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the convolution of a bisubmodular function and a so-called box-bisubmodular function and
reveal its implications. The result implies the min-max theorem given by W. H. Cunning-
ham and J. Green-Krótki [12] associated with b-matching degree-sequence polyhedra as well
as the well-known min-max relations concerning a vector reduction of polymatroids and
submodular systems ([15, 17]). We also consider the Dilworth truncation of bisubmodular
functions which generalizes that of submodular functions.

In Section 2 we give some basic definitions about bisubmodular functions. Section 3
treats the convolution of bisubmodular functions and gives a formula for the convolution
and its implications. In Section 4 we consider the Dilworth truncation of bisubmodular
functions.

2 Basic Definitions

For a finite nonempty set E define

3E = {(X,Y ) | X,Y ⊆ E,X ∩ Y = ∅}. (2.1)

Note that each element (X,Y ) ∈ 3E can be made one-to-one correspond to its characteristic
vector χ(X,Y ) ∈ {0,±1}E , where

χ(X,Y )(e) =

 1 if e ∈ X
−1 if e ∈ Y
0 otherwise

(e ∈ E). (2.2)

We call an element of 3E a signed set. For any (Xi, Yi) ∈ 3E (i = 1, 2) we write (X1, Y1) ⊑
(X2, Y2) if X1 ⊆ X2 and Y1 ⊆ Y2. Also we write (X1, Y1) ⊏ (X2, Y2) if (X1, Y1) ⊑ (X2, Y2)
and (X1, Y1) ̸= (X2, Y2). The binary relation ⊑ is a partial order on 3E . We call (∅, ∅) ∈ 3E

the null signed set.
We consider two binary operations ⊔ (reduced union) and ⊓ (intersection) on 3E defined

as follows. For any (Xi, Yi) ∈ 3E (i = 1, 2),

(X1, Y1) ⊔ (X2, Y2) = ((X1 ∪X2) \ (Y1 ∪ Y2), (Y1 ∪ Y2) \ (X1 ∪X2)), (2.3)

(X1, Y1) ⊓ (X2, Y2) = (X1 ∩X2, Y1 ∩ Y2). (2.4)

Let F be a family of signed sets in 3E that is closed with respect to the reduced union ⊔ and
the intersection ⊓. We call such a family F of signed sets a signed ring family. A function
f : F → R on a signed ring family F is a bisubmodular function if for each (Xi, Yi) ∈ F
(i = 1, 2) we have

f(X1, Y1) + f(X2, Y2) ≥ f((X1, Y1) ⊔ (X2, Y2)) + f((X1, Y1) ⊓ (X2, Y2)). (2.5)

It should be noted that we have the following equations:

χ(X1,Y1) + χ(X2,Y2) = χ(X1,Y1)⊔(X2,Y2) + χ(X1,Y1)⊓(X2,Y2) (2.6)

and for any x ∈ RE

x(X1, Y1) + x(X2, Y2) = x((X1, Y1) ⊔ (X2, Y2)) + x((X1, Y1) ⊓ (X2, Y2)), (2.7)

where for any X ⊆ E x(X) =
∑

e∈X x(e), x(∅) = 0, and for any (X,Y ) ∈ 3E

x(X,Y ) = x(X)− x(Y ). (2.8)
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In the following we assume that (∅, ∅) ∈ F and f(∅, ∅) = 0. Then the pair (F , f) is called
a bisubmodular system on E (see [3, 4, 6, 7, 17, 18]). When F = 3E , a bisubmodular system
is called a polypseudomatroid ([11, 23]) (also see [17, Sec. 3.5(b)] and [3] for properties of
bisubmodular functions and related concepts).

It should be noted that the argument throughout this paper is valid when R is any totally
ordered additive group such as the sets of reals, rationals, and integers.

The bisubmodular polyhedron P∗(f) associated with the bisubmodular system (F , f) on
E is given by

P∗(f) = {x ∈ RE | ∀(X,Y ) ∈ F : x(X,Y ) ≤ f(X,Y )}. (2.9)

It is known that we have P∗(f) ̸= ∅ for every bisubmodular system (F , f) on E (see [2, 17]).

