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where x ∈ ℜn. Problem (1.2) is called the standard form of linear programming. In the
literature, most of the methods and theories for linear programming are developed with the
standard form (see, for example, [33, 38–40]). Moreover, it is often assumed that m < n,
rank(A) = m.

The simplex methods are the most efficient and important methods for linear program-
ming before 1980s. These methods search the optimal solution in vertices of a polyhedral set
along the boundary of the feasible region of linear programming. The initial point should
be a so-called basic feasible solution corresponding to a vertex of the polyhedron which may
be obtained by solving some auxiliary linear programming problem with a built-in starting
point. The main computation for a new iteration point is the solution of the linear systems

Bu = a, BT v = d, (1.3)

where u ∈ ℜm and v ∈ ℜm are the unknowns, B ∈ ℜm×m is a nonsingular sub-matrix of A
and its one column is rotated in every iteration, a ∈ ℜm and d ∈ ℜm are some given vectors.
The simplex methods are favorite in most cases since the systems in (1.3) are thought to be
easily solved.

It was discovered in [20], however, that the simplex approach could be inefficient for
certain pathological problems since the number of iterations (also known as the worst-
case time complexity) was exponential in the sizes of problems. In contrast, the interior-
point approach initiated in 1984 by Karmarkar [19] has been proved to be of the worst-case
polynomial time complexity, a much better theoretical property than that for the simplex
methods. Up to now, the best worst-case polynomial time complexity on interior-point
methods is O(

√
n log 1

ϵ ) (see, for example, [39, 40]).
In general, interior-point methods converge to the optimal solution along a central path

of the feasible polytope. The central path is usually defined by a parameter-perturbed
Karush-Kuhn-Tucker (KKT) system. The system can be induced by the KKT conditions of
the logarithmic-barrier problem

min cTx− µ

n∑
i=1

lnxi s.t. Ax = b, (1.4)

where µ > 0 is the barrier parameter, xi > 0 for i = 1, . . . , n (that is, x should be an
interior-point). It is known that the well-defined central path depends on the nonemptyness
of the set of the primal-dual interior-points

F := {(x, y, s)|Ax = b, AT y + s = c, x > 0, s > 0}.

Although there are various interior-point methods, such as the affine-scaling methods, the
logarithmic-barrier methods, the potential-reduction methods, the path-following methods,
etc., all these methods share some common features that distinguish them from the simplex
methods. Distinct from the simplex methods in starting from a feasible point, the interior-
point methods require the initial point to be an interior-point which may not be feasible
to the problem. While the simplex methods usually require a larger number of relatively
inexpensive iterations, every interior-point iteration needs to solve a system with the form

AS−1XAT v = d, (1.5)

where S = diag(s) and X = diag(x). This is generally more expensive to compute than (1.3)
but can make significant progress towards the solution. In particular, as the primal and dual
iterates tend to the solutions of the primal and dual problems, some components of x and s
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can be very close to zero, which can bring about both huge and tiny values of the elements of
S−1X and an ill-conditioned Jacobian matrix of the system (1.5) (see [33]). Some advanced
methods for improving classic interior-point methods have been proposed, including the
sparse matrix factorization, the Krylov subspace method and the preconditioned conjugate
gradient method (see, for example, [2, 6, 8, 10,14,15]).

Recently, some first-order methods for solving convex and linear programming have been
presented, see [21,23,29,30] and the references therein. Those methods are mainly augmented
Lagrangian based methods. Since the solved problems may be reformulated in different ways
which result in various augmented Lagrangian function, these methods may be distinct in
the augmented Lagrangian subproblems. For linear programming, by using the alternating
direction minimization, those first-order methods can be free of solving systems (1.3) and
(1.5). More recently, Lin et al. [23] proposed an ADMM-based interior-point method based
on the well-behaved homogeneous self-dual embedded linear programming model [40] and
derived a new iteration-complexity result.

1.1 Our contributions.

We present a primal-dual majorization-minimization method on basis of solving linear pro-
gramming in dual form (1.1). In our method, yi (i = 1, . . . ,m) are the primal variables,
and xj (j = 1, . . . , n) the dual variables. The method is originated from a combination
of the Fiacco-McCormick logarithmic-barrier method and the Hestenes-Powell augmented
Lagrangian method (see [26] for more details on general nonlinear inequality-constrained
optimization). A smooth barrier augmented Lagrangian (SBAL) function with strict con-
vexity for the dual linear programming is derived. Based on the smoothness and convexity of
SBAL function, a majorization surrogate function is naturally designed to find the approx-
imate minimizer of the augmented Lagrangian on primal variables, and the dual estimates
are derived by a step for maximizing a minorization surrogate function of the augmented
Lagrangian on dual variables. Our method can avoid the computation on the ill-conditioned
Jacobian matrix like (1.5) and does not solve some iteration-varying system (1.3) or (1.5)
like the simplex methods and interior-point methods.

Our method initiates from the logarithmic-barrier reformulation of problem (1.1), thus
can be thought of an interior-point majorization-minimization method, and shares some
similar features as [23]. It can also be taken as a smooth version of some non-smooth
methods for linear programming problems, but it does not depend on any projection and
computes more steps on primal iterates. Differing from the fixed-point framework for proving
convergence, based on the smoothness and convexity of our augmented Lagrangian, we can
analyze the global convergence and prove the results on convergence rate and iteration
complexity based on the well developed theories on convex optimization [32].

Our proposed method only needs the factorization of the constant matrix AAT , which
is distinguished from the existing simplex methods and interior-point methods for linear
programming necessary to solve either (1.3) or (1.5) varied in every iteration. Since the
factorization is independent of iterations and can be done in preprocessing, our method
can be implemented easily with very cheap computations, thus is especially suitable for
large-scale linear programming. In addition, our method does not need any computation on
step sizes, which is the other outstanding feature of our method in contrast to the existing
interior-point methods for linear programming. Similar to [23], the global convergence is
analyzed without prior requiring either the primal or dual linear programming to be feasible.
Moreover, under the strict complementarity conditions, we prove that our method can be
of globally linear convergence, and a new iteration complexity result is obtained.
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1.2 Some related works.

The augmented Lagrangian methods minimize an augmented Lagrangian function approx-
imately and circularly with update of multipliers. The augmented Lagrangian function
has been playing a very important role in the development of effective numerical methods
and theories for convex and nonconvex optimization problems (see some recent references,
such as [3, 4, 7, 11–13, 17, 18, 23–25]). The augmented Lagrangian was initially proposed
by Hestenes [16] and Powell [35] for solving optimization problems with only equality con-
straints. The Hestenes-Powell augmented Lagrangian method was then generalized by Rock-
afellar [37] to solve the optimization problems with inequality constraints. Since most of the
augmented Lagrangian functions for inequality-constrained optimization depend on some
kind of projection, the subproblems on the augmented Lagrangian minimization are gener-
ally solved by the first-order methods.

