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A disadvantage is that the gap function p is non-differentiable in general. To conquer this
drawback, in 1992, Fukushima [7] originally proposed a new gap function for VI in the
following form:

pα(z) = sup
v∈D

{〈ρ(z), z − v〉 − α‖z − v‖2},

where α > 0. The function pα is finite valued and differentiable as long as the mapping ρ is
differentiable, and it is called the regularized gap function. Then, Peng [35] provided the no-
tion of the D-gap (where D stands for “difference”) function which leads to an unconstrained
optimization reformulation of the VI. Another D-gap function derived from the difference
of two regularized gap functions, given by Yamashita and Fukushima [43], is as follows:

dαβ(z) = pα(z)− pβ(z) (0 < α < β).

Note that dαβ is also a gap function for VI. Peng-Fukushima [36] developed a global error
bound result for variational inequalities in terms of D-gap functions using the strong mono-
tonicity assumption. Error bound explores the upper estimation of the distance between
an arbitrary feasible point and the solution set of a certain problem. So, it has been crit-
ical in analyzing the convergence of iterative methods for solving variational inequalities.
Therefore, the D-gap function and error bounds have been investigated for various kinds of
equilibrium problems and variational inequalities, see e.g., [2, 3, 16,17,21,22,25,26,38].

On the other hand, it is well known that the theory of hemivariational inequalities is
an extension of variational inequalities. This theory was introduced by Panagiotopoulos
for dealing with various problems of mechanical problems with nonconvex and nonsmooth
energy potentials, and based on the concept of the Clarke generalized gradient for locally
Lipschitz functions, see e.g., [33, 34]. Variational–hemivariational inequality is a general-
ization of hemivariational inequality which includes both convex and nonconvex potentials.
This theory has been extensively investigated by many authors in various directions, and it
has found different applications in engineering, mechanics, especially in nonsmooth analysis
and optimization. Recent existence results for some types of variational–hemivariational in-
equalities can be found, in e.g., [20,27,29,31,32,37], the stability in the sense of convergence
and the well-posedness, in e.g., [13,24,28,41,44,45], the gap functions and error bounds, in
e.g., [8, 15,19,40] and the computational issues have been addressed in, e.g., [9, 12].

Although D-gap functions have turned out to be efficient mathematical tools to establish
error bounds for various variational inequalities and equilibrium problems, until now, there is
no contribution which deals with D-gap functions for variational-hemivariational inequalities.
Based on the motivation, in this paper, we develop the D-gap function and global error
bounds for an abstract class of elliptic variational-hemivariational inequalities (for brevity,
EVHIs). Firstly, we provide the regularized gap function introduced by Fukushima [7] for
EVHIs under some suitable conditions based on the optimality condition for the concerning
minimization problem. The D-gap function for EVHIs in terms of regularized gap functions
is established. Furthermore, we also give some global error bounds for EVHIs by virtue
of the regularized gap function and the D-gap function. Finally, the theoretical results are
applied to a contact mechanic problem. To sum up, the contribution of this work and its
relation to previous literature is depicted in Figure 1.

The rest of this paper is structured as follows. The basic notations and definitions
that will be used throughout the study are presented in Section 2. We also introduce an
abstract class of elliptic variational-hemivariational inequalities and provide their existence
under some imposed hypotheses on the data. In Section 3, we investigate the regularized gap
function and the D-gap function for EVHIs. In Section 4, we establish global error bounds for
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Figure 1: Illustration of the developments regarding different kinds of gap functions, regularized
gap functions and D-gap functions.

EVHIs by virtue of the gap functions considered in Section 3 under some suitable conditions.
Finally, an application to a contact problem is proposed in Section 5 to illustrate abstract
results in the paper.

2 Preliminaries and Formulations

Let E be a normed space with its topological dual E∗. We denote by ‖·‖E the norm on E and
〈·, ·〉E the duality pairing of E and E∗. For two normed spaces E and Z, L(E,Z) denotes the
space of all linear continuous operators from E to Z. We recall some fundamental concepts
that will be used in the sequel. For more details, please refer to [4–6,30].

Definition 2.1. A function ϱ : E → R := R ∪ {+∞} is said to be

(a) proper, if ϱ 6≡ +∞;

(b) convex, if ϱ(tu+ (1− t)v) ≤ tϱ(u) + (1− t)ϱ(v) for all u, v ∈ E and t ∈ [0, 1];

(c) lower semicontinuous at u0 ∈ E, if for any sequence {un} ⊂ E such that un → u0, it
holds ϱ(u0) ≤ lim inf ϱ(un);

(d) upper semicontinuous at u0 ∈ E, if for any sequence {un} ⊂ E such that un → u0, it
holds lim sup ϱ(un) ≤ ϱ(u0);

(e) lower semicontinuous (resp., upper semicontinuous) on E, if ϱ is lower semicontinuous
(resp., upper semicontinuous) at every u0 ∈ E.

Definition 2.2. An operator G : E → E∗ is said to be:

(a) bounded, if G maps bounded sets of E into bounded sets of E∗;

(b) Lipschitz continuous, if there exists a constant lG > 0 such that

‖Gv − Gu‖E∗ ≤ lG‖v − u‖E for all u, v ∈ E;
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(c) pseudomonotone, if G is a bounded operator and for every sequence {un} ⊂ E con-
verging weakly to u ∈ E such that lim sup〈Gun, un − u〉E ≤ 0, we have

〈Gu, u− v〉E ≤ lim inf〈Gun, un − v〉E , for all v ∈ E.

Definition 2.3. Let θ : E → R be a proper, convex and lower semicontinuous function. The
convex subdifferential ∂cθ : E ⇒ E∗ of θ is defined by

∂cθ(u) =
{
w∗ ∈ E∗ | 〈w∗, v − u〉E ≤ θ(v)− θ(u) for all v ∈ E

}
for all u ∈ E.

An element w∗ ∈ ∂cθ(u) is called a subgradient of θ at u ∈ E. Given a bifunction h : E ×
E → R, we will denote by ∂2h the convex subdifferential of h with respect to the second
component.

Definition 2.4. A function ϱ : E → R is said to be locally Lipschitz, if for every u ∈ E,
there exist a neighbourhood N of u and a constant lu > 0 such that

|ϱ(v1)− ϱ(v2)| ≤ lu‖v1 − v2‖E for all v1, v2 ∈ N .

Given a locally Lipschitz function ϱ : E → R, we denote by ϱ0(u; v) the Clarke generalized
directional derivative of ϱ at the point u ∈ E in the direction v ∈ E defined by

ϱ0(u; v) = lim sup
y→u, t→0+

ϱ(y + tv)− ϱ(y)

t
.

