3.30)
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Proof. It P..(f) NPy (w) # 0, then for any vector z € P..(f) NP.(w) and any (X,Y) € F we
have
r(X,Y) < f(X,Y), 2)<wt(Y), z(X)>w (X). (3.31)

Hence, for any (X,Y) € F, :
FXY)+wt (V) —w (X) > 2(X,Y)+2(Y) —2(X) =0. (3.32)
It follows from (3.3) and (3.32) that
fow(®,0)=min{f(X,Y)+wH(Y)-w (X)](X,Y)€F}=0. (3.33)

Therefore, the bisubmodular polyhedron P, (f o w) is well defined.
For any (Xo,Yy) € F the inequality

l‘(XQ,Y0> S fO’w<X0,Yro) (334)
is implied by the system of inequalities
(X,Y)< f(X)Y)  ((X,)Y)eF), (3.35)

w(e) < x(e) <wh(e) (e€ E) (3.36)
due to the definition (3.3) of f o w. Moreover, it follows from (3.3) that

fow(X)Y) < f(X)Y)  ((X,Y)eF), (3.37)

fow(X,0) <wh(X) (XCE), (3.38)

fow(0,Y)<—w (Y) (Y CE). (3.39)

Hence, we have (3.30). O

The above argument is valid even if the upper-bound vector w™ has components equal to
+00 and the lower-bound vector w~ has components equal to —oc (i.e., wt € (RU{+o0})¥
and w~ € (RU{—0c0})¥). In such a case the domain of the convolution f ow is a signed
ring family including F and being possibly a strict subset of 3%.

Remark 3.5. Our arguments throughout the present paper hold for any totally ordered
additive group. Hence Theorem 3.4 implies the following integrality property:

e When R is the set of reals, f is integer-valued, and w* and w™ are integral vectors
allowing +00 components, the box-convolution fow is an integer-valued bisubmodular
function and there exists an integral vector in P, (f o w) C R¥,

The integrality property of bisubmodular functions is discussed in relation to integrally
convex functions in [24].

For any given v € RF and S C F define wt € (RU{+00})F and w™ € (RU{—oc0})¥ by

v J o) (e€d) [ v(e) (e€ E\S)
v (e)_{ -0 (ee E\S)’ w+(e)_{ +oo (e€S) ’ (3.40)

Also define the partial order <g on R¥ by x <g y < x(e) > y(e) (e € S) and z(e) < y(e)
(e € E\ S). Then we have the following corollary.
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Corollary 3.6. Given any v € R¥ and S C E, for w™ and w defined by (3.40) we have
P.(fow) = P.(f)NP.(w)
= {z |z eP.(f), x <gwv}. (3.41)

In particular (when S = 0, i.e., w™ € {—00}¥), we have the following corollary due to
Cunningham and Green-Krétki [12] (for F = 3%).

Corollary 3.7 (Cunningham-Green-Krétki). For any wt € R¥ such that {z € P.(f) | # <
wt} # 0 we have

max{z(E) | z € P.(f), z < w*} = min{f(X,V) + wH(E\ X)+wt ()| (X,Y) € (]-'}. |
3.42

Proof. The present theorem follows from Theorem 3.4 and Corollary 3.6 with S =FE. O

The feasibility condition, P.(f) N P.«(w) # 0, appearing in Theorem 3.4 can also be
expressed as follows. We need some definitions from [17, Sec. 3.5(b)]. A signed set (S,T) €
3P with SUT = () is called an orthant of R”. For each orthant (S,T) define 2(57) =
{(X,Y)e3F | (X,Y)C (S,T)} and

P (f) ={z e R¥ | V(X,Y) € Fn2&T . 2(X,Y) < f(X,Y)}. (3.43)
For any polyhedron Q C R¥ and U C E define a reflection of Q by U as
QU ={z|ycR¥ Veec U:a(e) = —y(e), Ve E\U : z(e) = y(e)}. (3.44)

The reflection of P(g7)(f) by 7' is a submodular polyhedron associated with the ordinary
submodular set function f defined by f(X) = f(SNX,TNX) for X C E with (SNX,TNX) €
F. It is known that P.(f) is equal to the intersection of all P (g 7)(f) for all orthants (S, T).

