
2024 DOI: https://doi.org/10.61208/pjo-2023-030

462 C. T. KELLEY

of [3, 4], where the low precision factorization is used as a preconditioner for a GMRES
iteration for the high precision problem.

We view this as an inexact Newton method [6,15] and the nonlinear convergence analysis
will depend on the performance of the underlying linear iterative method, which will be IR
or GMRES-IR.

1.1 Notation and basic results

We consider a nonlinear equation
F(x) = 0 (1.1)

for x ∈ Ω ⊂ RN . We will call F the residual in this paper. We denote the Jacobian matrix
of F by F′.

We will assume that the standard assumptions [8, 15,20] hold.
Standard Assumptions

1. Equation 1.1 has a solution x∗ ∈ Ω.

2. F′ : Ω→ RN×N is Lipschitz continuous near x∗ with Lipschitz constant γ.

3. F′(x∗) is nonsingular.

We will assume that we are near enough to x∗ so that the Newton iteration

x+ = xc − F′(xc)
−1F(xc) (1.2)

will converge quadratically to the solution. In (1.2) F′ is the Jacobian matrix and, as is
standard, xc denotes the current point and x+ denotes the Newton iteration from xc.

One explicit way [15] to express this is to assume that

xc ∈ B ≡ {x | ∥x− x∗∥ ≤ ρ} (1.3)

where

ρ ≤ 1

2γ∥F′(x∗)−1∥
and is small enough so that B ⊂ Ω. In that case x+ ∈ B and

∥e+∥ ≤ γ∥F′(x∗)−1∥∥ec∥2 ≤ ∥ec∥/2 ≤ ρ/2.

And so the iteration converges and remains in Ω. Here e = x− x∗ denotes the error.
In practice, however, the Newton iteration is computed in floating point arithmetic and

the floating point errors must be considered. To account for this (see [15] for the details)
we let ∆ denote the error in the Jacobian and ϵ denote the error in the residual. With this
in mind the iteration is

x+ = xc − (F′(xc) + ∆(xc))
−1(F(xc) + ϵ(xc)) (1.4)

In this paper we will assume that the errors can be bounded independently of x, so there
are ϵF and ϵJ such that

∥ϵ(x)∥ ≤ ϵF and ∥∆(x)∥ ≤ ϵJ

for all x ∈ B. One can think of ϵF as floating point roundoff. The interesting part is ϵJ , the
error in the Jacobian.

NEWTON’S METHOD IN THREE PRECISIONS 463

With this in mind, the error estimate from [15] becomes

∥e+∥ = O(∥ec∥2 + ϵJ∥ec∥+ ϵF), (1.5)

where e = x − x∗ denotes the error, Clearly, if the errors vanish, one obtains the standard
quadratic convergence theory. However, if ϵF > 0 then one can expect the residual norms
to stagnate once

∥F(x)∥ = O(ϵF)

which is what one observes in practice. The estimate (1.5) is not a local convergence result.
Results of this type are called local improvement [9, 15].

We can also see that if ϵJ = O(
√
ϵF), as it will be [15] if one uses a finite-difference

approximation to the Jacobian with difference increment
√
ϵF or (assuming one computes F

in double precision) stores and factors the Jacobian in single precision, then (1.5) becomes

∥e+∥ = O(∥ec∥2 +
√
ϵF ∥ec∥+ ϵF) = O(∥ec∥2 + ϵF). (1.6)

Equation (1.6) says that the iteration with a sufficiently accurate approximate Jacobian is
indistinguishable from Newton’s method.

With these errors in mind, we can formulate the locally convergent (i. e. with no line
search) form of Newton’s method of interest in this paper. In Algorithm 1.1 τa and τr are
relative and absolute error tolerances. x is the initial iterate on input and the algorithm
overwrites x as the iteration progresses.

Algorithm 1.1. newton(F,x, τa, τr)

Evaluate F̃ = F(x) + ϵ(x);
τ ← τr∥F̃∥+ τa.
while ∥F̃∥ > τ do
Solve (F′(x) + ∆(x))s = −F̃
x← x+ s
Evaluate F̃ = F(x) + ϵ(x);

end while

There are two sources of error in the Jacobian that contribute to ∆. One is the error
in approximating the Jacobian itself and the other is the error in the solver. We will use
an analytic Jacobian in this paper and store that Jacobian in single precision. Hence the
relative error in the Jacobian is floating point roundoff in single precision. We used Gaussian
elimination to solve for the Newton step in [17] so the solver error was the backward error
in the LU factorization. We will discuss this more in § 1.3.