The generalized gradient of ϱ at u ∈ E, denoted by ∂ϱ(u), is a subset of E∗ given by

∂ϱ(u) =
{
ζ∗ ∈ E∗ | ϱ0(u; v) ≥ 〈ζ∗, v〉E for all v ∈ E

}
.

For convenience, some basic and useful results of the generalized gradient and directional
derivative of a locally Lipschitz function are collected in the following lemma, see, e.g., [4,
Proposition 2.1.1].

Lemma 2.5. Let E be a real Banach space and ϱ : E → R be a locally Lipschitz function.
Then, the following assertions hold.

(i) For each u ∈ E, the function E 3 v 7→ ϱ0(u; v) ∈ R is finite, positively homogeneous,
subadditive and Lipschitz continuous.

(ii) The function E × E 3 (u, v) 7→ ϱ0(u; v) ∈ R is upper semicontinuous.

(iii) For every u, v ∈ E, it holds

ϱ0(u; v) = max {〈ζ, v〉E | ζ ∈ ∂ϱ(u)}.

Next, we recall the existence and uniqueness result of solutions for uniformly convex
optimization problems.

Definition 2.6 (see [23]). A function ϱ : E → R is said to be uniformly convex if there
exists a continuously increasing function π : R → R such that π(0) = 0 and that for all
u, v ∈ E and for each t ∈ [0, 1], we have

ϱ(tu+ (1− t)v) ≤ tϱ(u) + (1− t)ϱ(v)− t(1− t)π(‖u− v‖)‖u− v‖.

If π(τ) = kτ for k > 0, then ϱ is called a strongly convex function.
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Lemma 2.7 (see [42], Chapter 1, Section 3, Theorem 9). Suppose that W is a nonempty,
convex and closed subset of a reflexive Banach space E, ϱ : E → R is a uniformly convex
and lower semicontinuous function. Then the optimization problem

min
u∈W

ϱ(u)

has the unique solution u∗ ∈ W.

Throughout the paper, unless otherwise specified, for each i ∈ {1, . . . , k}, let E be a
Hilbert space and EP , EΥi

be Banach spaces, W ⊂ E and KP ⊂ EP . In addition, let
G : E → E∗, δ : E → EP , γi : E → EΥi

be operators, P : KP × KP → R, Υi : EΥi
→ R

be functions and f ∈ E∗. We now consider the abstract elliptic variational-hemivariational
inequality:

Problem 2.1. Find u∗ ∈ W such that

〈Gu∗, v − u∗〉E + P(δu∗, δv)− P(δu∗, δu∗) +

k∑
i=1

Υ0
i (γiu

∗; γiv − γiu
∗) ≥ 〈f, v − u∗〉E

for all v ∈ W .

To proceed, the following hypotheses are imposed on the data of Problem 2.1.
H(G) : For the operator G : E → E∗,

(a) G is Lipschitz continuous, i.e., there exists lG > 0 such that

‖Gv1 − Gv2‖E∗ ≤ lG‖v1 − v2‖E , ∀v1, v2 ∈ E;

(b) G is strongly monotone, i.e., there exists mG > 0 such that

〈Gv1 − Gv2, v1 − v2〉E ≥ mG‖v1 − v2‖2E , ∀v1, v2 ∈ E.

H(P) : For the function P : KP ×KP → R,

(a) for each u ∈ KP , P(u, ·) : KP → R is convex and lower semicontinuous;

(b) there exists αP > 0 such that

P(u1, v2)− P(u1, v1) + P(u2, v1)− P(u2, v2)

≤ αP‖u1 − u2‖EP‖v1 − v2‖EP , ∀u1, u2, v1, v2 ∈ KP .

H(Υ) : For each i ∈ {1, . . . , k}, for the locally Lipschitz function Υi : EΥi
→ R,

(a) ‖ξ‖E∗
Υi

≤ c0 + c1‖v‖EΥi
, ∀v ∈ EΥi

, ξ ∈ ∂Υi(v) with some c0, c1 ≥ 0;

(b) there exists LΥi ≥ 0 such that

Υ0
i (w1; v2 − v1) + Υ0

i (w2; v1 − v2) ≤ LΥi‖w1 − w2‖EΥi
‖v1 − v2‖EΥi

, (2.1)

for all w1, w2, v1, v2 ∈ EΥi .
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H(W) : W is a nonempty, closed and convex subset of E with 0E ∈ W .

H(K) : KP is a nonempty, closed and convex subset of EP with δ(W) ⊂ KP .

H(δ) : For the operator δ ∈ L(E,EP), there exists cP > 0,

‖δv‖EP ≤ cP‖v‖E .

H(γ) : For each i ∈ {1, . . . , k}, for the operator γi ∈ L(E,EΥi
), there exists cΥi

> 0,

‖γiv‖EΥi
≤ cΥi

‖v‖E .

H(f) : f ∈ E∗.
H(const.) :

mG − αPc
2
P −

k∑
i=1

LΥi
c2Υi

> 0.

Remark 2.8. (i) It is easily seen that H(G)(b) implies that G is pseudomonotone.
(ii) If w1 = v1, w2 = v2, then the condition (2.1) reduces to

Υ0
i (v1; v2 − v1) + Υ0

i (v2; v1 − v2) ≤ LΥi
‖v1 − v2‖2EΥi

, ∀v1, v2 ∈ EΥi
.

The following example illustrates that the case where the hypotheses H(P) and H(Υ) are
satisfied.

Example 2.9. For each i ∈ {1, 2}, let EΥi
= EP = E = R, KP = [0, 7

3 ], P : KP ×KP → R
and Υi : EΥi

→ R be the functions defined by

P(u, v) =
5 + uv2

3
and Υi(u) =

{ (
1
2 − i

)
u2 + iu if u ≥ 0

0 if u < 0.

It is not difficult to show that the condition H(P)(a) holds. For any u1, u2, v1, v2 ∈ KP , we
have

P(u1, v2)− P(u1, v1) + P(u2, v1)− P(u2, v2)

=
1

3

(
u1v

2
2 − u1v

2
1 + u2v

2
1 − u2v

2
2

)
=

1

3
(v1 + v2)(u2 − u1)(v1 − v2)

≤ 14

9
|u1 − u2||v1 − v2|,

which implies that the condition H(P)(b) is satisfied with αP = 14
9 . Thus, H(P) is valid.

On the other hand, it is obvious that for each i ∈ {1, 2}, Υi is a locally Lipschitz
nonconvex function. Moreover, its generalized gradient and Clarke generalized directional
derivative are given by

∂Υi(u) =


(1− 2i)u+ i if u > 0

[0, i] if u = 0

0 if u < 0,
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and

Υ0
i (u; d) =


(1− 2i)ud+ id if u > 0

max{0, id} if u = 0

0 if u < 0

for all d ∈ R and i ∈ {1, 2}.