3 The Box Convolution of Bisubmodular Functions

Let (F , f) be a bisubmodular system on E and suppose that we are given two vectors
w+ ∈ RE and w− ∈ RE with w+ ≥ w−. A box-bisubmodular function w : 3E → R is defined
in terms of such two vectors w+ and w− as follows. We define for each (X,Y ) ∈ 3E

w(X,Y ) = w+(X)− w−(Y ). (3.1)

We can easily see that the function w : 3E → R is bisubmodular and that its associated
bisubmodular polyhedron is a box in RE given by

P∗(w) = {x ∈ RE | w− ≤ x ≤ w+}. (3.2)

We define the convolution, denoted by f ◦ w, of the bisubmodular function f and the
box-bisubmodular function w determined by upper and lower bound vectors w+ and w− as
follows. For any (X,Y ) ∈ 3E ,

f ◦ w(X,Y ) = min{f(X̂, Ŷ ) + w(X \ X̂, Y \ Ŷ ) + w(Ŷ \ Y, X̂ \X) | (X̂, Ŷ ) ∈ F}. (3.3)

Here, note that we do not impose restrictions such as X̂ ⊆ X and Ŷ ⊆ Y . Equation (3.3)
can be rewritten as

f ◦ w(X,Y ) = min{f(X̂, Ŷ ) + w+(X \ X̂)− w−(Y \ Ŷ )

+w+(Ŷ \ Y )− w−(X̂ \X) | (X̂, Ŷ ) ∈ F}
= min{f(X̂, Ŷ ) + w+((X ∪ X̂) \ X̂)− w−(Y \ (Y ∩ Ŷ ))

+w+(Ŷ \ (Y ∩ Ŷ ))− w−((X ∪ X̂) \X) | (X̂, Ŷ ) ∈ F}
= min{f(X̂, Ŷ ) + w+((X ∪ X̂) \ X̂)− w−((X ∪ X̂) \X)

+w+(Ŷ \ (Y ∩ Ŷ ))− w−(Y \ (Y ∩ Ŷ )) | (X̂, Ŷ ) ∈ F}
= min{f(X̂, Ŷ ) + w+(X̃ \ X̂)− w−(X̃ \X) + w+(Ŷ \ Ỹ )− w−(Y \ Ỹ )

| (X̂, Ŷ ) ∈ F , X̃ ⊇ X ∪ X̂, Ỹ ⊆ Y ∩ Ŷ }, (3.4)

where the last equality is due to the non-negativity of the difference vector w+ − w−.
We use the following lemma to show the bisubmodularity of f ◦ w.

Lemma 3.1. Let x be a vector in RE and A,B,C,D be subsets of E such that A ⊇ B and
C ⊇ D. Then we have

x(A \B) + x(C \D) = x((A ∪ C) \ (B ∪D)) + x((A ∩ C) \ (B ∩D)), (3.5)

x(A \B) + x(C \D) = x((A \D) \ (B \ C))) + x((C \B) \ (D \A)). (3.6)
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Proof. The validity of (3.5) and (3.6) can easily be seen by drawing the Venn diagram of
the four sets A,B,C,D with A ⊇ B and C ⊇ D.

Now, we have the following theorem.

Theorem 3.2. The function f ◦ w : 3E → R defined by (3.3) is a bisubmodular function.

Proof. It follows from (3.4) that for any (X,Y ), (V,W ) ∈ 3E there exist Xi, Yi, Vi,Wi ⊆ E
(i = 1, 2) with

(X1, Y1), (V1,W1) ∈ F , (3.7)

X2 ⊇ X ∪X1, Y2 ⊆ Y ∩ Y1, V2 ⊇ V ∪ V1, W2 ⊆ W ∩W1 (3.8)

such that

f ◦ w(X,Y ) = f(X1, Y1) + w(X2 \X1, Y \ Y2) + w(Y1 \ Y2, X2 \X), (3.9)

f ◦ w(V,W ) = f(V1,W1) + w(V2 \ V1,W \W2) + w(W1 \W2, V2 \ V ). (3.10)

From (3.8) and (3.5) in Lemma 3.1 we have

w+(X2 \X1)+w+(V2 \V1) = w+((X2∪V2)\ (X1∪V1))+w+((X2∩V2)\ (X1∩V1)), (3.11)

w+(Y1 \Y2)+w+(W1 \W2) = w+((Y1∪W1)\(Y2∪W2))+w+((Y1∩W1)\(Y2∩W2)), (3.12)

w−(Y \ Y2) +w−(W \W2) = w−((Y ∪W ) \ (Y2 ∪W2)) +w−((Y ∩W ) \ (Y2 ∩W2)), (3.13)

w−(X2 \X) + w−(V2 \ V ) = w−((X2 ∪ V2) \ (X ∪ V )) + w−((X2 ∩ V2) \ (X ∩ V )). (3.14)