1.2 IEEE Arithmetic

We remind the reader of some details of IEEE floating point arithmetic [14,21]. The standard
precisions in most software environments are single and double precision. Half precision was
originally proposed as a storage format [13] and is not implemented in hardware on many
platforms. We will describe the details of these three precisions in terms of the amount
of storage a floating point number requires (the width) and the unit roundoff u. As is
standard [10] we define u in terms of the floating point error in rounding the result of any
binary operation ◦ = ±,×,÷ applied to two floating point numbers x and y

fl(x ◦ y) = (x ◦ y)(1 + δ), |δ| ≤ u.

464 C. T. KELLEY

Here fl is the rounding map which takes a real z in the range of the floating point number
system to the nearest floating point number. If z is not in the range of the floating point
number system, then attempting to compute fl(z) will generate an exception. The range
will be important in this paper because one must pay particular attention to that when
computing a Newton step with a half-precision Jacobian. We define the range of the floating
point number system as

R = {z | σL ≤ |z| ≤ σH}

where σL is the smallest positive floating point number and σH is the largest positive floating
point number.

We can now summarize the properties of the three precisions in this paper. We took the
data in Table 1 from a similar table in [11].

Table 1: IEEE precisions

Precision width (bits) u σL σH

Half 16 ≈ 5× 10−4 10−5 105

Single 32 ≈ 6× 10−8 10−38 1038

Double 64 ≈ 10−16 10−308 10308

When we discuss multiprecision computations we will let ud, us, uh be unit roundoff in
double, single, or half precision.

Double and single precisions have been supported in hardware for decades. Recently new
computer architectures such as the Apple M1 and M2 chips have been offering hardware
support for half precision. However, tools such as LAPACK and the BLAS [1] do not support
half precision yet and run far more slowly in half precision than they do in double precision.
There is active research on extending the BLAS and LAPACK to use half precision [7]. The
algorithm we propose in this paper will exploit half precision well once the tools catch up.

1.3 Newton’s method in two precisions

With the background from the previous sections in hand, we can now describe the findings
from [17] and then motivate the three precision algorithms.

As we said above, the equation for the Newton step

F′(xc)s = −F(xc)

can only be approximated. The first step in such an approximation is to replace F′(xc) with
an approximation J. For example J could be a floating point evaluation of the Jacobian,
perhaps in a lower precision that the one used to evaluate F, a finite difference approxima-
tion, or a physics-based approximation that neglects part of the Jacobian. In any case, one
can analyze the error in J directly.

In this work we solve the approximation

Js = −F(xc)

with Gaussian elimination [10], i. e. an LU factorization. We compute an upper triangular
matrix U and a lower triangular matrix L that, in exact arithmetic, factors J = LU, so the
equation for the step can be solved by two triangular solves.

NEWTON’S METHOD IN THREE PRECISIONS 465

However, there are errors in factorization and one really computes approximations L̂
and Û. We define Ĵ = L̂Û, so the approximate factorization is the exact factorization for a
different (hopefully nearby) problem. Hence, the equation we actually solve for the Newton
step is

Ĵs = −F(xc).

There is a subtle point in the equation for the Newton step. The matrix Ĵ may be in a
different precision than F and s. One must take some care with this and we return to this
point in § 2.2 and 2.3.

The backward error is
δJ = Ĵ− J.

So the error in the Jacobian (ϵJ in (1.5)) has has two parts, the error in J and the backward
error in the factorization.

We will assume for this paper that F is computed in double precision, so ϵF is O(ud).
The error one makes is storing the Jacobian in reduced precision is

∥J− F′(xc)∥ ≤ uJ ,

where uJ = O(us) or O(uh). We will make the contribution from the backward error explicit
and reformulate (1.5) as

∥e+∥ = O(∥ec∥2 + (uJ + ∥δJ∥)∥ec∥+ ϵF).

The results in [17] show that if the Jacobian is stored and factored in single precision and
the size N of the problem is not too large, then there is no difference in the iteration statistics
from storing and factoring the Jacobian in double precision. So both the approximation
error and the backward error in the solver are O(ud). However, if the Jacobian is stored and
factored in half precision, there are differences caused by the poor accuracy of half precision,
and the nonlinear iteration can converge slowly or even fail to converge.