Hence, |w| ≤ i + (2i − 1)|u| for all w ∈ ∂Υi(u) and u ∈ R and i ∈ {1, 2} and so the
condition H(Υ)(a) holds with c0 = i, c1 = 2i− 1 for i ∈ {1, 2}. Furthermore, we also obtain

Υ0
i (w1; v2 − v1) + Υ0

i (w2; v1 − v2) ≤ (2i− 1)|w1 − w2||v1 − v2|

for all w1, w2, v1, v2 ∈ R and so the assumption H(Υ)(b) holds with LΥi
= 2i−1 for i ∈ {1, 2}.

By slightly modifying the arguments in [10, 31], we obtain the existence and uniqueness
result for Problem 2.1.

Theorem 2.10. Assume that the assumptions H(G), H(P), H(Υ), H(W), H(K), H(δ), H(γ),
H(f) and H(const.) hold. Then Problem 2.1 has a unique solution.

We point out that there are various problems investigated in the literature which are
included as special cases in Problem 2.1.

Special case (a): When k = 1, Υ1 = Υ and γ1 = γ, Problem 2.1 is equivalent to the following
class of variational-hemivariational inequalities studied by Han et al. [12]:

Problem 2.2. Find u ∈ W such that

〈Gu, v − u〉E + P(δu, δv)− P(δu, δu) + Υ0 (γu; γv − γu) ≥ 〈f, v − u〉E , ∀v ∈ W .

Special case (b): When Υi ≡ 0 for all i ∈ {1, . . . , k}, Problem 2.1 reduces to the following
variational inequality considered in Hung and Tam [18]:

Problem 2.3. Find u ∈ W such that

〈Gu, v − u〉E + P(δu, δv)− P(δu, δu) ≥ 〈f, v − u〉E , ∀v ∈ W .

Special case (c): When k = 2, P ≡ 0, Problem 2.1 has the below form, which was introduced
by Han et al. [10].

Problem 2.4. Find u ∈ W such that

〈Gu, v − u〉E +Υ0
1 (γ1u; γ1v − γ1u) + Υ0

2 (γ2u; γ2v − γ2u) ≥ 〈f, v − u〉E , ∀v ∈ W .

3 Different Gap Functions

In this section, we construct the gap functions in the regularized form of the Fukushima type
for Problem 2.1 using some suitable conditions. Furthermore, based on these regularized
gap functions, the D-gap function for Problem 2.1 is established. Since the existence of
solutions have been considered in Theorem 2.10, we always assume that the solution set of
Problem 2.1 is nonempty.

First, we propose the exact definition of gap functions of Problem 2.1 as below.
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Definition 3.1. A real-valued function m : W → R is said to be a gap function for Problem
2.1, if it satisfies the following properties:

(a) m(u) ≥ 0 for all u ∈ W .

(b) u∗ ∈ W is such that m(u∗) = 0 if and only if u∗ is a solution to Problem 2.1.

For each ω > 0, let the function Ξω,f : W ×W → R be defined by

Ξω,f (u, v) = 〈Gu− f, v − u〉E + P(δu, δv)− P(δu, δu)

+

k∑
i=1

Υ0
i (γiu; γiv − γiu) +

ω

2

∥∥v − u
∥∥2
E
.

Lemma 3.2. For each i ∈ {1, . . . , k}, suppose that Υi : EΥi
→ R is a locally Lipschitz

function and γi ∈ L(E,EΥi
). Then, the function φi : EΥi

× EΥi
→ R defined by

φi(ui, vi) = Υ0
i (ui; vi − ui) (3.1)

satisfies the following properties:

(i) For each ui ∈ EΥi
, the function v 7→ φi(ui, γiv) is continuous and convex;

(ii) For each u ∈ W, ∂2(φi ◦ γi)(u, v) ⊂ γ∗
i ∂2Υ

0
i (γiu; γiv− γiu), where γ∗

i : E
∗
i → E∗ is the

adjoint operator to γi and φi ◦ γi denotes the composition of the function φi with the
operator γi, for all i ∈ {1, . . . , k}.

Proof. (i) It follows from the property (i) of Lemma 2.5 and γi ∈ L(E,EΥi) for all i ∈
{1, . . . , k}.

(ii) Using the chain rule for generalized subgradient in [30, Proposition 3.37(ii)] with the
condition γi ∈ L(E,EΥi

) for all i ∈ {1, . . . , k}, we obtain that

∂2(φi ◦ γi)(u, v) ⊂ γ∗
i ∂2φi(γiu, γiv) = γ∗

i ∂2Υ
0
i (γiu; γiv − γiu)

for all i ∈ {1, . . . , k} and u ∈ W . □

Lemma 3.3. Suppose that all the assumptions of Lemma 3.2, H(P)(a), H(W) and H(f)
hold, and δ ∈ L(E,EP). Then, for each u ∈ W and ω > 0 fixed, the optimization problem

min
v∈W

Ξω,f (u, v) (3.2)

attains a unique solution vω,f (u) ∈ W.

Proof. For each i ∈ {1, . . . , k}, by the condition H(P)(a) and Lemma 3.2(i), we achieve
that functions v 7→ Υ0

i (γiu; γiv − γiu) and v 7→ P(δu, δv) are convex for all u ∈ W . Then,
it is easy to prove that the function Ξω,f (u, ·) is a strongly convex function for all u ∈
W. Furthermore, functions v 7→ Υ0

i (γiu; γiv − γiu) and v 7→ P(δu, δv) are also lower
semicontinuous for all u ∈ W . Hence, the function Ξω,f (u, ·) is lower semicontinuous for
all u ∈ W . It follows from the condition H(W) that W is a nonempty, closed and convex
set. Thus, applying Lemma 2.7, the minimization problem (3.2) attains a unique minimum
vω,f (u) ∈ W , for any u ∈ W and ω > 0 fixed. □

The optimality condition for the minimization problem (3.2) are described as follows.
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Lemma 3.4. Suppose that all the assumptions of Lemma 3.3 hold. Then, for each u ∈ W
and ω > 0 fixed,

〈Gu− f + ω(vω,f (u)− u), v − vω,f (u)〉E + P(δu, δv)− P(δu, δvω,f (u))

+

k∑
i=1

Υ0
i (γiu; γiv − γivω,f (u)) ≥ 0, (3.3)

holds for all v ∈ W, where vω,f (u) is a unique solution of the problem (3.2).