Moreover, since

X2 ∪ V2 ⊇ X1 ∪ V1, X2 ∩ V2 ⊇ X1 ∩ V1, (3.15)

Y1 ∪W1 ⊇ Y2 ∪W2, Y1 ∩W1 ⊇ Y2 ∩W2, (3.16)

Y ∪W ⊇ Y2 ∪W2, Y ∩W ⊇ Y2 ∩W2, (3.17)

X2 ∪ V2 ⊇ X ∪ V, X2 ∩ V2 ⊇ X ∩ V, (3.18)

we have from (3.6) in Lemma 3.1

w+((X2 ∪ V2) \ (X1 ∪ V1)) + w+(Y1 ∪W1) \ (Y2 ∪W2))

= w+(((X2 ∪ V2) \ (Y2 ∪W2)) \ ((X1 ∪ V1) \ (Y1 ∪W1)))

+w+(((Y1 ∪W1) \ ((X1 ∪ V1)) \ ((Y2 ∪W2) \ (X2 ∪ V2)))), (3.19)

w+((X2 ∩ V2) \ (X1 ∩ V1)) + w+(Y1 ∩W1) \ (Y2 ∩W2))

= w+(((X2 ∩ V2) \ (Y2 ∩W2)) \ (X1 ∩ V1))

+w+((Y1 ∩W1) \ ((Y2 ∩W2) \ (X2 ∩ V2))), (3.20)

w−((Y ∪W ) \ (Y2 ∪W2)) + w−(X2 ∪ V2) \ (X ∪ V ))

= w−(((Y ∪W ) \ (X ∪ V )) \ ((Y2 ∪W2) \ (X2 ∪ V2)))

+w−(((X2 ∪ V2) \ (Y2 ∪W2)) \ ((X ∪ V ) \ (Y ∪W ))), (3.21)
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w−((Y ∩W ) \ (Y2 ∩W2)) + w−(X2 ∩ V2) \ (X ∩ V ))

= w−((Y ∩W ) \ ((Y2 ∩W2) \ (X2 ∩ V2)))

+w−(((X2 ∩ V2) \ (Y2 ∩W2)) \ (X ∩ V )). (3.22)

Also, by the bisubmodularity of f we have

f(X1, Y1)+f(V1,W1) ≥ f((X1∪V1)\ (Y1∪W1), (Y1∪W1)\ (X1∪V1))+f(X1∩V1, Y1∩W1).
(3.23)

Combining (3.9)–(3.23), we have

f ◦ w(X,Y ) + f ◦ w(V,W )

≥ f((X1 ∪ V1) \ (Y1 ∪W1), (Y1 ∪W1) \ (X1 ∪ V1))

+w+(((X2 ∪ V2) \ (Y2 ∪W2)) \ ((X1 ∪ V1) \ (Y1 ∪W1)))

−w−(((X2 ∪ V2) \ (Y2 ∪W2)) \ ((X ∪ V ) \ (Y ∪W )))

+w+(((Y1 ∪W1) \ (X1 ∪ V1)) \ ((Y2 ∪W2) \ (X2 ∪ V2)))

−w−(((Y ∪W ) \ (X ∪ V )) \ ((Y2 ∪W2) \ (X2 ∪ V2)))

+f(X1 ∩ V1, Y1 ∩W1)

+w+(((X2 ∩ V2) \ (Y2 ∩W2)) \ (X1 ∩ V1))

−w−(((X2 ∩ V2) \ (Y2 ∩W2)) \ (X ∩ V ))

+w+((Y1 ∩W1) \ ((Y2 ∩W2) \ (X2 ∩ V2)))

−w−((Y ∩W ) \ ((Y2 ∩W2) \ (X2 ∩ V2))), (3.24)

where

(X2 ∪ V2) \ (Y2 ∪W2) ⊇ ((X ∪ V ) \ (Y ∪W )) ∪ ((X1 ∪ V1) \ (Y1 ∪W1)), (3.25)