The new algorithms in this paper use a half precision factorization as part of an iterative
method to compute a Newton step with a single precision Jacobian. This approach, as we
explain in § 2, requires some care.

2 Three Precision Algorithms

The three precision algorithms compute F in double precision and store the Jacobian F′ in
a single precision matrix J. This means that

∥F′(xc)− J∥ ≤ us∥F′(xc)∥. (2.1)

Hence, using the terminology of § 1.1

ϵF = O(ud) and ϵJ = O(us). (2.2)

Our notation for interprecision transfers is to let Iba be the transfer from precision ua to
ub. If ua > ub, this promotion changes nothing

Iba(x) = x

if x is in precision ua. If ua < ub, then the interprecision transfer rounds down, so

∥Iba(x)− x∥ ≤ ub∥x∥.

466 C. T. KELLEY

We will use these properties of interprecision transfer throughout the remainder of the paper.
We point out that when one rounds a matrix or vector down to a lower precision, one must
allocate memory for the low precision object and that there is a cost to this.

We then round J to half precision to obtain

Jh = Ihs (J)

and factor Jh in half precision to obtain L̂Û. We use the half precision factorization as part
of an iterative method to solve

Js = −F(xc).

We terminate that iteration when

∥Js+ F(xc)∥ ≤ ηJ∥F(xc)∥. (2.3)

We summarize the three precision algorithm.

Algorithm 2.1. newton3p(F,x, τa, τr, ηJ)

Evaluate F̃ = F(x) + ϵ(x);
τ ← τr∥F̃∥+ τa.
while ∥F̃∥ > τ do
Compute and store F ′(x) in single precision as J.
Store Jh = Ihs (J).
Find s such that ∥Jhs+ F(x)∥ ≤ ηJ∥F(x)∥.
x← x+ s
Evaluate F̃ = F(x) + ϵ(x);

end while

In Algorithm 2.1 we want to choose ηJ < 1 small enough so that the nonlinear iteration
statistics are the same as those from Newton’s method itself.

Algorithm 2.1 looks like an inexact Newton iteration, but differs in that the condition
on the step is (2.3) rather than the classical inexact Newton condition

∥F′(xc)s+ F(xc)∥ ≤ η∥F(xc)∥. (2.4)

If we had (2.4), then we would get a local improvement estimate [6, 15]

∥e+∥ = O(∥ec∥2 + η∥ec∥+ ϵF). (2.5)

This will imply q-linear convergence of the nonlinear iteration if η is sufficiently small and
the function evaluation is exact (ϵF = 0).

If we are able to show that we can chose ηJ so that (2.4) holds with η = O(us), then,
similar to the two precision case with J stored and factored in single precision, (2.5) will
imply (1.6) and the nonlinear iteration statistics will be the same as Newton’s method with
the Jacobian stored and factored in double precision.

The use of an iterative method for the linear equation for the Newton step means that the
backward error in the factorization plays no role in the analysis of the nonlinear iteration.
However, that backward error does affect the convergence of the linear iteration. We will
describe our two choices for the linear iteration in § 2.2 but will discuss the local improvement
result for the nonlinear iteration first.

NEWTON’S METHOD IN THREE PRECISIONS 467

2.1 Local improvement of the nonlinear iteration

We begin by showing that J is nonsingular and estimating ∥J−1∥. In the analysis we use
the standard notation

κ(A) = ∥A∥∥A−1∥

for the condition number of a matrix A.

Lemma 2.2. Assume that the standard assumptions (1.3) hold and that

4usκ(F
′(x∗)) < 1. (2.6)

Then J is nonsingular and

∥J−1∥ ≤ 2∥F′(x∗)−1∥
1− 4usκ(F′(x∗))

. (2.7)

Proof. The standard assumptions and (1.3) imply that F′(xc) is nonsingular and (see Lemma
4.3.1 from [15])

∥F′(xc)∥ ≤ 2∥F′(x∗)∥ and ∥F′(xc)
−1∥ ≤ 2∥F′(x∗)−1∥. (2.8)

Hence, using (2.8),

∥I − F′(xc)
−1J∥ ≤ ∥F′(xc)

−1∥∥F′(xc)− J∥ ≤ us∥F′(xc)
−1∥∥F′(xc)∥ ≤ 4usκ(F

′(x∗)) < 1.