The majorization-minimization (MM) algorithm operates on a simpler surrogate func-
tion that majorizes the objective in minimization [22]. Majorization can be understood
to be a combination of tangency and domination. Similarly, we have the minorization-
maximazation algorithm when we want to maximize an objective. The MM principle can be
dated to Ortega and Rheinboldt [34] in 1970, where the majorization idea has been stated
clearly in the context of line searches. The famed expectation-maximization principle [31]
of computational statistics is a special case of the MM principle. So far, MM methods have
been developed and applied efficiently for imaging and inverse problems, computer vision
problems, and so on (for example, see [1, 5, 9, 22,36]).

Recently, by combining the Hestenes-Powell augmented Lagrangian and the interior-
point logarithmic-barrier technique ( [27, 28, 33, 38]), Liu et al. [26] introduce a novel bar-
rier augmented Lagrangian function for nonlinear optimization with general inequality con-
straints. Distinct from the classic augmented Lagrangian function for inequality constrained
optimization which is only first-order differentiable, the newly proposed one shares the same-
order differentiability with the objective and constraint functions and is convex when the
optimization is convex. In order to distinguish the new barrier augmented Lagrangian func-
tion to those proposed in [11,13], we refer to it as the smooth barrier augmented Lagrangian
(SBAL for short). For linear problems (1.1) and (1.2), the SBAL functions are strictly con-
vex and concave, respectively, with respect to the primal and dual variables. In particular,
the SBAL functions are well defined without requiring either primal or dual iterates to be
interior-points. These outstanding features of the SBAL functions provide natural selections
for the majorization-minimization methods.

1.3 Organization and notations.

Our paper is organized as follows. In section 2, we describe the application of our augmented
Lagrangian method in [26] to the linear programming and present the associated preliminary
results. The majorized functions and our primal-dual majorization-minimization method are
proposed in section 3. The analysis on the global convergence and the convergence rates is
done, respectively, in sections 4 and 5. We conclude our paper in the last section.

Throughout the paper, all vectors are column vectors. We use capital letters to represent
matrices, and a capital letter with a subscript such as Ai means the ith column of matrix
A. The small letters are used to represent vectors, and a small letter with a subscript such
as si means the ith component of vector s. The capital letter S means the diagonal matrix
of which the components of vector s are the diagonal elements. In general, we use the
subscripts k and ℓ to illustrate the letters to be related to the kth and ℓth iterations, and i
and j the ith and jth components of a vector or the ith and jth sub-vectors of a matrix. In
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other cases, it should be clear from the context. To quantify the convergence of sequences,
we introduce the weighted norm ∥y∥M =

√
yTMy, where y is a column vector, M is either

a positive semi-definite or positive definite symmetric matrix with the same order as y. The
symbol e is the all-one vector, for which the dimension may be varying and can be known
by the context. For the symmetric positive definite matrix B, we use λmin(B) and λmax(B)
to represent the minimum and maximum of eigenvalues of B, respectively. As usual, we use
the capital letters in calligraphy to represent the index sets, ∥ · ∥ is the Euclidean norm, x◦s
is the Hadamard product of vectors x and s, and x ∈ ℜn

++ means x ∈ ℜn and x > 0 in
componentwise.

2 The SBAL Function and Some Preliminary Results

Recently, Liu et al. in [25,26] presented a novel barrier augmented Lagrangian function for
nonlinear optimization with general inequality constraints. For problem (1.1), we reformu-
late it as

min
y,s

− bT y s.t. AT y + s = c, s ≥ 0, (2.1)

where s ∈ ℜn is a slack vector. The logarithmic-barrier problem associated with (2.1) has
the form

min
y,s

− bT y − µ

n∑
i=1

ln si s.t. s− c+AT y = 0, (2.2)

where s = (si) > 0, µ > 0 is the barrier parameter. Noting that problem (2.2) is the
optimization with only equality constraints, we can use the Hestenes-Powell augmented
Lagrangian function to reformulate it into a unconstrained optimization problem as follows,

min
y,s

F(µ,ρ)(y, s;x) := −ρbT y − ρµ

n∑
i=1

ln si + ρxT (s− c+AT y) +
1

2
∥s− c+AT y∥2, (2.3)

where ρ > 0 is the penalty parameter which may be reduced adaptively if necessary, x ∈ ℜn

is an estimate of the Lagrange multiplier vector.
Since ∂2F(µ,ρ)(y,s;x)

∂s2i
= ρµ

s2i
+ 1 > 0, no matter what are (y, s) and x, F(µ,ρ)(y, s;x) is a

strictly convex function with respect to si. Therefore, F(µ,ρ)(y, s;x) will take the minimizer
when

∂F(µ,ρ)(y, s;x)

∂si
= −ρµ

si
+ ρxi + (si − ci +AT

i y) = 0,

where Ai ∈ ℜm is the ith column vector of A. Equivalently, one has

si =
1

2
(
√
(ρxi − ci +AT

i y)
2 + 4ρµ− (ρxi − ci +AT

i y)).

Based on the observation that si will be altered with y and x and is dependent on the
parameters µ and ρ, and for simplicity of statement, we define s = s(y, x;µ, ρ) and z =
z(y, x;µ, ρ) in componentwise as

si(y, x;µ, ρ) =
1

2
(
√
(ρxi − ci +AT

i y)
2 + 4ρµ− (ρxi − ci +AT

i y)), (2.4)
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zi(y, x;µ, ρ) =
1

2
(
√
(ρxi − ci +AT

i y)
2 + 4ρµ+ (ρxi − ci +AT

i y)), (2.5)

where i = 1, . . . , n. By (2.4) and (2.5), z = s− c+AT y+ρx. Correspondingly, the objective
function F(µ,ρ)(y, s;x) of the unconstrained optimization problem (2.3) can be written as

LB(y, x;µ, ρ) = −ρbT y +
n∑

i=1

hi(y, x;µ, ρ), (2.6)

where y ∈ ℜm and x ∈ ℜn are the primal and dual variables of problem (1.1), µ > 0 and
ρ > 0 are, respectively, the barrier parameter and the penalty parameter,

hi(y, x;µ, ρ) = −ρµ ln si(y, x;µ, ρ) +
1

2
zi(y, x;µ, ρ)

2 − 1

2
ρ2x2i . (2.7)

We may write s and z for simplicity in the sequel when their dependence on (y, x) and (µ, ρ)
is clear from the context.