Theorem 3.8. Suppose that we are given a bisubmodular system (F,f) on E and two
vectors wr,w™ € R with w™ < wt. We have P.(f) N P.(w) # 0 if and only if for every
orthant (S,T) of RE we have

w(s,r) € Pesm(f); (3.45)
where w(s, Ty € RE is defined by
w (e ees
w(s,T)(e) = { _wgr()e) Ee c T)) (e € E). (3.46)

Proof. Note that for every orthant (S,T') the vector w(g 1y is the minimum vector in the
reflected box P, (w)|T. Hence the “only if” part is easy. So we show the “if” part in the
following.

Suppose that (3.45) holds for every orthant (S,7"), which is equivalent to the following
system of inequalities, due to (3.43).

w(X)-wh(Y) < fXY)  ((X,Y)e (Fn2®&Dy) (3.47)
for all orthants (S,T). It follows from (3.3) and (3.47) that
fow(®,0) =min{f(X,Y)+wH(Y)—-w (X)]| (X,Y) e F} >0, (3.48)

where the last inequality holds with equality since (X,Y) = (0,0) € F. Hence, from
Theorem 3.2 and (3.48) we have a bisubmodular system (37, fow), so that P..(f)NP.(w) =
P.(f ow) # 0. O
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Remark 3.9. When f(E,0) + f(0, F) = 0, the bisubmodular polyhedron P.(f) becomes
a base polyhedron lying on the hyperplane z(F) = f(E,0)(= —f(0, E)) (see, e.g., [17]). In
this case we need (3.45) (or (3.47)) only for two orthants (S,7") € {(E,(), (0, E)} in order
to guarantee P.(f) N P.(w) # 0 (see [17, Theorem 3.8] and for matroid base polytopes in
[22]).

Bisubmodular /submodular functions and their associated polyhedra have very recently
drawn much attention in the field of algebraic geometry and combinatorics (see, e.g., [1, 8]
and [16, 19] for box convolution).

The Dilworth Truncation of Bisubmodular Functions

Let F C 3F be a signed ring family with (§,0) € F and f : F — R be a bisubmodular
function. In this section we do not assume f(0,0) = 0. If f(0,0) > 0, then re-defining
f(0,0) = 0, we obtain a bisubmodular function f : F — R again. Hence we consider the
case where f(f),0) < 0 in the sequel. In this case the system of linear inequalities

o(X,Y)(=2(X) —2(Y)) < f(X,Y)  ((X,Y) e FAL{(0.0)}) (4.1)

for x € R¥ is possibly inconsistent. So we impose the following assumption:
(A) (4.1) is consistent, i.e., there exists a feasible solution x € RF for (4.1).

We call the set of distinct signed sets (X;,Y;) (1 =1,2,...,k) in F\ {(0,0)} a reduced
partition of (X,Y) € F if we have

(X5, Y)N(X;,Y) = (0,0)  (,5=1,2... .k i#37), (4.2)
(X, Y)N(X,Y)# 0,00  (i=1,2,....k), (4.3)
(X,Y) = (X1,Y1) U (Xo, Y2) U+ U (X, V). (4.4)

Here, it should be noted that the reduced union Ll is not associative in general but that
under the condition (4.2) the right-hand side of (4.4) does not depend on the order of the
reduced-union operations. (We also define a reduced partition of the null set (0,0) by (4.2)
and (4.4) without imposing (4.3).) Put I = {1,2,...,k}. Under conditions (4.2)—(4.4) the
following three statements hold:

(a) For each e € X there uniquely exists i* € I such that e € X;« and for each e € Y
there uniquely exists 7% € I such that e € Y;«.

(b) For each i€l wehave X NY; =0 and Y NX,; =0.
(¢) Uier(X; \ X) = Uier (Y \ Y), where the both set unions are disjoint set unions.