Proof. For each u ∈ W and ω > 0, let vω,f (u) be a unique solution of the problem (3.2).
Hence, using the chain rule for generalized subgradient in [30, Proposition 3.35(ii) and
Proposition 3.37(ii)], Lemma 3.2(ii) and the optimality condition for the problem (3.2)
(see [14, Theorem 1.23]), one has

0 ∈ ∂2Ξω,f (u, vω,f (u))

⊂ Gu− f + ∂2(P ◦ δ)(δu, vω,f (u))

+

k∑
i=1

∂2(φi ◦ γi)(u, vω,f (u)) + ω(vω,f (u)− u)

⊂ Gu− f + δ∗∂2P(δu, δvω,f (u))

+

k∑
i=1

γ∗
i ∂2Υ

0
i (γiu; γivω,f (u)− γiu) + ω(vω,f (u)− u),

where φi is defined by (3.1), δ∗ : E∗
P → E∗ and γ∗

i : E
∗
i → E∗ are the adjoint operators to δ

and γi, respectively for all i ∈ {1, . . . , k}. This implies that there exist z ∈ ∂2P(δu, δvω,f (u))
and ζi ∈ ∂2φi(γiu, γivω,f (u)) = ∂2Υ

0
i (γiu; γivω,f (u)− γiu) such that

f − Gu− ω(vω,f (u)− u) = δ∗z +

k∑
i=1

γ∗
i ζi. (3.4)

For each i ∈ {1, . . . , k}, since δ∗ and γ∗
i are adjoint operators to δ and γi, respectively, it

follows from (3.4) that for all v ∈ W ,

〈−Gu+ f − ω(vω,f (u)− u), v − vω,f (u)〉E

= 〈δ∗z, v − vω,f (u)〉E +

k∑
i=1

〈γ∗
i ζi, v − vω,f (u)〉E

= 〈z, δv − δvω,f (u)〉E +

k∑
i=1

〈ζi, γiv − γivω,f (u)〉E

≤ P(δu, δv)− P(δu, δvω,f (u))

+

k∑
i=1

(φi(γiu, γiv)− φi(γiu, γivω,f (u)))

= P(δu, δv)− P(δu, δvω,f (u))

+

k∑
i=1

(
Υ0

i (γiu; γiv − γiu)−Υ0
i (γiu; γivω,f (u)− γiu)

)
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≤ P(δu, δv)− P(δu, δvω,f (u)) +

k∑
i=1

Υ0
i (γiu; γiv − γivω,f (u)),

that is,

〈Gu− f + ω(vω,f (u)− u), v − vω,f (u)〉E + P(δu, δv)− P(δu, vω,f (u))

+

k∑
i=1

Υ0
i (γiu; γiv − γivω,f (u)) ≥ 0.

Thus, for each u ∈ W , the inequality (3.3) holds for all v ∈ W . □
Now, we consider the function Fω,f : W → R defined by

Fω,f (u) = sup
v∈W

{−Ξω,f (u, v)}

= − inf
v∈W

Ξω,f (u, v) = −Ξω,f (u, vω,f (u)). (3.5)

In what follows, the function Fω,f is called to be a regularized gap function of Problem 2.1.
We shall assert that Fω,f is a gap function of Problem 2.1.

Theorem 3.5. Suppose that the hypotheses H(P)(a), H(Υ)(b), H(W), H(K) and H(f) hold,
and δ ∈ L(E,EP), γi ∈ L(E,EΥi

) for all i ∈ {1, ..., k}. Then, for any ω > 0, the function
Fω,f is a gap function for Problem 2.1.

Proof. (a) For all u ∈ W , we have

Fω,f (u) = sup
v∈W

{−Ξω,f (u, v)}

≥ −Ξω,f (u, u)

= 〈f − Gu, u− u〉E − P(δu, δu) + P(δu, δu)

−
k∑

i=1

Υ0
i (γiu; γiu− γiu)−

ω

2

∥∥u− u
∥∥2
E

= −
k∑

i=1

Υ0
i (γiu;0Ei) = 0.

(b) Suppose that u∗ is a solution of Problem 2.1. From (3.5), we have

Fω,f (u
∗) = sup

v∈W
{−Ξω,f (u

∗, v)}

= −Ξω,f (u
∗, vω,f (u

∗)). (3.6)

Moreover, since u∗ is a solution of Problem 2.1, we obtain

〈Gu∗ − f, vω,f (u
∗)− u∗〉E + P(δu∗, δvω,f (u

∗))− P(δu∗, δu∗)

+

k∑
i=1

Υ0
i (γiu

∗; γivω,f (u
∗)− γiu

∗) ≥ 0. (3.7)

It follows from the result of Lemma 3.4 that

〈Gu∗ − f + ω(vω,f (u
∗)− u∗), u∗ − vω,f (u

∗)〉E
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+ P(δu∗, δu∗)− P(δu∗, δvω,f (u
∗))

+

k∑
i=1

Υ0
i (γiu

∗; γiu
∗ − γivω,f (u

∗)) ≥ 0. (3.8)

Combining (3.7) and (3.8), thanks to the assumption H(Υ)(b), we get

−ω‖vω,f (u
∗)− u∗‖2E ≥ 0.

This implies that
‖vω,f (u

∗)− u∗‖2E ≤ 0,

and so u∗ = vω,f (u
∗). Therefore, it follows from (3.6) that Fω,f (u

∗) = 0.

Conversely, for any x∗ ∈ W , we assume that Fω,f (u
∗) = 0. This implies −Ξω,f (u

∗, v) ≤ 0
for all v ∈ P , i.e., Ξω,f (u

∗, v) ≥ 0 for all v ∈ P . Since Ξω,f (u
∗, u∗) = 0, u∗ solves the

following convex minimization problem

min
v∈W

Ξω,f (u
∗, v).

Using the optimality condition for this problem, we have 0 ∈ ∂2Ξω,f (u
∗, u∗). From similar

arguments to those used in the proof of Lemma 3.4 with fixed first argument of the function
Ξω,f , we obtain that for each v ∈ W ,

f − Gu∗ = δ∗z∗ +

k∑
i=1

γ∗
i ζ

∗
i ,

where z∗ ∈ ∂2P(δu∗, δu∗) and ζ∗i ∈ ∂2φi(γiu
∗; γiu

∗) for all i ∈ {1, . . . , k}. Then, for all
v ∈ W ,

〈−Gu∗ + f, v − u∗〉E

= 〈δ∗z∗, v − u∗〉E +

k∑
i=1

〈γ∗
i ζ

∗
i , v − u∗〉E

= 〈z∗, δv − δu∗〉E +

k∑
i=1

〈ζ∗i , γiv − γiu
∗〉E

≤ P(δu∗, δv)− P(δu∗, δu∗) +

k∑
i=1

(φi(γiu
∗; γiv)− φi(γiu

∗; γiu
∗))