Similar to [26], we can prove the differentiability of the functions s, z defined by (2.4),
(2.5), and the barrier augmented Lagrangian function LB(y, x;µ, ρ) defined by (2.6).

Lemma 2.1. For given µ > 0 and ρ > 0, let LB(y, x;µ, ρ) be defined by (2.6), s =
(si(y, x;µ, ρ)) ∈ ℜn and z = (zi(y, x;µ, ρ)) ∈ ℜn, S = diag (s) and Z = diag (z).

(1) Both s and z are differentiable with respect to y and x, and

∇ys = −A(S + Z)−1S, ∇yz = A(S + Z)−1Z, (2.8)
∇xs = −ρ(S + Z)−1S, ∇xz = ρ(S + Z)−1Z. (2.9)

(2) The function LB(y, x;µ, ρ) is twice continuously differentiable with respect to y, and

∇yLB(y, x;µ, ρ) = Az(y, x;µ, ρ)− ρb,

∇2
yyLB(y, x;µ, ρ) = A(S + Z)−1ZAT .

Thus, LB(y, x;µ, ρ) is strictly convex with respect to y.

(3) The function LB(y, x;µ, ρ) is twice continuously differentiable and strictly concave with
respect to x, and

∇xLB(y, x;µ, ρ) = ρ(s(y, x;µ, ρ)− c+AT y),

∇2
xxLB(y, x;µ, ρ) = −ρ2(S + Z)−1S.

Proof. (1) By (2.4) and (2.5), s− z = c−AT y − ρx and

si + zi =
√

(ρxi − ci +AT
i y)

2 + 4ρµ.

Thus, one has

∇ys−∇yz = −A,
∇ys+∇yz = A(S + Z)−1diag (ρx− c+AT y) = A(I − 2(S + Z)−1S).

Thus, by doing summation and subtraction, respectively, on both sides of the preceding
equations, we have

2∇ys = −2A(S + Z)−1S,
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−2∇yz = −2A(I − (S + Z)−1S) = −2A(S + Z)−1Z.

Therefore, (2.8) follows immediately. The results in (2.9) can be derived in the same way
by differentiating with respect to x.

(2) Let h(y, x;µ, ρ) = (hi(y, x;µ, ρ)) ∈ ℜn. Due to (2.7) and noting that SZ = ρµI,

∇yh(y, x;µ, ρ) = −ρµ∇ysS
−1 +∇yzZ = A(S + Z)−1(ρµI + Z2) = AZ.

Thus, ∇yLB(y, x;µ, ρ) = −ρb+∇yh(y, x;µ, ρ)e = Az − ρb. Furthermore, by (1),

∇2
yyLB(y, x;µ, ρ) = ∇yzA

T = A(S + Z)−1ZAT .

(3) Note that

∇xh(y, x;µ, ρ) = −ρµS−1∇xs+ Z∇xz − ρ2X = ρ(Z − ρX),

∇2
xxh(y, x;µ, ρ) = ρ(∇xZ − ρ∇xX),

and ∇xLB(y, x;µ, ρ) = ∇xh(y, x;µ, ρ)e, ∇2
xxLB(y, x;µ, ρ) = ρ(∇xz − ρ∇xx). The desired

formulae in (3) can be derived immediately from the equation s− c+AT y = z− ρx and the
results of (1).

The next result gives the relation between the SBAL function and the logarithmic-barrier
problem.

Theorem 2.2. For given µ > 0 and ρ > 0, let LB(y, x;µ, ρ) be defined by (2.6). Then
((y∗, s∗), x∗) is a KKT pair of the logarithmic-barrier problem (2.2) if and only if s∗ − c +
AT y∗ = 0 and

LB(y
∗, x;µ, ρ) ≤ LB(y

∗, x∗;µ, ρ) ≤ LB(y, x
∗;µ, ρ), (2.10)

i.e., (y∗, x∗) is a saddle point of the SBAL function LB(y, x;µ, ρ).

Proof. Due to item (3) of Lemma 2.1, for any y such that ci−AT
i y > 0, LB(y, x;µ, ρ) reaches

its maximum with respect to xi at x∗i = µ
ci−AT

i y
since ∂LB(y,x;µ,ρ)

∂xi
|xi=x∗

i
= 0. If ci−AT

i y ≤ 0,

then ∂LB(y,x;µ,ρ)
∂xi

> 0, which means that LB(y, x;µ, ρ) is strictly monotonically increasing
to ∞ as xi → ∞. Thus,

argmaxxi∈ℜLB(y, x;µ, ρ) =

{ µ
ci−AT

i y
, if ci −AT

i y > 0;

∞, otherwise.
(2.11)

If ((y∗, s∗), x∗) is a KKT pair of the logarithmic-barrier problem (2.2), then s∗ > 0 and

Ax∗ = b, s∗ − c+AT y∗ = 0, and x∗i s
∗
i = µ, i = 1, . . . , n.

Thus, s∗i = ci −AT
i y

∗ > 0 and x∗i = µ
ci−AT

i y∗ , i = 1, . . . , n. Therefore, by (2.11),

LB(y
∗, x∗;µ, ρ) = −ρbT y∗ − ρµ

n∑
i=1

ln(ci −AT
i y

∗) ≥ LB(y
∗, x;µ, ρ).

Furthermore, the condition x∗i s∗i = µ implies zi(y∗, x∗;µ, ρ)−ρx∗i = 0. Thus, Az(y∗, x∗;µ, ρ) =
ρb. It follows from item (2) of Lemma 2.1, y∗ is the minimizer of LB(y, x

∗;µ, ρ). That is,
the right-hand-side inequality in (2.10) holds.
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In reverse, if (y∗, x∗) satisfies (2.10), then y∗ is a minimizer of LB(y, x
∗;µ, ρ) and x∗ is

a maximizer of LB(y
∗, x;µ, ρ). Thus, due to the results (2) and (3) of Lemma 2.1, one has

Az(y∗, x∗;µ, ρ) = ρb, s(y∗, x∗;µ, ρ)− c+AT y∗ = 0.

The second equation further implies z(y∗, x∗;µ, ρ) − ρx∗ = 0 and x∗i (ci − AT
i y

∗) = µ, i =
1, . . . , n. Let s∗ = s(y∗, x∗;µ, ρ). Then s∗ = c − AT y∗, and ((y∗, s∗), x∗) is a KKT pair of
the logarithmic-barrier problem (2.2).

The following result shows that, under suitable conditions, a minimizer of problem (1.1)
is an approximate minimizer of the SBAL function.