So F′(xc)
−1 is an approximate inverse of J. Therefore J is nonsingular and

∥J−1∥ ≤ ∥F′(xc)
−1∥

1− 4usκ(F′(x∗))
≤ 2∥F′(x∗)−1∥

1− 4usκ(F′(x∗))
,

proving the lemma.

Assume the linear iterative method converges, which is not guaranteed, and that we
terminate the linear iteration when (2.3) holds. To prove the local improvement estimate
(2.5) we must connect (2.3) to the classic inexact Newton condition (2.4) for some η < 1.
That will then imply the estimate (2.5).

We express the convergence estimates in terms of

P ∗ =
4∥κ(F′(x∗))∥

1− 4usκ(F′(x∗))
. (2.9)

Lemma 2.3. Assume that the assumptions of Lemma 2.2 and (2.3) hold, that usP
∗ < 1/2,

and that

ηJ < 1− 2usP
∗.

Then (2.4) holds with

η ≤ ηJ + (1 + ηJ)usP
∗ < 1. (2.10)

Proof. Equation (2.3) implies that

∥J−1∥−1∥s∥ ≤ ∥Js∥ ≤ (1 + ηJ)∥F(xc)∥

468 C. T. KELLEY

and hence, using Lemma 2.2

∥s∥ ≤ ∥J−1∥(1 + ηJ)∥F(xc)∥ ≤
2∥F′(x∗)−1∥

1− 4usκ(F′(x∗))
(1 + ηJ)∥F(xc)∥. (2.11)

We use (2.3) again to obtain

∥F′(xc)s+ F(xc)∥ ≤ ∥Js+ F(xc)∥+ ∥(F′(xc)− J)s∥

≤ ηJ∥F(xc)∥+ us∥F′(xc)∥∥s∥

≤ ηJ∥F(xc)∥+ 2us∥F′(x∗)∥∥s∥.

(2.12)

Combining (2.11) and (2.12) completes the proof.

Now suppose we can obtain ηJ = O(us) = O(
√
ud), then (1.6) holds and the local

improvement estimate becomes

∥e+∥ = O(∥ec∥2 + ud) (2.13)

and the iteration statistics should be the same as Newton’s method. We will see exactly
this in the results in § 3.

The assumption that usP
∗ < 1/2 simply says that F′(x∗) is not horribly ill-conditioned.

Ill-conditioning of F′(x∗) does not appear in the local improvement estimate directly, but
does affect the convergence of the linear iteration, as we will see in the next section.

2.2 Iterative refinement

Our first choice for an iterative method will be classic iterative refinement [22] for solving a
linear system Au = b. Consistently with the application in this paper, we will assume that
the linear system is in single precision and that we factor the matrix in half precision. The
reader should be aware that one must store a half precision copy of A. The basic algorithm
is

Algorithm 2.1. IR(A,b,u)

r = b−Au
Store Ah = Ihs (A)

Factor Ah in half precision to obtain computed factors L̂ and Û.
while ∥r∥ too large do

d = Û−1L̂−1r
u← u+ d
r = b−Au

end while

In Algorithm 2.1 u is the initial iterate on input and the converged solution on output.
Note that we are careful to use notation to stress that we use the computed LU factors in
half precision.

One can express the iteration in closed form as

u← (I− Û−1L̂−1A)u+ Û−1L̂−1b.

NEWTON’S METHOD IN THREE PRECISIONS 469

Hence, Algorithm 2.1 is a linear stationary iterative method with iteration matrix

M = (I− Û−1L̂−1A).

So, if the half precision factorization is a sufficiently good approximation to A, then ∥M∥
will be small and iteration will converge rapidly, at least in exact arithmetic. In the presence
of rounding errors we would only expect a local improvement result.

Half precision can be very inaccurate and one must be prepared for the iteration to
converge slowly or even diverge. One can show that if the low precision factorization is a
reasonably good approximation to A, then one obtains exactly the local improvement results
one would like. One such estimate is from [4] using the ℓ∞ norm on RN . In the case here,
where u2

h = us, one can show convergence if

3Nuhcond(A) < 1 (2.14)

where cond(A) = ∥ |A−1| |A| ∥∞ and |A| is the matrix with entries |aij |. In that case the
iteration will reduce the linear residual by a factor O(uh) until

∥b−Au∥ = O(us∥b∥+ ∥A∥∞∥u∥∞). (2.15)

Now we interpret (2.15) in terms of the inexact Newton conditions (2.4) and (2.3). We
have A = F′(xc), b = F(xc) and the solution u is the Newton step s. Since ∥s∥ =
O(∥F(xc)∥), the estimate (2.15) implies (2.3) with ηJ = O(us).