= P(δu∗, δv)− P(δu∗, δu∗) +

k∑
i=1

(
Υ0

i (γiu
∗; γiv − γiu

∗)−Υ0
i (γiu

∗;0Ei)
)

= P(δu∗, δv)− P(δu∗, δu∗) +

k∑
i=1

Υ0
i (γiu

∗; γiv − γiu
∗),

that is,

〈Gu∗, v − u∗〉E + P(δu∗, δv)− P(δu∗, δu∗)

+

k∑
i=1

Υ0
i (γiu

∗; γiv − γiu
∗) ≥ 〈f, v − u∗〉E



500 V. M. TAM AND J.-S. CHEN

which implies that u∗ is a solution of Problem 2.1. Thus, Fω,f is a gap function for Problem
2.1. □

Next, we will establish the D-gap function for Problem 2.1 by using the regularized gap
functions of the Fukushima type given above. To this end, let the regularized gap function
Fω,f be defined by (3.5). Now, we will consider the function Df

ω,ρ : W → R defined by

Df
ω,ρ(u) = Fω,f (u)−Fρ,f (u) (3.9)

where ρ > ω > 0. Then, we obtain the following property of the function Df
ω,ρ.

Lemma 3.6. Suppose that the hypotheses of Theorem 3.5 hold. Then, for any ρ > ω > 0,
we have ∥∥u− vρ,f (u)

∥∥2
E
≤ 2

ρ− ω
Df

ω,ρ(u) ≤
∥∥u− vω,f (u)

∥∥2
E
, (3.10)

for all u ∈ W, where

vω,f (u) = argmin
v∈W

Ξω,f (u, v) and vρ,f (u) = argmin
v∈W

Ξρ,f (u, v).

Proof. By the definitions of the gap functions Fω,f ,Fρ,f and the function Df
ω,ρ, we see that

Df
ω,ρ(u) = sup

v∈W
{−Ξω,f (u, v)} − sup

v∈W
{−Ξρ,f (u, v)}

≤ −Ξω,f (u, vω,f (u)) + Ξρ,f (u, vω,f (u))

=
ρ− ω

2

∥∥u− vω,f (u)
∥∥2
E
.

Thus, the right-hand-side inequality in (3.10) holds. Similarly, we obtain the left-hand-side
inequality in (3.10). □
Theorem 3.7. Suppose that the hypotheses of Theorem 3.5 hold. Then, for any ρ > ω > 0,
the function Df

ω,ρ defined by (3.9) is a gap function for Problem 2.1.

Proof. (a) It is clearly follows from (3.10) that Df
ω,ρ(u) ≥ 0, for all u ∈ W .

(b) Suppose that u∗ is a solution of Problem 2.1. It follows from Theorem 3.5 that Fω,f (u
∗) =

Fρ,f (u
∗) = 0 and so Df

ω,ρ(u
∗) = 0.

Conversely, for any u∗ ∈ W such that Df
ω,ρ(u

∗) = 0. From (3.10), we have u∗ = vρ,f (u
∗).

Applying Lemma 3.4 with u = u∗ and ω = ρ, we have,

〈Gu∗ − f, v − u∗〉E + P(δu∗, δv)− P(δu∗, δu∗)

+

k∑
i=1

Υ0
i (γiu

∗; γiv − γiu
∗) ≥ 0,

for all v ∈ W , which implies that u∗ is a solution of Problem 2.1. Thus, Df
ω,ρ is a gap

function of Problem 2.1. □
Remark 3.8. (i) As discussed in the introduction, no work has been established on D-

gap functions for variational-hemivariational inequalities. As a result, our Theorem 3.7
is new.

(ii) Furthermore, using a formulation of the optimality condition in Lemma 3.4, the
method of proof in Theorem 3.5 for the regularized gap function Fω,f considered to in-
vestigate the D-gap function Df

ω,ρ for EVHIs is different from the corresponding results
on regularized gap functions in [8, 15].
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4 Global Error Bounds

In this section, we construct some global error bounds for Problem 2.1 given by the regu-
larized gap function Fω,f and the D-gap function Df

ω,ρ considered in Section 3.

Lemma 4.1. Let u∗ ∈ W be the unique solution to Problem 2.1. Assume that the hypotheses
H(G), H(P), H(Υ), H(W), H(K), H(δ), H(γ), H(f) and H(const.) hold. Then, for each
u ∈ W, we have

‖u− u∗‖E ≤
lG + ρ+

∑k
i=1 LΥic

2
Υi

mG − αPc2P −
∑k

i=1 LΥi
c2Υi

‖u− vρ,f (u)‖E . (4.1)

Proof. For each u ∈ W , since vρ,f (u) ∈ W and u∗ ∈ W is a solution of Problem 2.1,

〈Gu∗ − f, vρ,f (u)− u∗〉E + P(δu∗, δvρ,f (u))− P(δu∗, δu∗)

+

k∑
i=1

Υ0
i (γiu

∗; γivρ,f (u)− γiu
∗) ≥ 0. (4.2)

Moreover, we add (3.3) with ω = ρ, v = u∗ and obtain

〈Gu− f + ρ(vρ,f (u)− u), u∗ − vρ,f (u)〉E + P(δu, δu∗)− P(δu, δvρ,f (u))

+

k∑
i=1

Υ0
i (γiu; γiu

∗ − γivρ,f (u)) ≥ 0. (4.3)

Combining (4.2) and (4.3) yields

0 ≤〈Gu∗ − Gu, vρ,f (u)− u∗〉E
+ P(δu∗, δvρ,f (u))− P(δu∗, δu∗) + P(δu, δu∗)− P(δu, δvρ,f (u))

+

k∑
i=1

[
Υ0

i (γiu
∗; γivρ,f (u)− γiu

∗) + Υ0
i (γiu; γiu

∗ − γivρ,f (u))
]

+ ρ 〈vρ,f (u)− u, u∗ − vρ,f (u)〉E . (4.4)

Since G is Lipschitz continuous with the constant lG and the condition H(G)(b) holds, we
have

〈Gu∗ − Gu, vρ,f (u)− u∗〉E
= 〈Gu∗ − Gu, vρ,f (u)− u〉E − 〈Gu∗ − Gu, u∗ − u〉E
≤ lG‖u− u∗‖E‖u− vρ,f (u)‖E −mG‖u− u∗‖2E . (4.5)

Moreover, we also obtain

ρ 〈vρ,f (u)− u, u∗ − vρ,f (u)〉E
= ρ 〈vρ,f (u)− u, u∗ − u〉E + ρ 〈vρ,f (u)− u, u− vρ,f (u)〉E
≤ ρ‖vρ,f (u)− u‖E‖u∗ − u‖E − ρ‖vρ,f (u)− u‖2E
≤ ρ‖vρ,f (u)− u‖E‖u∗ − u‖E . (4.6)