Theorem 2.3. Let y∗ be a minimizer of the problem (1.1) and x∗ is the associated Lagrange
multiplier vector. If the Slater constraint qualification holds, then for µ > 0 sufficiently small
and for ρ > 0, there exists a neighborhood of x∗ such that y∗ is a √

ρµ-approximate strict
global minimizer of the augmented Lagrangian LB(y, x;µ, ρ), i.e., there exists a scalar δ > 0
such that ∥∇yLB(y

∗, x;µ, ρ)∥ ≤ δ
√
ρµ.

Proof. Under the conditions of the theorem, x∗ is a KKT point of problem (1.1). Thus,

Ax∗ = b, AT y∗ ≤ c, x∗ ≥ 0, (x∗)T (c−AT y∗) = 0. (2.12)

Let z∗i = zi(y
∗, x∗;µ, ρ). Note that x∗i (ci −AT

i y
∗) = 0 for i = 1, . . . , n. Then

z∗i =


1
2 (
√
(ρx∗i )

2 + 4ρµ+ ρx∗i ), if ci −AT
i y

∗ = 0, x∗i > 0;

1
2 (
√
(ci −AT

i y
∗)2 + 4ρµ− (ci −AT

i y
∗)), if ci −AT

i y
∗ > 0, x∗i = 0;

√
ρµ, otherwise.

Since
√

(ρx∗i )
2 + 4ρµ ≤ ρx∗i + 2

√
ρµ and

√
(ci −AT

i y
∗)2 + 4ρµ ≤ (ci − AT

i y
∗) + 2

√
ρµ, one

has

ρx∗ ≤ z∗ ≤ ρx∗ +
√
ρµ, ∥z∗ − ρx∗∥∞ ≤ √

ρµ. (2.13)

We will prove the result by showing ∥∇yLB(y
∗, x∗;µ, ρ)∥ ≤ δ

√
ρµ for some scalar δ and

∇2
yyLB(y

∗, x∗;µ, ρ) is positive definite for ρ > 0. By using item (2) of Lemma 2.1, and
(2.12), (2.13), we have

∥∇yLB(y
∗, x∗;µ, ρ)∥ = ∥Az∗ − ρb∥ = ∥A(z∗ − ρx∗)∥ ≤ √

ρµ∥A∥1,

which verifies the first part of the result.
Now we prove the second part of the result by showing that dT∇2

yyLB(y
∗, x∗;µ, ρ)d > 0

for all nonzero d ∈ ℜn and ρ > 0. Let s∗i = si(y
∗, x∗;µ, ρ). Then

z∗i
s∗i + z∗i

=


1
2 (1 +

ρx∗
i√

(ρx∗
i )

2+4ρµ
), if ci −AT

i y
∗ = 0, x∗i > 0;

1
2 (1−

(ci−AT
i y∗)√

(ci−AT
i y∗)2+4ρµ

), if ci −AT
i y

∗ > 0, x∗i = 0;

1
2 , otherwise.

Therefore, by part (2) of Lemma 2.1,

∇2
yyLB(y

∗, x∗;µ, ρ)

=

n∑
i=1

z∗i
s∗i + z∗i

AiA
T
i (Ai is the ith column of A)
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=
1

2
(
∑
i∈I1

(1 +
ρx∗i√

(ρx∗i )
2 + 4ρµ

)AiA
T
i +

∑
i∈I2

AiA
T
i )

+
1

2

∑
i∈I3

(1− (ci −AT
i y

∗)√
(ci −AT

i y
∗)2 + 4ρµ

)AiA
T
i

≥ 1

2
(1−max{ (ci −AT

i y
∗)√

(ci −AT
i y

∗)2 + 4ρµ
, i = 1, . . . , n})AAT , (2.14)

where I1 = {i|ci−AT
i y

∗ = 0, x∗i > 0}, I2 = {i|ci−AT
i y

∗ = 0, x∗i = 0}, I3 = {i|ci−AT
i y

∗ >
0, x∗i = 0}. The result follows easily because of the positive definiteness of AAT .

Based on the newly proposed barrier augmented Lagrangian function, [26] presented a
novel augmented Lagrangian method of multipliers for optimization with general inequality
constraints. The method alternately updates the primal and dual iterates by

yk+1 = argminyLB(y, xk;µk, ρk), (2.15)

xk+1 =
1

ρk
z(yk+1, xk;µk, ρk). (2.16)

The update of parameters µk+1 and ρk+1 depends on the residual ∥s(yk+1, xk+1;µk, ρk) −
c+AT yk+1∥ and the norm ∥xk+1∥ of dual multiplier vector.

To end this section, we show some monotone properties of our defined functions LB(y, x;µ, ρ),
si(y, x;µ, ρ) and zi(y, x;µ, ρ) with respect to the parameters.

Lemma 2.4. Denote LB(y, x;µ, ρ) = ρϕ(y, x;µ, ρ) + 1
2R

2(y, x;µ, ρ), where

ϕ(y, x;µ, ρ) = −bT y − µ

n∑
i=1

ln si(y, x;µ, ρ) + xT (s(y, x;µ, ρ)− c+AT y),

R(y, x;µ, ρ) = ∥s(y, x;µ, ρ)− c+AT y∥.

Let ŷk+1 = argminyLB(y, xk;µk, ρ̂k) and ỹk+1 = argminyLB(y, xk;µk, ρ̃k) be attained. If
ρ̂k > ρ̃k, then

ϕ(ŷk+1, xk;µk, ρ̂k) < ϕ(ỹk+1, xk;µk, ρ̃k), R(ŷk+1, xk;µk, ρ̂k) > R(ỹk+1, xk;µk, ρ̃k).

Proof. Let ŝk+1 = s(ŷk+1, xk;µk, ρ̂k) and s̃k+1 = s(ỹk+1, xk;µk, ρ̃k). Then, by (2.3),

(ŷk+1, ŝk+1) = argminy,sF(µk,ρ̂k)(y, s;xk), (ỹk+1, s̃k+1) = argminy,sF(µk,ρ̃k)(y, s;xk).

Thus, if we denote ψµ(y, s;x) = −bT y − µ
∑n

i=1 ln si + xT (s − c + AT y) and W (y, s;x) =
∥s− c+AT y∥, then F(µ,ρ)(y, s;x) = ρψµ(y, s;x) +

1
2W

2(y, s;x), and

ϕ(ŷk+1, xk;µk, ρ̂k) = ψµk
(ŷk+1, ŝk+1;xk), ϕ(ỹk+1, xk;µk, ρ̃k) = ψµk

(ỹk+1, s̃k+1;xk),

R(ŷk+1, xk;µk, ρ̂k) =W (ŷk+1, ŝk+1;xk), R(ỹk+1, xk;µk, ρ̃k) =W (ỹk+1, s̃k+1;xk).