(Y2 ∪W2) \ (X2 ∪ V2) ⊆ ((Y ∪W ) \ (X ∪ V )) ∩ ((Y1 ∪W1) \ (X1 ∪ V1)), (3.26)

(X2 ∩ V2) \ (Y2 ∩W2) ⊇ (X ∩ V ) ∪ (X1 ∩ V1), (3.27)

(Y2 ∩W2) \ (X2 ∩ V2) ⊆ (Y ∩W ) ∪ (Y1 ∩W1). (3.28)

From (3.24)–(3.28) and (3.4) we have the following inequality.

f ◦ w(X,Y ) + f ◦ w(V,W ) ≥ f ◦ w((X,Y ) ⊔ (V,W )) + f ◦ w((X,Y ) ⊓ (V,W )). (3.29)

This completes the proof of the present theorem.

Remark 3.3. Theorem 3.2 is valid without the assumption that P∗(f)∩P∗(w) ̸= ∅ (which
will be imposed in Theorem 3.4), so that we may have f ◦ w(∅, ∅) < 0 here. It should be
noted that if Q = {x ∈ RE | ∀(X,Y ) ∈ F \ {(∅, ∅)} : x(X,Y ) ≤ f ◦ w(X,Y )} is nonempty,
then Q is the polyhedron of the Dilworth truncation of f ◦ w, which will be discussed in
Section 4 (see Theorem 4.2).

Moreover, we have the following theorem.

Theorem 3.4. Suppose that P∗(f) ∩ P∗(w) ̸= ∅. Then we have f ◦ w(∅, ∅) = 0 and the
bisubmodular polyhedron associated with the convolution f ◦ w is given by

P∗(f ◦ w) = P∗(f) ∩ P∗(w)

= {x | x ∈ P∗(f), w− ≤ x ≤ w+}. (3.30)
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Proof. If P∗(f)∩P∗(w) ̸= ∅, then for any vector x ∈ P∗(f)∩P∗(w) and any (X,Y ) ∈ F we
have

x(X,Y ) ≤ f(X,Y ), x(Y ) ≤ w+(Y ), x(X) ≥ w−(X). (3.31)

Hence, for any (X,Y ) ∈ F ,

f(X,Y ) + w+(Y )− w−(X) ≥ x(X,Y ) + x(Y )− x(X) = 0. (3.32)

It follows from (3.3) and (3.32) that

f ◦ w(∅, ∅) = min
{
f(X̂, Ŷ ) + w+(Ŷ )− w−(X̂) | (X̂, Ŷ ) ∈ F} = 0. (3.33)

Therefore, the bisubmodular polyhedron P∗(f ◦ w) is well defined.
For any (X0, Y0) ∈ F the inequality

x(X0, Y0) ≤ f ◦ w(X0, Y0) (3.34)

is implied by the system of inequalities

x(X,Y ) ≤ f(X,Y ) ((X,Y ) ∈ F), (3.35)

w−(e) ≤ x(e) ≤ w+(e) (e ∈ E) (3.36)

due to the definition (3.3) of f ◦ w. Moreover, it follows from (3.3) that

f ◦ w(X,Y ) ≤ f(X,Y ) ((X,Y ) ∈ F), (3.37)

f ◦ w(X, ∅) ≤ w+(X) (X ⊆ E), (3.38)

f ◦ w(∅, Y ) ≤ −w−(Y ) (Y ⊆ E). (3.39)

Hence, we have (3.30).

The above argument is valid even if the upper-bound vector w+ has components equal to
+∞ and the lower-bound vector w− has components equal to −∞ (i.e., w+ ∈ (R∪{+∞})E
and w− ∈ (R ∪ {−∞})E). In such a case the domain of the convolution f ◦ w is a signed
ring family including F and being possibly a strict subset of 3E .

Remark 3.5. Our arguments throughout the present paper hold for any totally ordered
additive group. Hence Theorem 3.4 implies the following integrality property:

• When R is the set of reals, f is integer-valued, and w+ and w− are integral vectors
allowing ±∞ components, the box-convolution f ◦w is an integer-valued bisubmodular
function and there exists an integral vector in P∗(f ◦ w) ⊆ RE .

The integrality property of bisubmodular functions is discussed in relation to integrally
convex functions in [24].