Using the conditions H(P)(b) and H(δ) lead to

P(δu∗, δvρ,f (u))− P(δu∗, δu∗) + P(δu, δu∗)− P(δu, δvρ,f (u))
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≤ αP‖δu∗ − δu‖EP‖δvω,f (u)− δu∗‖EP

≤ αPc
2
P‖u∗ − u‖2E + αPc

2
P‖u∗ − u‖E‖u− vρ,f (u)‖E . (4.7)

For each i ∈ {1, . . . , k}, by the conditions H(Υ)(b) and H(γ), we have

Υ0
i (γiu

∗; γivρ,f (u)− γiu
∗) + Υ0

i (γiu; γiu
∗ − γivρ,f (u))

≤ LΥi
‖γiu∗ − γiu‖EΥi

‖γivρ,f (u)− γiu
∗‖EΥi

≤ LΥi
c2Υi

‖u∗ − u‖2E + LΥi
c2Υi

‖u∗ − u‖E‖u− vρ,f (u)‖E . (4.8)

From (4.4)–(4.8), we have(
mG − αPc

2
P −

k∑
i=1

LΥic
2
Υi

)
‖u− u∗‖2E

≤

(
lG + ρ+

k∑
i=1

LΥi
c2Υi

)
‖u− u∗‖E‖u− vρ,f (u)‖E .

This implies that

‖u− u∗‖E ≤
lG + ρ+

∑k
i=1 LΥi

c2Υi

mG − αPc2P −
∑k

i=1 LΥi
c2Υi

‖u− vρ,f (u)‖E .

Thus, the inequality (4.1) holds. □

From Lemma 4.1, we get the following global error bound for Problem 2.1 by using the
regularized gap function of Fukushima type Fω,f .

Theorem 4.2. Let u∗ ∈ W be the unique solution to Problem 2.1. Assume that the hy-
potheses of Lemma 4.1 hold. Then, for each u ∈ W, we can get the following global error
bound by the gap function Fω,f for Problem 2.1:

‖u− u∗‖E ≤
lG + ω +

∑k
i=1 LΥic

2
Υi

mG − αPc2P −
∑k

i=1 LΥi
c2Υi

√
2

ω
Fω,f (u). (4.9)

Proof. For any u ∈ W , taking v = u in (3.3), we have

〈Gu− f + ω(vω,f (u)− u), u− vω,f (u)〉E + P(δu, δu)− P(δu, vω,f (u))

+

k∑
i=1

Υ0
i (γiu; γiu− γivω,f (u)) ≥ 0.

Equivalently,

−〈Gu− f, vω,f (u)− u〉E − P(δu, vω,f (u)) + P(δu, δu)

+

k∑
i=1

Υ0
i (γiu; γiu− γivω,f (u))−

ω

2
‖u− vω,f (u)‖2E

≥ ω

2
‖u− vω,f (u)‖2E ,
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which implies that

−Ξω,f (u, vω,f (u)) ≥
ω

2
‖u− vω,f (u)‖2E . (4.10)

It follows from (3.5) and (4.10) that

‖u− vω,f (u)‖E ≤
√

2

ω
Fω,f (u). (4.11)

From taking ρ = ω in (4.1) and (4.11), we obtain

‖u− u∗‖E ≤
lG + ω +

∑k
i=1 LΥic

2
Υi

mG − αPc2P −
∑k

i=1 LΥic
2
Υi

√
2

ω
Fω,f (u).

Thus, the inequality (4.9) holds. □
Without using the Lipschitz continuity of G, we can also provide an error bound for

Problem 2.1.

Theorem 4.3. Let u∗ ∈ W be the unique solution to Problem 2.1. Assume that the hy-
potheses H(G)(b), H(P), H(Υ), H(W), H(K), H(δ), H(γ) and H(f) hold. Then, for each
ω > 0, u ∈ W, for any ω > 0 satisfying

mG − αPc
2
P −

k∑
i=1

LΥic
2
Υi

− ω

2
> 0,

one has
‖u− u∗‖E ≤ 1√

mG − αPc2P −
∑k

i=1 LΥi
c2Υi

− ω
2

√
Fω,f (u). (4.12)

Proof. Let u∗ ∈ W be the unique solution to Problem 2.1. Fix an arbitrary u ∈ W , it
follows from the definition of Fω,f that

Fω,f (u) = sup
v∈W

{−Ξω,f (u, v)}

≥ −Ξω,f (u, u
∗)

= 〈f − Gu, u∗ − u〉E + P(δu, δu)− P(δu, δu∗)

−
k∑

i=1

Υ0
i (γiu; γiu

∗ − γiu)−
ω

2

∥∥u− u∗∥∥2
E
. (4.13)

Since u∗ is a solution to Problem 2.1, we have

〈Gu∗ − f, u− u∗〉E + P(δu∗, δu)− P(δu∗, δu∗)

+

k∑
i=1

Υ0
i (γiu

∗; γiu− γiu
∗) ≥ 0. (4.14)

The condition H(G)(c) implies that

〈f − Gu, u∗ − u〉E − 〈Gu∗ − f, u− u∗〉E
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= 〈Gu∗ − Gu, u∗ − u〉E
≥ mG‖u− u∗‖2E . (4.15)

It follows from the conditions H(P)(b), H(Υ)(b), H(δ) and H(γ) that

− [P(δu, δu∗)− P(δu, δu) + P(δu∗, δu∗)− P(δu∗, δ)]

−
k∑

i=1

[
Υ0

i (γiu; γiu
∗ − γiu) + Υ0

i (γiu
∗; γiu− γiu

∗)
]

≥ −αP‖δu∗ − δu‖2EP
−

k∑
i=1

LΥi
‖γiu∗ − γiu‖2EΥi

≥ −

(
αPc

2
P +

k∑
i=1

LΥic
2
Υi

)
‖u− u∗‖2E . (4.16)

Having in mind relations (4.14)–(4.16), it follows that

〈f − Gu, u∗ − u〉E + P(δu, δu)− P(δu, δu∗)−
k∑

i=1

Υ0
i (γiu; γiu

∗ − γiu)

≥

(
mG − αPc

2
P −

k∑
i=1

LΥi
c2Υi

)
‖u− u∗‖2E . (4.17)

Combining (4.13) and (4.17), we have(
mG − αPc

2
P −

k∑
i=1

LΥic
2
Υi

− ω

2

)∥∥u− u∗∥∥2
E
≤ Fω,f (u).

Then, the desired inequality (4.12) follows. □
We conclude this section with the global error bounds for Problem 2.1 associated with

the D-gap function.