Moreover,

F(µk,ρ̂k)(ŷk+1, ŝk+1;xk) < F(µk,ρ̂k)(ỹk+1, s̃k+1;xk),

F(µk,ρ̃k)(ỹk+1, s̃k+1;xk) < F(µk,ρ̃k)(ŷk+1, ŝk+1;xk).

It follows that

F(µk,ρ̂k)(ỹk+1, s̃k+1;xk)− F(µk,ρ̂k)(ŷk+1, ŝk+1;xk)
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+F(µk,ρ̃k)(ŷk+1, ŝk+1;xk)− F(µk,ρ̃k)(ỹk+1, s̃k+1;xk)

= (ρ̂k − ρ̃k)(ψµk
(ỹk+1, s̃k+1;xk)− ψµk

(ŷk+1, ŝk+1;xk)) > 0.

That is, ϕ(ỹk+1, xk;µk, ρ̃k) = ψµk
(ỹk+1, s̃k+1;xk) > ψµk

(ŷk+1, ŝk+1;xk) = ϕ(ŷk+1, xk;µk, ρ̂k).
Therefore,

1

2
R2(ŷk+1, xk;µk, ρ̂k) =

1

2
W 2(ŷk+1, ŝk+1;xk)

>
1

2
W 2(ŷk+1, ŝk+1;xk) + ρ̃k(ψµk

(ŷk+1, ŝk+1;xk)− ψµk
(ỹk+1, s̃k+1;xk))

>
1

2
W 2(ỹk+1, s̃k+1;xk) =

1

2
R2(ỹk+1, xk;µk, ρ̃k),

which completes our proof.

Lemma 2.5. For given parameters µ > 0 and ρ > 0, the following results are true.

(1) Both si(y, x;µ, ρ) and zi(y, x;µ, ρ) are monotonically increasing with respect to µ.

(2) If (si(y, x;µ, ρ)− ci +AT
i y) ̸= 0, then (si(y, x;µ, ρ)− ci +AT

i y)
2 will be decreasing as

ρ is decreasing.

(3) If ∥s(y, x;µ, ρ) − c + AT y∥ ̸= 0, then the function 1
ρLB(y, x;µ, ρ) is monotonically

decreasing with respect to ρ.

(4) The function 1
ρLB(y, x;µ, ρ) is strictly convex with respect to ρ.

Proof. It should be noted that all related functions are differentiable with respect to µ and
ρ. In addition, due to

∂si(y, x;µ, ρ)

∂µ
=
∂zi(y, x;µ, ρ)

∂µ
=

ρ

si + zi
> 0, (2.17)

∂((si(y, x;µ, ρ)− ci +AT
i y)

2)

∂ρ
=

2

ρ

si
si + zi

(si − ci +AT
i y)

2 > 0, (2.18)

∂ 1
ρLB(y, x;µ, ρ)

∂ρ
= −1

2

1

ρ2
∥s− c+AT y∥2 < 0, (2.19)

∂2( 1ρLB(y, x;µ, ρ))

∂ρ2
=

1

ρ3
(s− c+AT y)T (S + Z)−1Z(s− c+AT y), (2.20)

the desired results are obtained immediately.

3 The Primal-Dual Majorization-Minimization Method

Our method in this paper focuses on how to solve the subproblem (2.15) efficiently. Noting
the strict convexity of the SBAL function LB(y, x;µ, ρ) with respect to y and the spe-
cial structure of the Hessian matrix ∇2

yyL(y, x;µ, ρ), the introduction of the majorization-
minimization method is a natural selection. In particular, we will see that the dual update
is precisely a step which can be derived by the minorization-maximization.

Let (yk, xk) be the current iteration point, µk > 0 and ρk > 0 be the current values
of the parameters. For any given x ∈ ℜn, we consider the quadratic surrogate function
Qk(·, x) : ℜm → ℜ,

Qk(y, x) = LB(yk, x;µk, ρk) + (Az(yk, x;µk, ρk)− ρkb)
T (y − yk)
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+
1

2
(y − yk)

TAAT (y − yk), (3.1)

which is an approximate function of the objective in (2.15) and majorizes the objective
function with respect to y.

Lemma 3.1. For any given x = x̂ and the parameters µk > 0 and ρk > 0, there holds
Qk(yk, x̂) = LB(yk, x̂;µk, ρk) and LB(y, x̂;µk, ρk) ≤ Qk(y, x̂) for all y ∈ ℜm.

Proof. The equation Qk(yk, x̂) = LB(yk, x̂;µk, ρk) is obtained from (3.1).
By Taylor’s theorem with remainder,

LB(y, x̂;µk, ρk) = LB(yk, x̂;µk, ρk) +∇yLB(yk, x̂;µk, ρk)
T (y − yk)

+

∫ 1

0

(∇yLB(yk + τ(y − yk), x̂;µk, ρk)−∇yLB(yk, x̂;µk, ρk))
T
(y − yk)dτ. (3.2)

Due to item (2) of Lemma 2.1, one has

∇yLB(yk + τ(y − yk), x̂;µk, ρk)−∇yLB(yk, x̂;µk, ρk)

=

∫ 1

0

τ∇2
yyLB(yk + ατ(y − yk), x̂;µk, ρk)(y − yk)dα

=

∫ 1

0

τA(Ŝk + Ẑk)
−1ẐkA

T (y − yk)dα

= τAAT (y − yk)−
∫ 1

0

τA(Ŝk + Ẑk)
−1ŜkA

T (y − yk)dα,

where Ŝk = diag (s(yk + τα(y− yk), x̂;µk, ρk)) and Ẑk = diag (z(yk + τα(y− yk), x̂;µk, ρk)).
Noting ∫ 1

0

∫ 1

0

τ(y − yk)
TA(Ŝk + Ẑk)

−1ŜkA
T (y − yk)dαdτ ≥ 0,

the inequality LB(y, x̂;µk, ρk) ≤ Qk(y, x̂) follows from (2) of Lemma 2.1 and (3.2) immedi-
ately.

In a similar way, if for given y ∈ ℜm and the parameters µk > 0 and ρk > 0, we define
Pk(y, ·) : ℜn → ℜ be the function

Pk(y, x) = LB(y, xk;µk, ρk) + ρk(s(y, xk;µk, ρk)− c+AT y)T (x− xk)

−1

2
ρk

2(x− xk)
T (x− xk), (3.3)

then Pk(y, xk) = LB(y, xk;µk, ρk) and LB(y, x;µk, ρk) ≥ Pk(y, x) for all x ∈ ℜn. That is,
Pk(y, x) is an approximate surrogate function of the objective in optimization

max
x

LB(y, x;µk, ρk)

and minorizes the objective function with respect to x (i.e., majorizes the negative objective
function).