If the matrix A is poorly conditioned, then (2.14) can fail and then iterative refinement
may fail to converge or fail to satisfy (2.15). We will see this for the ill-conditioned example
in § 3.

Even if ∥M∥ > 1, the condition number of

Û−1L̂−1J

may be small enough to motivate using a Krylov method with the low-precision factorization
as a preconditioner. We use the GMRES-IR approach from [3, 4] with left preconditioning.
This means that we solve

Û−1L̂−1Ad = Û−1L̂−1r

with GMRES to compute the defect d in Algorithm 2.1. The preconditioner-vector product
is computed with two triangular solves. The results in § 3 show how this approach can
improve simple IR in one ill-conditioned case.

2.3 Interprecision Transfers

Finally, we must discuss some important details of interprecision transfers and mixed preci-
sion operations.

For the two-precision implementation, when we solve

Ĵs = −F(xc) (2.16)

for the Newton step, we need to account for the interprecision transfers. If we do nothing,
then the triangular factors are in precision uJ and F is in double precision. In that case
each operation in the triangular solves will promote the low precision matrix elements to
double within the CPU registers. This is called “interprecision transfer on the fly”.

Interprecision transfer on the fly is O(N2) work on interprecision transfers, but can be a
noticeable cost for medium to low dimensions even though the factorization cost is O(N3)

470 C. T. KELLEY

work. A way to avoid this cost is to round F to precision uJ before the solve. One must
take care if xc is near the solution because rounding down, especially in half precision, could
result in an underflow to zero [12]. The remedy for this is to scale F to a unit vector before
rounding and then reverse the scaling after the linear solve. With this in mind one solves

Ĵŝ = −IJd (F(xc)/∥F(xc)∥) (2.17)

entirely in the lower precision. This avoids interprecision transfers during the triangular
solves. The one promotes ŝ and reverses the scaling

s = ∥F(xc)∥IdJ ŝ (2.18)

to obtain a step s in precision uJ . Then one would update the solution via

x+ = xc + s.

This is exactly what we do in our Julia codes [17,19]. The reader should know that the steps
s computed with (2.16) and (2.17)-(2.18) are different, but the performance of the nonlinear
iteration is unlikely to change.

For the linear iterative refinement iteration, the ideas are similar. Interprecision transfers
on the fly are implicit in our discussion in § 2.2 where we view iterative refinement as a
stationary iterative method. Just as in the nonlinear case, one can mitigate the interprecision
transfer cost by replacing the step

d = Û−1L̂−1r

from Algorithm 2.1 with
d = ∥r∥Isj (Û−1L̂−1Ihs (r/| r∥)).

The iteration is no longer a stationary iterative method. Instead the iteration is

u← u+ ∥b−Au∥Isj
(
Û−1L̂−1Ihs

(
b−Au

∥b−Au∥

))
. (2.19)

The fixed point map is nonlinear and, because of the interprecision transfers, not even
continuous. However two approaches to interprecision transfer give the same results for all
but the most ill-conditioned problems.

For GMRES-IR, however, using (2.19) will not suffice. One must do the triangular
solves in the higher precision, single precision in the case of this paper, and hence assume
the interprecision transfer cost. One way to mitigate this cost is to map the half precision
factorization of Jh to single precision before the solve. The cost of this is storage (one more
copy of J), but the on-the-fly interprecision cost is avoided.

3 Examples

In this section we compare some of the two precision results from [17] with the three precision
method from this paper. Some of the results using half precision were poor because the half
precision Jacobian was a poor approximation to the Jacobian. This problem was particularly
severe for the ill-conditioned example, which we feature in this section. The example, taken
from [17] is the composite mid-point rule discretization of the Chandrasekhar H-equation [5],

F(H)(µ) = H(µ)−
(
1− c

2

∫ 1

0

µH(µ)

µ+ ν
dν

)−1

= 0. (3.1)

NEWTON’S METHOD IN THREE PRECISIONS 471

The nonlinear operator F is defined on C[0, 1], the space of continuous functions on [0, 1].
We use N quadrature points νj = (j − 1/2)/N for 1 ≤ j ≤ N and the rule is∫ 1

0

f(ν) dν ≈ 1

N

N∑
j=1

f(νj).