Theorem 4.4. Let u∗ ∈ W be the unique solution to Problem 2.1. Assume that the hy-
potheses of Lemma 4.1 hold. Then, for each u ∈ W, we can get the following global error
bound by Df

ω,ρ for Problem 2.1:

‖u− u∗‖E ≤
lG + ρ+

∑k
i=1 LΥic

2
Υi

mG − αPc2P −
∑k

i=1 LΥi
c2Υi

√
2

ρ− ω
Df

ω,ρ(u). (4.18)

Proof. The inequality (4.18) is a consequence of (3.10) and (4.1). □

Remark 4.5. (i) By Remark 3.8 (i), the error bound for Problem 2.1 in Theorem 4.4
with respect to the D-gap function Df

ω,ρ is new.

(ii) On the other hand, the new error bounds in Theorem 4.2 and Theorem 4.3 via the reg-
ularized gap function Fω,f extend to the corresponding results in [8,15]. Furthermore,
Theorem 4.2 and Theorem 4.3 also extend to the error bound studied in Proposition
3.4 of [39] for strongly monotone variational inequalities.
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5 Application to Contact Mechanics

The contact model will be described in this section, together with its variational formula-
tion, which demonstrates the applicability of the abstract results presented in the previous
sections. The physical setting and notation are as follows.

An elastic body occupies an open, connected and bounded set Ω in Rl (l = 2, 3) with
Lipschitz continuous boundary Γ divided into three disjoint measurable parts Γ1, Γ2 and
Γ3 with meas(Γ1) > 0. The body is fixed on Γ1 and in contact on Γ3 with a foundation.
Moreover, it is in equilibrium under the action of a surface traction of density f2 on Γ2 and
a volume force of density f0 in Ω.

Let Sl be the space of second order symmetric tensors on Rl. Denote by τ = (τij) ∈ Sl
and v = (vi) ∈ Rl, where i, j ∈ {1, ..., l}. Let ν = (νi) be the unit outward normal vector on
the boundary Γ and x = (xi) for a generic point in Ω ∪ Γ. Unless stated otherwise, denote
0 by the zero element of Rl and Sl, and the summation convention over repeated indices is
used. The inner products and the Euclidean norms on Rl and Sl are given by

u · v = uivi, ‖u‖ = (u · u) 1
2 , for all u = (ui),v = (vi) ∈ Rl;

σ · τ = σijτij , ‖τ‖ = (τ · τ ) 1
2 , for all σ = (σij) ∈ Sl, τ = (τij) ∈ Sl.

For a vector field v, vν := v · ν and vτ := v − vνν denote the normal and tangential
components of v on Γ. Also, the normal and tangential components of the stress field σ on
the boundary are denoted by σν := (σν) · ν and στ := σν − σνν. For the stress and strain
fields, we shall use the Hilbert space V = L2(Ω; Sl) with the canonical inner product

(σ, τ )V :=

∫
Γ

σij(x)τij(x)dx, σ, τ ∈ V

and the associated norm ‖ · ‖V . The function space for the displacement field is defined by

E := {v = (vi) ∈ H1(Ω;Rl) | v = 0 a.e on Γ1}.

It follows from an application of Korn’s inequality and meas(Γ1) > 0 that E is real Hilbert
space endowed with the inner product

(u,v)E :=

∫
Γ

ε(u)ε(v)dx, u,v ∈ E,

and the associated norm ‖ · ‖E , where ε represents the deformation operator defined by

ε(v) = (εij(v)), εij(v) =
vi,j + vj,i

2
∀v ∈ V.

We shall use Div to denote the divergence operator given by

Divσ = (σij,j) =

(
∂σij

∂xj

)
and the same symbol v for the trace of a function v ∈ H1(Ω;Rl) on Γ. By the Sobolev trace
theorem, we have

‖v‖L2(Γ3;Rl) ≤ ‖δ‖‖v‖E , ∀v ∈ E,

where ‖δ‖ is the norm of the trace operator δ : E → L2(Γ3;Rl). With the aforementioned
discussions, we revisit the following formulation of contact problems considered in [9,11,12].
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Problem 5.1. Find a displacement field u : Ω → Rl and a stress field σ : Ω → Sl such that

σ = Mε(u) in Ω, (5.1)
Divσ + f0 = 0 in Ω, (5.2)
u = 0 on Γ1, (5.3)
σν = f2 on Γ2, (5.4){
uν ≤ g, σν + ζν ≤ 0,

(uν − g)(σν + ζν) = 0, ζν ∈ ∂hν(uν),
on Γ3, (5.5)

‖στ‖ ≤ Nb(uν), −στ = Nb(uν)
uτ

‖uτ‖
if uτ 6= 0, on Γ3. (5.6)

The elastic constitutive law is described in (5.1), where M : Ω × Sl → Sl denotes the
elasticity operator and satisfies the following conditions:

(a) there exists LM > 0 such that for all ε1, ε2 ∈ Sl, a.e. x ∈ Ω,

‖M(x, ε1)−M(x, ε2)‖ ≤ LM‖ε1 − ε2‖;
(b) M(·, ε) is measurable on Ω for all ε ∈ Sl

with M(x,0) = 0 for a.e. x ∈ Ω;

(c) there exists mM > 0 such that for all ε1, ε2 ∈ Sl, a.e. x ∈ Ω,

(M(x, ε1)−M(x, ε2)) · (ε1 − ε2) ≥ mM‖ε1 − ε2‖2.

(5.7)

Equation (5.2) represents the equilibrium equation and the classical displacement-traction
boundary conditions are described equations (5.3) and (5.4), where f0 and f2 are assumed
to satisfy

f0 ∈ L2(Ω;Rl), f2 ∈ L2(Γ2;Rl). (5.8)

We also define f ∈ V ∗ by the relation

〈f ,v〉V = (f0,v)L2(Ω;Rl) + (f2,v)L2(Γ2;Rl) ∀v ∈ V. (5.9)

The contact condition formulated on the surface Γ3 is represented in (5.5), where g : Γ3 → R
describes the thickness of the elastic layer. Assume that

g ∈ L2(Γ3), g(x) ≥ 0 a.e. on Γ3. (5.10)

Moreover, we define an admissible set K in E as follows:

K = {v ∈ E | vν ≤ g on Γ3}.

For the potential function hν : Γ3 × R → R, we assume

(a) hν(·, r) is measurable on Γ3 for all r ∈ R and there

exists ẽ ∈ L2(Γ3) such that hν(·, ẽ(·)) ∈ L1(Γ3).

(b) hν(x, ·) is locally Lipschitz on R for a.e. x ∈ Γ3.

(c) there exist c̄0, c̄1 ≥ 0 such that
|∂hν(x, r)| ≤ c̄0 + c̄1|r| for all r ∈ R and a.e. x ∈ Γ3.