For any given v ∈ RE and S ⊆ E define w+ ∈ (R∪{+∞})E and w− ∈ (R∪{−∞})E by

w−(e) =

{
v(e) (e ∈ S)
−∞ (e ∈ E \ S) , w+(e) =

{
v(e) (e ∈ E \ S)
+∞ (e ∈ S)

. (3.40)

Also define the partial order ≤S on RE by x ≤S y ⇔ x(e) ≥ y(e) (e ∈ S) and x(e) ≤ y(e)
(e ∈ E \ S). Then we have the following corollary.
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Corollary 3.6. Given any v ∈ RE and S ⊆ E, for w− and w+ defined by (3.40) we have

P∗(f ◦ w) = P∗(f) ∩ P∗(w)

= {x | x ∈ P∗(f), x ≤S v}. (3.41)

In particular (when S = ∅, i.e., w− ∈ {−∞}E), we have the following corollary due to
Cunningham and Green-Krótki [12] (for F = 3E).

Corollary 3.7 (Cunningham–Green-Krótki). For any w+ ∈ RE such that {x ∈ P∗(f) | x ≤
w+} ̸= ∅ we have

max{x(E) | x ∈ P∗(f), x ≤ w+} = min{f(X̂, Ŷ ) + w+(E \ X̂) + w+(Ŷ ) | (X̂, Ŷ ) ∈ F}.
(3.42)

Proof. The present theorem follows from Theorem 3.4 and Corollary 3.6 with S = E.

The feasibility condition, P∗(f) ∩ P∗(w) ̸= ∅, appearing in Theorem 3.4 can also be
expressed as follows. We need some definitions from [17, Sec. 3.5(b)]. A signed set (S, T ) ∈
3E with S ∪ T = ∅ is called an orthant of RE . For each orthant (S, T ) define 2(S,T ) =
{(X,Y ) ∈ 3E | (X,Y ) ⊑ (S, T )} and

P(S,T )(f) = {x ∈ RE | ∀(X,Y ) ∈ F ∩ 2(S,T ) : x(X,Y ) ≤ f(X,Y )}. (3.43)

For any polyhedron Q ⊆ RE and U ⊆ E define a reflection of Q by U as

Q|U = {x | y ∈ RE , ∀e ∈ U : x(e) = −y(e), ∀e ∈ E \ U : x(e) = y(e)}. (3.44)

The reflection of P(S,T )(f) by T is a submodular polyhedron associated with the ordinary
submodular set function f̄ defined by f̄(X) = f(S∩X,T∩X) forX ⊆ E with (S∩X,T∩X) ∈
F . It is known that P∗(f) is equal to the intersection of all P(S,T )(f) for all orthants (S, T ).

Theorem 3.8. Suppose that we are given a bisubmodular system (F , f) on E and two
vectors w+, w− ∈ RE with w− ≤ w+. We have P∗(f) ∩ P∗(w) ̸= ∅ if and only if for every
orthant (S, T ) of RE we have

w(S,T ) ∈ P(S,T )(f), (3.45)

where w(S,T ) ∈ RE is defined by

w(S,T )(e) =

{
w−(e) (e ∈ S)
−w+(e) (e ∈ T )

(e ∈ E). (3.46)

Proof. Note that for every orthant (S, T ) the vector w(S,T ) is the minimum vector in the
reflected box P∗(w)|T . Hence the “only if” part is easy. So we show the “if” part in the
following.

Suppose that (3.45) holds for every orthant (S, T ), which is equivalent to the following
system of inequalities, due to (3.43).

w−(X)− w+(Y ) ≤ f(X,Y ) ((X,Y ) ∈ (F ∩ 2(S,T ))) (3.47)

for all orthants (S, T ). It follows from (3.3) and (3.47) that

f ◦ w(∅, ∅) = min{f(X,Y ) + w+(Y )− w−(X) | (X,Y ) ∈ F} ≥ 0, (3.48)

where the last inequality holds with equality since (X,Y ) = (∅, ∅) ∈ F . Hence, from
Theorem 3.2 and (3.48) we have a bisubmodular system (3E , f ◦w), so that P∗(f)∩P∗(w) =
P∗(f ◦ w) ̸= ∅.
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Remark 3.9. When f(E, ∅) + f(∅, E) = 0, the bisubmodular polyhedron P∗(f) becomes
a base polyhedron lying on the hyperplane x(E) = f(E, ∅)(= −f(∅, E)) (see, e.g., [17]). In
this case we need (3.45) (or (3.47)) only for two orthants (S, T ) ∈ {(E, ∅), (∅, E)} in order
to guarantee P∗(f) ∩ P∗(w) ̸= ∅ (see [17, Theorem 3.8] and for matroid base polytopes in
[22]).