The discrete system is

F(x)i ≡ xi −

1− c

2N

N∑
j=1

xjµi

µj + µi

−1

= 0. (3.2)

As we explained in [16, 17, 20], one can evaluate the nonlinear residual with a fast Fourier
transform to in O(N log(N)) work and compute an analytic Jacobian, as we did for this
paper, in O(N2) work. Hence the dominant cost for large N is the factorization of the
Jacobian.

For c = .99, the results in [17] showed a significant difference in performance for the
two-precision algorithm between a low precision of single and one of half (see Figure 3.2, pg
205 and Figure 3.5 pg 208 in [17]). We will reproduce some of those data in this section to
make the comparison.

3.1 Computations

The computations in this section were done in Julia [2] v 1.9 on a 2023 Apple Mac Mini
with an M2 Pro processor and 32GB of memory. The M2 processor supports half precision
computing in hardware and Julia 1.9 offers support for this hardware. However, as we said
in the introduction, LAPACK and the BLAS do not take full advantage of the half precision
hardware, so half precision computations are slow, but not as slow as the ones the author
did for [17].

Our implementation of iterative refinement terminates with success when the relative
residual norm is < 10−6 ≈ 100us and declares that the iteration has failed if the residual
norm increases. After failure the algorithm returns the solution of the linear problem with
the best residual. This approach allows the nonlinear iteration to continue. We see in the
results that failure of the linear iterative refinement iteration can affect the convergence of
the nonlinear solver. The reason for this is that the inexact Newton condition can fail in
this case and convergence can be slower that expected.

The computations used the author’s SIAMFANLEquation.jl Julia package [18–20]. The
files for the package are located at https://github.com/ctkelley/SIAMFANLEquations.

jl and the associated IJulia notebook can be found at https://github.com/ctkelley/

NotebookSIAMFANL. The GitHub repository https://github.com/ctkelley/Newton3P con-
tains the codes used to produce the results in this section and instructions for reproducing
those results.

Table 2 presents the residual history for ten iterations from the the ill-conditioned ex-
ample from [17]. The first three histories are for Newton’s method with double precision
(F64), single precision (F32), and half precision (F16) Jacobians and are the same results
as those from [17]. The final two columns are for IR with the Jacobian stored in single
precision and the factorization done in half precision (IR 32-16) and GMRES-IR using the
that factorization to precondition GMRES.

The Newton iteration with a half precision Jacobian converged very poorly for this
problem. However, IR with the same half precision factorization performs as well as Newton’s
method using a double precision Jacobian.

472 C. T. KELLEY

Table 2: Residual Histories for Three Precisions: N = 4096, c = .99

n F64 F32 F16 IR 32-16 IR-GM
0 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00
1 2.289e-01 2.289e-01 5.065e-01 2.289e-01 2.289e-01
2 3.934e-02 3.934e-02 2.958e-01 3.934e-02 3.934e-02
3 2.737e-03 2.737e-03 1.890e-01 2.737e-03 2.737e-03
4 1.767e-05 1.767e-05 1.255e-01 1.767e-05 1.767e-05
5 7.486e-10 7.536e-10 8.518e-02 7.538e-10 7.506e-10
6 6.068e-02
7 4.240e-02
8 3.195e-02
9 2.280e-02
10 1.713e-02

Table 3 is a much more poorly conditioned problem. In this problem IR does very well
for the first three iterations when the iteration is not close to the solution. As the iteration
converges the ill-conditioning of the Jacobian at the solution begins to cause failures of the
linear iteration and that affects the nonlinear iteration. GMRES-IR continues to perform
well.

Table 3: Residual Histories for Three Precisions: N = 4096, c = .9999

n F64 F32 F16 IR 32-16 IR-GM
0 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00
1 2.494e-01 2.494e-01 5.182e-01 2.494e-01 2.494e-01
2 6.093e-02 6.093e-02 3.123e-01 6.093e-02 6.093e-02
3 1.480e-02 1.480e-02 2.067e-01 1.480e-02 1.480e-02
4 3.454e-03 3.454e-03 1.421e-01 3.455e-03 3.454e-03
5 6.762e-04 6.762e-04 1.012e-01 6.766e-04 6.762e-04
6 7.049e-05 7.049e-05 7.552e-02 6.360e-04 7.049e-05
7 1.223e-06 1.223e-06 5.773e-02 5.811e-04 1.223e-06
8 3.947e-10 3.957e-10 4.543e-02 5.312e-04 3.952e-10
9 3.639e-02 4.862e-04
10 2.949e-02 4.456e-04

References

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J.D. Croz, A. Greenbaum,
S. Hammarling, A. McKenney, S. Ostrouchov and D. Sorensen, LAPACK Users Guide,
Second Edition, SIAM, Philadelphia, 1992.