By the strict convexity of Qk(·, x) and the strict concavity of Pk(y, ·), there are a unique
minimizer of Qk(y, x̂) and a unique maximizer of Pk(ŷ, x), where x̂ ∈ ℜn and ŷ ∈ ℜm are
any given vectors.
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Lemma 3.2. Given µk > 0 and ρk > 0. Let Qk(·, x) : ℜm → ℜ and Pk(y, ·) : ℜn → ℜ be
functions defined by (3.1) and (3.3), respectively.

(1) For any given x̂, Qk(y, x̂) has a unique minimizer y∗k. Moreover, y∗k satisfies the
equation

AAT (y − yk) = −(Az(yk, x̂;µk, ρk)− ρkb). (3.4)

(2) For any given ŷ, Pk(ŷ, x) has a unique maximizer x∗k, and

x∗k = xk +
1

ρk
(s(ŷ, xk;µk, ρk)− c+AT ŷ). (3.5)

(3) For any given x̂ and ŷ, one has

LB(y
∗
k, x̂;µk, ρk)− LB(yk, x̂;µk, ρk) ≤ −1

2
∥Az(yk, x̂;µk, ρk)− ρkb∥2(AAT )−1 ,(3.6)

LB(ŷ, x
∗
k;µk, ρk)− LB(ŷ, xk;µk, ρk) ≥

1

2
∥s(ŷ, xk;µk, ρk)− c+AT ŷ∥2. (3.7)

Proof. Since

∇yQk(y, x̂) = AAT (y − yk) + (Az(yk, x̂;µk, ρk)− ρkb),

∇xPk(ŷ, x) = −ρk2(x− xk) + ρk(s(ŷ, xk;µk, ρk)− c+AT ŷ),

and noting the strict convexity of Qk(y, x̂) with respect to y, and the strict concavity of
Pk(ŷ, x) with respect to x, the results (1) and (2) are obtained immediately from the opti-
mality conditions of general unconstrained optimization (see [33,38]).

By the preceding results, one has

Qk(y
∗
k, x̂) = Qk(yk, x̂)−

1

2
∥Az(yk, x̂;µk, ρk)− ρkb∥2(AAT )−1 ,

Pk(ŷ, x
∗
k) = Pk(ŷ, xk) +

1

2
∥s(ŷ, xk;µk, ρk)− c+AT ŷ∥2.

Due to Lemma 3.1, there hold

LB(y
∗
k, x̂;µk, ρk)− LB(yk, x̂;µk, ρk) ≤ Qk(y

∗
k, x̂)−Qk(yk, x̂),

LB(ŷ, x
∗
k;µk, ρk)− LB(ŷ, xk;µk, ρk) ≥ Pk(ŷ, x

∗
k)− Pk(ŷ, xk),

which complete our proof.
Because of (2.4) and (2.5), (3.5) is equivalent to x∗k = 1

ρk
z(ŷ, xk;µk, ρk), which is consis-

tent with (2.16). This fact shows that the dual update xk+1 in (2.16) can be obtained from
maximizing the minorized function Pk(yk+1, x). In the following, we describe our algorithm
for linear programming.

Algorithm 3.3. (A primal-dual majorization-minimization method for problem (1.1))

Step 0. Given (y0, x0) ∈ ℜm ×ℜn, µ0 > 0, ρ0 > 0, δ > 0, γ ∈ (0, 1), ϵ > 0. Set k := 0.
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Step 1. Approximately minimize LB(y, xk;µk, ρk) by the majorization-minimization method
starting from yk.
Step 1.0. Set ŷ0 = yk, ρ̂0 = ρk, ℓ := 0.
Step 1.1. Solve the equation

AAT (y − ŷℓ) = −(Az(ŷℓ, xk;µk, ρ̂ℓ)− ρ̂ℓb) (3.8)

to obtain the solution ŷℓ+1.
Step 1.2. Evaluate

Eprimal
k+1 = ∥Az(ŷℓ+1, xk;µk, ρ̂ℓ)− ρ̂ℓb∥.

If Eprimal
k+1 > µk, set ρ̂ℓ+1 = ρ̂ℓ, ℓ := ℓ+ 1 and go to Step 1.1.

Step 1.3. Compute

Edual
k+1 = ∥s(ŷℓ+1, xk;µk, ρ̂ℓ)− c+AT ŷℓ+1∥.

If Edual
k+1 > max{ρ̂ℓ, µk}, set ρ̂ℓ+1 = σρ̂ℓ for some positive scalar σ < 1, ℓ := ℓ+ 1 and

go to Step 1.1.
Step 1.4. Set yk+1 = ŷℓ+1, ρk+1 = ρ̂ℓ, and go to Step 2.

Step 2. Update xk to

xk+1 = xk +
1

ρk+1
(s(yk+1, xk;µk, ρk+1)− c+AT yk+1). (3.9)

Step 3. If µk < ϵ, stop the algorithm. Otherwise, set µk+1 ≤ γµk, ρk+1 = min{ρk+1,
δ

∥xk+1∥∞
},

k := k + 1. End (while)

The initial point for our algorithm can be arbitrary, which is different from both the
generic simplex methods and the interior-point methods starting from either a feasible point
which may be derived from a phase-I linear programming or an interior-point. Theoretically,
since the augmented Lagrangian function is an exact penalty function (see Theorem 2.3),
we can always select the initial penalty parameter ρ0 sufficiently small such that, under
desirable conditions, Edual

k+1 is sufficiently small due to item (2) of Lemma 2.5. The initial
barrier parameter µ0 can be selected to be small without affecting the well-definedness of
the algorithm, but it may impact the strict convexity of the SBAL function and bring about
more iterations for solving the subproblem (2.15).

The Step 1 is the core and the main computation of our algorithm. For fixed xk, µk

and ρk, we attempt to find a new estimate yk+1, which is an approximate minimizer of the
SBAL function LB(y, xk;µk, ρk) with respect to y. The main computation is in solving the
system (3.8), which depends on the decomposition of AAT . Since AAT is independent of
the iteration, its decomposition can be fulfilled in preprocessing. If LB(y, xk;µk, ρk) is lower
bounded, then the Step 1 will terminate in a finite number of iterations.