Bisubmodular/submodular functions and their associated polyhedra have very recently
drawn much attention in the field of algebraic geometry and combinatorics (see, e.g., [1, 8]
and [16, 19] for box convolution).

4 The Dilworth Truncation of Bisubmodular Functions

Let F ⊆ 3E be a signed ring family with (∅, ∅) ∈ F and f : F → R be a bisubmodular
function. In this section we do not assume f(∅, ∅) = 0. If f(∅, ∅) ≥ 0, then re-defining
f(∅, ∅) = 0, we obtain a bisubmodular function f : F → R again. Hence we consider the
case where f(∅, ∅) < 0 in the sequel. In this case the system of linear inequalities

x(X,Y )(= x(X)− x(Y )) ≤ f(X,Y ) ((X,Y ) ∈ F \ {(∅, ∅)}) (4.1)

for x ∈ RE is possibly inconsistent. So we impose the following assumption:

(A) (4.1) is consistent, i.e., there exists a feasible solution x ∈ RE for (4.1).

We call the set of distinct signed sets (Xi, Yi) (i = 1, 2, . . . , k) in F \ {(∅, ∅)} a reduced
partition of (X,Y ) ∈ F if we have

(Xi, Yi) ⊓ (Xj , Yj) = (∅, ∅) (i, j = 1, 2, . . . , k; i ̸= j), (4.2)

(Xi, Yi) ⊓ (X,Y ) ̸= (∅, ∅) (i = 1, 2, . . . , k), (4.3)

(X,Y ) = (X1, Y1) ⊔ (X2, Y2) ⊔ · · · ⊔ (Xk, Yk). (4.4)

Here, it should be noted that the reduced union ⊔ is not associative in general but that
under the condition (4.2) the right-hand side of (4.4) does not depend on the order of the
reduced-union operations. (We also define a reduced partition of the null set (∅, ∅) by (4.2)
and (4.4) without imposing (4.3).) Put I = {1, 2, . . . , k}. Under conditions (4.2)–(4.4) the
following three statements hold:

(a) For each e ∈ X there uniquely exists i∗ ∈ I such that e ∈ Xi∗ and for each e ∈ Y
there uniquely exists j∗ ∈ I such that e ∈ Yi∗ .

(b) For each i ∈ I we have X ∩ Yi = ∅ and Y ∩Xi = ∅.

(c) ∪i∈I(Xi \X) = ∪i∈I(Yi \ Y ), where the both set unions are disjoint set unions.

(Here (a) follows from (4.2)–(4.4). For (b), if there exists i ∈ I and e ∈ E such that
e ∈ X ∩ Yi, then there must exist distinct i1, i2 ∈ I such that e ∈ Xi1 ∩Xi2 (due to (4.4)),
which contradicts (4.2). For (c), because of (4.2) and (4.4), for every e ∈ E \ (X ∪ Y ) we
have |{i ∈ I | e ∈ Xi}| = |{i ∈ I | e ∈ Yi}| = 1 or 0. Hence (c) follows from (4.4).) Equation
(4.4) becomes

(X,Y ) = ((X1 ∪X2 ∪ · · · ∪Xk) \ (Y1 ∪ Y2 ∪ · · · ∪ Yk),

(Y1 ∪ Y2 ∪ · · · ∪ Yk) \ (X1 ∪X2 ∪ · · · ∪Xk)). (4.5)
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We call a reduced partition {(Xi, Yi) | i = 1, 2, . . . , k} of (X,Y ) a partition of (X,Y ) if

(Xi, Yi) ⊑ (X,Y ) (i = 1, 2, . . . , k). (4.6)

For a reduced partition {(Xi, Yi) | i = 1, 2, . . . , k} of non-null (X,Y ) ∈ F define

(X̂i, Ŷi) = (X,Y ) ⊓ (Xi, Yi)