(Here (a) follows from (4.2)—(4.4). For (b), if there exists ¢ € I and e € E such that
e € X NY;, then there must exist distinct 41,42 € I such that e € X;, N X, (due to (4.4)),
which contradicts (4.2). For (c), because of (4.2) and (4.4), for every e € E\ (X UY) we
have [{i eI |ee X;}|=|{i€I|e€Y;} =1or0. Hence (c) follows from (4.4).) Equation
(4.4) becomes

(X, Y)=(X1UuXaU---UXp)\(NVhUYaU---UY),
(YiUYQU"'UYk)\(X]_UXQU"'UX]C)). (45)
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We call a reduced partition {(X;,Y;) |i=1,2,...,k} of (X,Y) a partition of (X,Y) if
K YDE(XY)  (1=1,2,...,k), (4.6)
For a reduced partition {(X;,Y;) |i=1,2,...,k} of non-null (X,Y) € F define

(Xi,Y:) = (X,Y)N(X,,Y))
= (X;\(MUYU---UY,), Y\ (X1 UXoU---UXy)) (4.7

fori =1,2,...,k. The collection of the signed sets ()A(l, ;) (i =1,2,... k) forms a partition
of (X,Y). Then, because of (4.2)—(4.4) we have

k
FOOY) + ) f(X0Y))
k
> (X, Y) 1N (X1, Y1) + f((X,Y) U (X1, Y1) + Zf(Xz"Yi)
k
= f(X1, V1) + F((X,Y) U (X1, Y1) + Zf(Xi,Yi)
> f(X1, Y1) + F(((X,Y) U (X1, Y7)) 1 (X2, Y2))
k
(X, Y) U (X0, Y1) U (X2, Ya)) + ) f(XG,Y5)
i=3
k
= F(X0, Y1) + (Ko, Ya) + F((XY) U (X0, Y1) U (X2, Y2))) + ) f(XG,Y5)
i=3

k
Z Zf(X“}A/l) + f((Xa Y) U ((Xlayl) (i (XQaYé) U---u (Xk)aYk:)))
k

=) (XL Y5) + FXY), (4.8)

i=1

where note that we have ((X,Y) U (X1,Y1)) M (X2, Ys) = (X, Ys) since {(X;,Y;) | i =
1,2,...,k} is a reduced partition of (X,Y).
Consequently, we have from (4.8)

It follows from (4.9) that for any non-null (X,Y) € F

min { Zf(Xi,Yi) | {(X;,Y;) | i€ I}:areduced partition of (X, Y)}
iel

= min { 3 (X Yi) | {(X0,Y7) | i € I} : a partition of (X, Y)}. (4.10)
iel
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Now, we define the Dilworth truncation, denoted by f , of f as follows, For each nun-null
(X,)Y)eF

F(X,Y) = min { 3" (X Yi) [ {(X0, Vi) | i € I} - a partition of (X,Y)} (4.11)
1eIl
and we also define f(0,0) = 0.

We show the following theorem. This partially answers a problem posed by Liqun Qi in
[27].

Theorem 4.1. The Dilworth truncation f is a bisubmodular function on F.

Proof. Suppose that for any (X,Y),(V,W) € F\ {(#,0)} we have

FXY) =D f(XnYh),  fVW) = F(V;, W), (4.12)
i€l i€J
where {(X;,Y;) | ¢ € I} and {(V;,W;) | j € J} are, respectively, partitions of (X,Y) and
(V,W). Also, suppose that I ={1,2,...,k} and J ={1,2,...,¢}. Now we have

k ¢
FXY)+FVW) = > XL+ > F(Vi, W)
i=1 j=1
¢ k
= fX0LY) ) FVEW) 4> F(X,Yi). (4.13)
j=1 i=2

Let us assume without loss of generality that (X1,Y7) 1 (V;, W;) # (0,0) for j =1,2,...,p
with 0 < p < ¢. Then the first two terms on the right-hand side of (4.13) is transformed as
follows.