(d) there exists Lhν ≥ 0 such that

h0
ν(x, s1; r2 − r1) + h0

ν(x, s2; r1 − r2)

≤ Lhν
|s1 − s2||r1 − r2|,

∀r1, r2, s1, s2 ∈ R and a.e. x ∈ Γ3.

(5.11)
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The condition (5.6) represents a version of Coulomb’s law of dry friction, where Nb : Γ3×R →
R+ denotes the friction bound which may depend on the normal displacement uν , and we
assume 

(a) Nb(·, r) is measurable on Γ3 for all r ∈ R.
(b) Nb(x, r) = 0 for all r ≤ 0,

Nb(x, r) ≥ 0 for all r ≥ 0, a.e. x ∈ Γ3;

(c) (Nb(x, r1)−Nb(x, r2))(r1 − r2) ≥ 0,

∀r1, r2 ∈ R and a.e. x ∈ Γ3;

(d) there exists LNb
> 0 such that

|Nb(x, r1)−Nb(x, r2)| ≤ LNb
|r1 − r2|

∀r1, r2 ∈ R and a.e. x ∈ Γ3.

(5.12)

We refer to [12, 30, 37] for more information and mechanical interpretation of static
contact models with elastic materials. The variational formulation of the contact problem
5.1 is in the following form:

Problem 5.2. Find a displacement field u ∈ K such that

(Mε(u), ε(v − u))V +

∫
Γ3

Nb(uν) · (‖vτ‖ − ‖uτ‖)ds

+

∫
Γ3

h0
ν(uν ; vν − uν)ds ≥

∫
Ω

f0 · (v − u)dx+

∫
Γ2

f2 · (v − u)dΓ

for all v ∈ K.

To apply the results presented in the previous sections on Problem 5.2, we let k = 1,
W = K, EP = L2(Γ3;Rl) with δ the trace operator from E to EP , EΥ = EΥ1

= L2(Γ3;R)
with γv = γ1v = vν for v ∈ E, and we define

G : E → E∗, 〈Gu,v〉E = (Mε(u), ε(v))V for u,v ∈ E,

P : L2(Γ3;Rl)× L2(Γ3;Rl) → R,

P(δu, δv) =

∫
Γ3

Nb(uν)‖vτ‖ds for u,v ∈ E,

Υ: L2(Γ3;R) → R, Υ(γv) =

∫
Γ3

hν(vν)ds for u,v ∈ E,

f = f ∈ V ∗, 〈f ,v〉E =

∫
Ω

f0 · vdx+

∫
Γ2

f2 · vdΓ for u,v ∈ E.

It is easily seen that all conditions of Theorem 2.10 are satisfied with mG = mM, lG =
LM, αP = LNb

and LΥ = LΥ1
= Lhν

.
Let λ1,E > 0 and λ1ν,E > 0 be the smallest eigenvalues of the eigenvalue problem

u ∈ E,

∫
Ω

ε(u)·ε(v) dx = λ

∫
Γ3

u·v dΓ ∀v ∈ E,

and the eigenvalue problem

u ∈ E,

∫
Ω

ε(u)·ε(v) dx = λ

∫
Γ3

uνvνdΓ ∀v ∈ E,
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respectively. Then we may take

cP = λ
−1/2
1,E , cΥ = λ

−1/2
1ν,E .

Using Theorem 2.10, we can conclude that Problem 5.2 admits a solution. Furthermore,
the smallness condition

LNb
λ−1
1,E + Lhνλ

−1
1ν,E < mM (5.13)

guarantees that Problem 5.2 is uniquely solvable (cf. [9, 11,12]).

Next, for any parameter ω > 0, we introduce the function F̂
ω,f 0,2

: K → R defined by

F̂
ω,f 0,2

(u) = sup
v∈K

(
(Mε(u), ε(u− v))V +

∫
Γ3

Nb(uν) · (‖uτ‖ − ‖vτ‖)ds

−
∫
Γ3

h0
ν(uν ; vν − uν)ds+

∫
Ω

f0 · (u− v)dx

+

∫
Γ2

f2 · (u− v)dΓ− ω

2
‖u− v‖2E

)
. (5.14)

Applying Theorem 3.5, Theorem 3.7, Theorem 4.2, Theorem 4.3 and Theorem 4.4, we
directly obtain the following error estimates with lG = LM.

Theorem 5.1. Let u∗ ∈ K be the unique solution to Problem 5.2. Under the hypotheses
(5.7)–(5.13), the following hold.

(i) For each ω > 0, f0 ∈ L2(Ω;Rl) and f2 ∈ L2(Γ2;Rl), F̂
ω,f 0,2

defined by (5.14), is a
regularized gap function for Problem 5.2.

(ii) If ω > 0 then, for each u ∈ K, it holds

‖u− u∗‖E ≤
LM + ω + Lhν

λ−1
1ν,E

mM − LNb
λ−1
1,E − Lhνλ

−1
1ν,E

√
2

ω
F̂

ω,f 0,2
(u). (5.15)

(iii) If ω > 0 satisfying
mM − LNb

λ−1
1,E − Lhν

λ−1
1ν,E − ω

2
> 0,

then, for each u ∈ K, it also holds

‖u− u∗‖E ≤ 1√
mM − LNb

λ−1
1,E − Lhν

λ−1
1ν,E − ω

2

√
F̂

ω,f 0,2
(u). (5.16)

Theorem 5.2. Let u∗ ∈ K be the unique solution to Problem 5.2. Under the hypotheses
(5.7)–(5.13), the following hold.

(i) For any ρ > ω > 0, f0 ∈ L2(Ω;Rl) and f2 ∈ L2(Γ2;Rl), the function D̂
f 0,2
ω,ρ : K → R

defined by

D̂
f 0,2
ω,ρ (u) = F̂

ω,f 0,2
(u)− F̂

ρ,f 0,2
(u)

is the D-gap function for Problem 5.2.
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(ii) If ω > ρ > 0 then, for each u ∈ K, it holds

‖u− u∗‖E ≤
LM + ρ+ Lhνλ

−1
1ν,E

mM − LNb
λ−1
1,E − Lhν

λ−1
1ν,E

√
2

ρ− ω
D̂
f 0,2
ω,ρ (u). (5.17)

Remark 5.3. Theorem 5.1 and Theorem 5.2 give the upper bounds of the distance between
an arbitrary displacement field in the admissible set and the unique solution of the contact
problem. Computing the upper bounds in (5.15)–(5.17) is based on the regularized gap

function F̂
ω,f 0,2

and the D-gap function D̂
f 0,2
ω,ρ (u) with depending on the data of the such

contact problem.
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