= (Xi \ (Y1 ∪ Y2 ∪ · · · ∪ Yk), Yi \ (X1 ∪X2 ∪ · · · ∪Xk)) (4.7)

for i = 1, 2, . . . , k. The collection of the signed sets (X̂i, Ŷi) (i = 1, 2, . . . , k) forms a partition
of (X,Y ). Then, because of (4.2)–(4.4) we have

f(X,Y ) +

k∑
i=1

f(Xi, Yi)

≥ f((X,Y ) ⊓ (X1, Y1)) + f((X,Y ) ⊔ (X1, Y1)) +

k∑
i=2

f(Xi, Yi)

= f(X̂1, Ŷ1) + f((X,Y ) ⊔ (X1, Y1)) +

k∑
i=2

f(Xi, Yi)

≥ f(X̂1, Ŷ1) + f(((X,Y ) ⊔ (X1, Y1)) ⊓ (X2, Y2))

+f(((X,Y ) ⊔ (X1, Y1)) ⊔ (X2, Y2)) +

k∑
i=3

f(Xi, Yi)

= f(X̂1, Ŷ1) + f(X̂2, Ŷ2) + f((X,Y ) ⊔ ((X1, Y1) ⊔ (X2, Y2))) +

k∑
i=3

f(Xi, Yi)

...

≥
k∑

i=1

f(X̂i, Ŷi) + f((X,Y ) ⊔ ((X1, Y1) ⊔ (X2, Y2) ⊔ · · · ⊔ (Xk, Yk)))

=

k∑
i=1

f(X̂i, Ŷi) + f(X,Y ), (4.8)

where note that we have ((X,Y ) ⊔ (X1, Y1)) ⊓ (X2, Y2) = (X̂2, Ŷ2) since {(Xi, Yi) | i =
1, 2, . . . , k} is a reduced partition of (X,Y ).

Consequently, we have from (4.8)

k∑
i=1

f(Xi, Yi) ≥
k̂∑

i=1

f(X̂i, Ŷi). (4.9)

It follows from (4.9) that for any non-null (X,Y ) ∈ F

min
{∑

i∈I

f(Xi, Yi) | {(Xi, Yi) | i ∈ I} : a reduced partition of (X,Y )
}

= min
{∑

i∈I

f(Xi, Yi) | {(Xi, Yi) | i ∈ I} : a partition of (X,Y )
}
. (4.10)
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Now, we define the Dilworth truncation, denoted by f̂ , of f as follows, For each nun-null
(X,Y ) ∈ F

f̂(X,Y ) = min
{∑

i∈I

f(Xi, Yi) | {(Xi, Yi) | i ∈ I} : a partition of (X,Y )
}

(4.11)

and we also define f̂(∅, ∅) = 0.
We show the following theorem. This partially answers a problem posed by Liqun Qi in

[27].

Theorem 4.1. The Dilworth truncation f̂ is a bisubmodular function on F .

Proof. Suppose that for any (X,Y ), (V,W ) ∈ F \ {(∅, ∅)} we have

f̂(X,Y ) =
∑
i∈I

f(Xi, Yi), f̂(V,W ) =
∑
i∈J

f(Vj ,Wj), (4.12)

where {(Xi, Yi) | i ∈ I} and {(Vj ,Wj) | j ∈ J} are, respectively, partitions of (X,Y ) and
(V,W ). Also, suppose that I = {1, 2, . . . , k} and J = {1, 2, . . . , ℓ}. Now we have

f̂(X,Y ) + f̂(V,W ) =

k∑
i=1

f(Xi, Yi) +

ℓ∑
j=1

f(Vj ,Wj)

= f(X1, Y1) +

ℓ∑
j=1

f(Vj ,Wj) +

k∑
i=2

f(Xi, Yi). (4.13)

Let us assume without loss of generality that (X1, Y1) ⊓ (Vj ,Wj) ̸= (∅, ∅) for j = 1, 2, . . . , p
with 0 ≤ p ≤ ℓ. Then the first two terms on the right-hand side of (4.13) is transformed as
follows.

f(X1, Y1) +

ℓ∑
j=1

f(Vj ,Wj)

≥ f((X1, Y1) ⊔ (V1,W1)) +

ℓ∑
j=2

f(Vj ,Wj) + f((X1, Y1) ⊓ (V1,W1))

...