By Step 2 of Algorithm 3.3, we have xk+1 = 1
ρk+1

z(yk+1, xk;µk, ρk+1), thus xk+1 > 0 for
all k ≥ 0. Because of the item (3) of Lemma 3.2 and the strict concavity, one has

∥s(yk+1, xk+1;µk, ρk+1)− c+AT yk+1∥ < ∥s(yk+1, xk;µk, ρk+1)− c+AT yk+1∥. (3.10)

Due to the Step 3, µk → 0 as k → ∞, ρk+1∥xk+1∥∞ ≤ δ for all k > 0.
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4 Global Convergence

We analyze the convergence of Algorithm 3.3 in this section. Firstly, we prove that, if the
original problem has a minimizer, then the Step 1 will always terminate in a finite number of
iterations and {yk} will be obtained. Secondly we prove that without prior requiring either
the primal or the dual linear problem to be feasible, our algorithm can recognize the KKT
point of problem (1.1). Otherwise, one has that either its dual problem (1.2) is unbounded
as problem (1.1) is feasible, or a point with least violations of constraints is found as problem
(1.1) is infeasible.

Lemma 4.1. If both problems (1.1) and (1.2) are strictly feasible, then for any given xk ∈
ℜn

++ and any given parameters µk > 0 and ρk > 0, the SBAL function LB(y, xk;µk, ρk) is
lower bounded from −∞, and the Step 1 will terminate in a finite number of iterations.

Proof. If problem (1.1) has a solution, then the logarithmic-barrier problem (2.2) is fea-
sible when the original problem is strictly feasible (that is, the Slater constraint qualifica-
tion holds), otherwise problem (2.2) is infeasible. Correspondingly, the objective −bT y −
µ
∑n

i=1 ln si of problem (2.2) either takes its minimizer at an interior-point of problem (1.1)
(in this case the minimizer is attained) or is +∞.

Now we prove that for any fixed ρ̂ℓ, if the Step 1 of Algorithm 3.3 does not termi-
nate finitely, then Eprimal

k+1 → 0 as ℓ → ∞. By Lemma 3.2, {LB(ŷℓ, xk;µk, ρ̂ℓ)} is mono-
tonically non-increasing as ℓ → ∞. Thus either there is a finite limit for the sequence
{LB(ŷℓ, xk;µk, ρ̂ℓ)} or the whole sequence tends to −∞. Since LB(y, xk;µk, ρ̂ℓ) is bounded
below, due to (3.6), one has

lim
ℓ→∞

∥Az(ŷℓ, xk;µk, ρ̂ℓ)− ρ̂ℓb∥(AAT )−1 = 0, (4.1)

which shows that the condition Eprimal
k+1 ≤ µk will be satisfied in a finite number of iterations.

Since problem (1.1) is supposed to be feasible, it follows from Lemma 2.4 that there is
a scalar ρk+1 > 0 such that for given µk > 0 and for all ρ̂ℓ ≤ ρk+1, Edual

k+1 ≤ µk as ℓ is large
enough. Thus, the Step 1 will terminate in a finite number of iterations.

The next result shows that, if the Step 1 does not terminate finitely, then either problem
(1.1) is unbounded or a point with least constraint violations will be found.

Lemma 4.2. For given xk ∈ ℜn
++ and parameters µk > 0 and ρk > 0, if the Step 1 of

Algorithm 3.3 does not terminate finitely and an infinite sequence {ŷℓ} is generated, then
either problem (1.1) is unbounded or any cluster point y∗ of {ŷℓ} is an infeasible stationary
point satisfying

Amax{AT y∗ − c, 0} = 0. (4.2)

The point y∗ is also a solution for minimizing the ℓ2-norm of constraint violations of problem
(1.1), and shows that problem (1.2) is unbounded.

Proof. If that the Step 1 of Algorithm 3.3 does not terminate finitely is resulted from Eprimal
k+1

not being small enough for given ρk, then {ŷℓ} is unbounded and LB(ŷℓ, xk;µk, ρ̂ℓ) → −∞
as ℓ→ ∞, which by the arguments in the proof of Lemma 4.1 implies that problem (1.1) is
feasible and unbounded. By the weak duality theorem, (1.2) should be infeasible.

Now we consider the case that {ŷℓ} is bounded. Suppose that L is a subset of indices
such that ŷℓ → ŷ∗ℓ as ℓ ∈ L and ℓ → ∞. Since the Step 1 of Algorithm 3.3 does not
terminate finitely, one has ρ̂ℓ → 0. Thus, the result (4.2) follows since z(ŷ∗ℓ , xk;µk, ρ̂ℓ) →
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max{AT y∗− c, 0} as ρ̂ℓ → 0. In addition, because s(ŷ∗ℓ , xk;µk, ρ̂ℓ)− c+AT ŷ∗ℓ > µk for given
µk > 0 and ℓ ∈ {ℓ|ρ̂ℓ+1 ≤ 0.5ρ̂ℓ}, and

s(ŷ∗ℓ , xk;µk, ρ̂ℓ)− c+AT ŷ∗ℓ → max{AT y∗ − c, 0} as ρ̂ℓ → 0,

then max{AT y∗ − c, 0} ≥ µk > 0. That is, y∗ is infeasible to the problem (1.1), which
by [33, 38–40] implies that problem (1.2) is unbounded. Noting that (4.2) suggests that y∗
satisfies the stationary condition of the linear least square problem

min
y

1

2
∥max{AT y − c, 0}∥2,

y∗ is a point with the least ℓ2-norm of constraint violations of problem (1.1).
In the following analysis of this section, we suppose that the Step 1 of Algorithm 3.3

terminates finitely for every k. In order to analyze the convergence of Algorithm 3.3, we
also suppose that Algorithm 3.3 does not terminate finitely, and an infinite sequence {yk} is
generated. Corresponding to the sequence {yk}, we also have the sequence {µk} of barrier
parameters, the sequence {ρk} of penalty parameters, the sequence {xk} of the estimates
of multipliers. In particular, {µk} is a monotonically decreasing sequence and tends to 0,
{ρk} is a monotonically non-increasing sequence which either keeps unchanged after a finite
number of steps or tends to 0,

xk+1 = xk +
1

ρk+1
(s(yk+1, xk;µk, ρk+1)− c+AT yk+1)

= xk−1 +
1

ρk
(s(yk, xk−1;µk−1, ρk)− c+AT yk)

+
1

ρk+1
(s(yk+1, xk;µk, ρk+1)− c+AT yk+1)

= x0 +

k∑
ℓ=0

1

ρℓ+1
(s(yℓ+1, xℓ;µℓ, ρℓ+1)− c+AT yℓ+1).

If the sequence {xk} is bounded, then 1
ρk+1

(s(yk+1, xk;µk, ρk+1) − c + AT yk+1) → 0 as
k → ∞, and {ρk} is bounded away from zero.

The following result shows that the situation ρk → 0 can happen as k → ∞ and µk → 0
only because the Slater constraint qualification (Slater CQ for short) does not hold.

Lemma 4.3. If µk → 0 and ρk → 0 as k → ∞, then the Slater CQ does not hold.