[2] J. Bezanson, A. Edelman, S. Karpinski, and V.B. Shah, Julia: A fresh approach to
numerical computing, SIAM Rev. 59 (2017) 65–98.

NEWTON’S METHOD IN THREE PRECISIONS 473

[3] E. Carson and N.J. Higham, A new analysis of iterative refinement and its application
of accurate solution of ill-conditioned sparse linear systems, SIAM J. Sci. Comput. 39
(2017) A2834–A2856,

[4] E. Carson and N.J. Higham, Accelerating the solution of linear systems by iterative
refinement in three precisions, SIAM J. Sci. Comput. 40 (2018) A817–A847,

[5] S. Chandrasekhar, Radiative Transfer, Dover, New York, 1960.

[6] R. Dembo, S. Eisenstat and T. Steihaug, Inexact Newton methods, SIAM J. Numer.
Anal. 19 (1982) 400–408.

[7] J. Demmel, M. Gates, G. Henry, X. Li, J. Riedy and P. Tang, A proposal for a next-
generation BLAS, 2017. preprint.

[8] J.E. Dennis and R.B. Schnabel, Numerical Methods for Unconstrained Optimization and
Nonlinear Equations, no. 16 in Classics in Applied Mathematics, SIAM, Philadelphia,
1996.

[9] J.E. Dennis and H.F. Walker, Inaccuracy in quasi-Newton methods: Local improve-
ment theorems, in: Mathematical Programming Study 22: Mathematical programming
at Oberwolfach II, North–Holland, Amsterdam, 1984, pp. 70–85.

[10] N.J. Higham, Accuracy and Stability of Numerical Algorithms, Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 1996,

[11] N.J. Higham and T. Mary, A new approach to probabilistic rounding error analysis,
February, 27 2019. Presentation at SIAM conference on Computational Science and
Engineering.

[12] N.J. Higham, S. Pranesh and M. Zounon, Squeezing a matrix into half precision, with
an application to solving linear systems, SIAM J. Sci. Comput. 41 (2019) A2536–A2551.

[13] IEEE Standard for Binary Floating Point Arithmetic, Std 754-1885, 1985.

[14] IEEE Computer Society, IEEE standard for floating-point arithmetic, IEEE Std
754–2019, July 2019.

[15] C.T. Kelley, Iterative Methods for Linear and Nonlinear Equations, no. 16 in Frontiers
in Applied Mathematics, SIAM, Philadelphia, 1995.

[16] C.T. Kelley, Numerical methods for nonlinear equations, Acta Numer. 27 (2018) 207–
287,

[17] C.T. Kelley, Newton’s method in mixed precision, SIAM Rev. 64 (2022) 191–211,

[18] C.T. Kelley, Notebook for Solving Nonlinear Equations with Iterative Methods:
Solvers and Examples in Julia, https://github.com/ctkelley/NotebookSIAMFANL,
2022,http://dx.doi.org/10.5281/zenodo.4284687, https://github.com/

ctkelley/NotebookSIAMFANL. IJulia Notebook.

[19] C.T. Kelley, SIAMFANLEquations.jl. https://github.com/ctkelley/SIAMFANLEquations.jl,
2022, http://dx.doi.org/10.5281/zenodo.4284807, https://github.com/

ctkelley/SIAMFANLEquations.jl. Julia Package.

474 C. T. KELLEY

[20] C.T. Kelley, Solving Nonlinear Equations with Iterative Methods: Solvers and Examples
in Julia, no. 20 in Fundamentals of Algorithms, SIAM, Philadelphia, 2022.

[21] M.L. Overton, Numerical Computing with IEEE Floating Point Arithmetic, SIAM,
Philadelphia, 2001.

[22] J.H. Wilkinson, Rounding Errors in Algebraic Processes, Dover, New York, 1994.

Manuscript received 30 July 2023
revised 10 October 2023

accepted for publication 10 October 2023

C. T. Kelley
North Carolina State University
Department of Mathematics
Box 8205, Raleigh, NC 27695-8205, USA
E-mail address: Tim Kelley@ncsu.edu