≥ f((X1, Y1) ⊔ (∪p
j=1Vj ,∪p

j=1Wj)) +

ℓ∑
j=p+1

f(Vj ,Wj)

+

p∑
j=1

f((X1, Y1) ⊓ (Vj ,Wj)), (4.14)

where use is made of the fact that whenever (A,B), (C1, D1), (C2, D2) ∈ 3E and (C1∪D1)∩
(C2 ∪D2) = ∅, we have

((A,B) ⊔ (C1, D1)) ⊔ (C2, D2) = (A,B) ⊔ (C1 ∪ C2, D1 ∪D2). (4.15)

We note that for the first two terms on the right-hand side of the above expression (4.14) we
have the sum of the values of f on the blocks of a “reduced partition” of (X1, Y1)⊔(V,W ) (if
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it is non-null) and for the third term the sum of the values of f on the blocks of a “partition”
of (X1, Y1) ⊓ (V,W ) (if it is non-null).

Proceeding from (4.13) in the same manner as in (4.14), for i = 2, . . . , k we combine
at every stage (Xi, Yi) with the blocks of the currently generated “reduced partition” of
(∪i−1

t=1Xt,∪i−1
t=1Yt) ⊔ (V,W ). In the end the expression

k∑
i=1

f(Xi, Yi) +

ℓ∑
j=1

f(Vj ,Wj) (4.16)

is transformed into an expression in which we have the sum of the values of f on the blocks
of a “reduced partition” of (∪k

i=1Xi,∪k
i=1Yi)⊔ (V,W ) = (X,Y )⊔ (V,W ) and the sum of the

values of f on the blocks of a “partition” of (∪k
i=1Xi,∪k

i=1Yi)⊓ (V,W ) = (X,Y )⊓ (V,W ) (if

it is non-null). It follows from (4.9) and the definition (4.11) of f̂ that

f̂(X,Y ) + f̂(V,W ) ≥ f̂((X,Y ) ⊔ (V,W )) + f̂((X,Y ) ⊓ (V,W )). (4.17)

This establishes the bisubmodularity of the Dilworth truncation f̂ .

The bisubmodular polyhedron P∗(f̂) associated with the Dilworth truncation f̂ is related
to the original f as follows.

Theorem 4.2.

P∗(f̂) = {x ∈ RE | ∀(X,Y ) ∈ F \ {(∅, ∅)} : x(X,Y ) ≤ f(X,Y )}. (4.18)

Moreover, for each (X,Y ) ∈ F ,

f̂(X,Y ) = max{x(X,Y ) | x ∈ P∗(f̂)}. (4.19)

Proof. For each (X0, Y0) ∈ F \ {(∅, ∅)} the inequality

x(X0, Y0) ≤ f̂(X0, Y0) (4.20)

is implied by the system of inequalities

x(X,Y ) ≤ f(X,Y ) ((X,Y ) ∈ F \ {(∅, ∅)}) (4.21)

since (4.20) is obtained by adding both sides of inequalities chosen appropriately from among

(4.21) according to the way of the construction of f̂(X0, Y0) in terms of f(X,Y ) ((X,Y ) ∈
F \ {(∅, ∅)}) as shown in the proof of Theorem 4.1. Also note that the domain of f̂ is

equal to F and we have f̂(X,Y ) ≤ f(X,Y ) for all non-null (X,Y ) ∈ F . Therefore, the
present theorem follows from Theorem 4.1 and the well-known fact that every inequality
x(X,Y ) ≤ f̂(X,Y ) is tight for the bisubmodular polyhedron P∗(f̂) associated with the

bisubmodular system (F , f̂) (see, e.g., [2, 3]).

Remark 4.3. A family F ⊆ 3E is called an intersecting family if for each (Xi, Yi) ∈ F
(i = 1, 2), (X1, Y1)⊓ (X2, Y2) ̸= ∅ implies (X1, Y1)⊔ (X2, Y2), (X1, Y1)⊓ (X2, Y2) ∈ F . Also,
a function f on an intersecting family F ⊆ 3E is called an intersecting-bisubmodular function
if for each intersecting pair (Xi, Yi) ∈ F (i = 1, 2) (i.e., (X1Y1) ⊓ (X2, Y2) ̸= (∅, ∅)) we have
the bisubmodularity inequality (2.5). Note that the arguments in the present section are
also valid mutatis mutandis if we consider intersecting-bisubmodular functions satisfying
Assumption (A). Another extension of the Dilworth truncation and the intersection of two
bisubmodular polyhedra are also investigated in [21].
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