¢
FX0LY) + Y (V3 W5)
¢
> f((X1, Y1) U (Vi, W) + Zf(Vijj) + f((X1, Y1) 11 (Vi, Wh))

=2

14
> F((X0L YD) U (U VU W)+ 3 F(V. W)
j=p+1
P

37 F((X, V) NV, W), (4.14)

j=1

where use is made of the fact that whenever (A4, B), (C1, D1), (Cs, D3) € 3% and (C;UD1)N
(Co U Dy) = (), we have

((A,B) U (Cy,Dq)) U (Cq, Do) = (A, B) U (Cy UCq, Dy U Ds). (4.15)

We note that for the first two terms on the right-hand side of the above expression (4.14) we
have the sum of the values of f on the blocks of a “reduced partition” of (X7, Y7)U(V, W) (if
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it is non-null) and for the third term the sum of the values of f on the blocks of a “partition”
of (X1,Y1) N (V,W) (if it is non-null).

Proceeding from (4.13) in the same manner as in (4.14), for ¢ = 2,...,k we combine
at every stage (X;,Y;) with the blocks of the currently generated “reduced partition” of
(UIZ1 X4, UIZ1Y;) U (V, W). In the end the expression

k Y4

S OFXLY) > F(V W) (4.16)

i=1 j=1
is transformed into an expression in which we have the sum of the values of f on the blocks
of a “reduced partition” of (U¥_, X;, U V;) U (V, W) = (X,Y) U (V, W) and the sum of the
values of f on the blocks of a “partition” of (UF_, X;, Uk, Y))1(V, W) = (X,Y) 1 (V, W) (if
it is non-null). It follows from (4.9) and the definition (4.11) of f that

FECY)+ F(V.W) = (X Y) L (VW) + (XL Y) N (V, W), (4.17)
This establishes the bisubmodularity of the Dilworth truncation f . O

The bisubmodular polyhedron P, ( f ) associated with the Dilworth truncation f is related
to the original f as follows.

Theorem 4.2.
P.(f) ={z e R¥ |V(X,Y) e F\{(0,0)}: 2(X,Y) < f(X,Y)}. (4.18)
Moreover, for each (X,Y) € F,
FX,Y) = max{z(X,Y) | = € P.(f)}. (4.19)
Proof. For each (Xo,Yy) € F\ {(0,0)} the inequality
2(Xo,Yp) < f(Xo,Yo) (4.20)
is implied by the system of inequalities
o(X,Y) < f(X)Y) (X, Y) e FAL(0,0)}) (4.21)

since (4.20) is obtained by adding both sides of inequalities chosen appropriately from among
(4.21) according to the way of the construction of f(Xy,Yp) in terms of f(X,Y) (X,Y) €
F\ {(0,0)}) as shown in the proof of Theorem 4.1. Also note that the domain of f is
equal to F and we have f(X, Y) < f(X,Y) for all non-null (X,Y) € F. Therefore, the
present theorem follows from Theorem 4.1 and the well-known fact that every inequality
z(X,Y) < f(X,Y) is tight for the bisubmodular polyhedron P.(f) associated with the

bisubmodular system (F, f) (see, e.g., [2, 3]). O

Remark 4.3. A family F C 3 is called an intersecting family if for each (X;,Y;) € F
(1=1,2), (X1,Y1) M (X2, Ys) # 0 implies (X1,Y1) U (X2,Y3), (X1,Y1)N(Xs,Y2) € F. Also,
a function f on an intersecting family F C 3¥ is called an intersecting-bisubmodular function
if for each intersecting pair (X;,Y;) € F (i = 1,2) (i.e., (X1Y1) N (X2, Y2) # (0,0)) we have
the bisubmodularity inequality (2.5). Note that the arguments in the present section are
also valid mutatis mutandis if we consider intersecting-bisubmodular functions satisfying
Assumption (A). Another extension of the Dilworth truncation and the intersection of two
bisubmodular polyhedra are also investigated in [21].
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