Proof. We prove the result by contradiction. If the Slater CQ holds for problem (1.1), then
by the strong duality theorem, both problems (1.1) and (1.2) are bounded, which implies
that there exists some scalar ρ∗ such that for all ρ̂ℓ ≤ ρ∗, the minimizer y∗ℓ is a solution of
problem (2.2). Hence, ρk = ρ̂ℓ for all k sufficiently large, which contradicts that ρk → 0 as
k → ∞.

In what follows, we prove the convergence of Algorithm 3.3 to a KKT point.

Lemma 4.4. If ρk is bounded away from zero, then {xk} is bounded, and every cluster point
of {(yk, xk)} is a KKT pair of problem (1.1).

Proof. Suppose that ρk ≥ ρ∗ > 0 for all k ≥ 0 and for some scalar ρ∗, then by Step 3 of
Algorithm 3.3, 1

∥xk∥∞
≥ ρ∗. Thus, ∥xk∥∞ ≤ 1

ρ∗ .
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Since ∥xk∥ is bounded, limk→∞Edual
k = 0. Thus, Edual

k ≤ ρ∗ for all k sufficiently large.
Together with the facts µk → 0 and

Eprimal
k = ∥ρkAxk − ρkb∥(AAT )−1 ≤ µk,

one has the result immediately.
In summary, we have the following global convergence results on Algorithm 3.3.

Theorem 4.5. One of following three cases will arise when implementing Algorithm 3.3.

(1) The Step 1 does not terminate finitely for some k ≥ 0, either one has that problem
(1.1) is unbounded and problem (1.2) is infeasible, or problem (1.1) is infeasible and
problem (1.2) is unbounded, and any cluster point is a minimizer of the ℓ2 norm of
constraint violations.

(2) The Step 1 terminate finitely for all k ≥ 0, µk → 0 and ρk → 0 as k → ∞, problems
(1.1) is feasible and the Slater CQ does not hold.

(3) The Step 1 terminate finitely for all k ≥ 0, µk → 0 as k → ∞, and ρk is bounded away
from zero, both problems (1.1) and (1.2) are feasible and every cluster point of {yk} is
a KKT point of problem (1.1).

Proof. The results can be obtained straightforward from the preceding results Lemmas 4.1,
4.2, 4.3, and 4.4 in this section.

For reader’s convenient, we summarize our global convergence results in Table 1.

Table 1: The overview on the global convergence results of Algorithm 3.3.

Algorithm 3.3
Results

Dual LP (1.1) Primal LP (1.2) Solution obtained

ρ̂ℓ > 0, µk > 0 unbounded infeasible -

ρ̂ℓ → 0, µk > 0 infeasible unbounded
A point for minimizing
constraint violations of LP (1.1)

µk → 0, ρk → 0 feasible - Slater CQ does not hold

µk → 0, ρk > 0 feasible feasible A KKT point

5 Convergence Rate and the Complexity

In this section, we concern about the convergence rate of Algorithm 3.3 under the situation
that both problems (1.1) and (1.2) are feasible, which corresponds to the result (3) of the
preceding global convergence theorem. Firstly, without any additional assumption, based
on theory on convex optimization [32], we prove that for given penalty parameter ρk, the
convergence rate of the sequence of objective function values on the SBAL minimization
subproblem is O( 1ℓ ), where ℓ > 0 is a positive integer which is also the number of iterations
of the Step 1. Secondly, under the strict complementarity conditions on the solution, we
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show that the iterative sequence {ŷℓ} on the SBAL minimization subproblem is globally
linearly convergent. Finally, without loss of generality, by assuming that ρk is small enough
such that in Step 1, Edual

k+1 ≤ max{ρk, µk} for given ρk, and using the preceding global linear
convergence result, we can establish the iteration complexity of our algorithm.

Theorem 5.1. For given xk and parameters µk and ρk, let Fk(y) = LB(y, xk;µk, ρk),
{ŷℓ} be a sequence generated by Step 1 of Algorithm 3.3 for minimizing Fk(y), and F ∗

k =
infy Fk(y), y∗k = argminyFk(y). Then

Fk(ŷℓ)− F ∗
k ≤ 1

2ℓ
∥ŷ0 − y∗k∥2AAT , (5.1)

where ŷ0 is an arbitrary starting point.

Proof. It follows from Lemma 3.2 that

Fk(ŷℓ+1) ≤ Fk(ŷℓ)−
1

2
∥Az(ŷℓ, xk;µk, ρk)− ρkb∥2(AAT )−1

≤ F ∗
k +∇Fk(ŷℓ)

T (ŷℓ − y∗k)−
1

2
∥Az(ŷℓ, xk;µk, ρk)− ρkb∥2(AAT )−1

= F ∗
k +

1

2
(∥ŷℓ − y∗k∥2AAT − ∥ŷℓ − y∗k − (AAT )−1∇Fk(ŷℓ)∥2AAT ) (5.2)

= F ∗
k +

1

2
(∥ŷℓ − y∗k∥2AAT − ∥ŷℓ+1 − y∗k∥2AAT ),

where the second inequality follows from the convexity of Fk(y), and the last equality is
obtained by (3.8). Thus,

ℓ∑
t=1

(Fk(ŷt)− F ∗
k ) ≤

ℓ∑
t=1

1

2
(∥ŷt−1 − y∗k∥2AAT − ∥ŷt − y∗k∥2AAT )

=
1

2
(∥ŷ0 − y∗k∥2AAT − ∥ŷℓ − y∗k∥2AAT ),

which implies Fk(ŷℓ)− F ∗
k ≤ 1

2ℓ∥ŷ0 − y∗k∥2AAT .
In order to derive the convergence rate of the iterative sequence {ŷℓ} of our method for

the subproblem, we need to prove some lemmas.

Lemma 5.2. For given xk and parameters µk and ρk, let Fk(y) = LB(y, xk;µk, ρk). Then
for any u, v ∈ ℜm,

(∇Fk(u)−∇Fk(v))
T (u− v) ≥ ∥∇Fk(u)−∇Fk(v)∥2(AAT )−1 . (5.3)

Proof. For proving (5.3), we consider the auxiliary function

Gu(v) = Fk(v)−∇Fk(u)
T v,

where v is the variable and u is any given vector. Then ∇Gu(u) = 0 and ∇2Gu(v) =
∇2Fk(v), which means that Gu(v) is convex as Fk(v) and u is precisely a global minimizer
of Gu(v). Therefore, we have a similar result to item (1) of Lemma 3.1, that is, for every
w, v ∈ ℜm,

Gu(w) ≤ Gu(v) +∇Gu(v)
T (w − v) +

1

2
(w − v)TAAT (w − v),
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which implies Gu(v)−Gu(u) ≥ 1
2∥∇Gu(v)∥2(AAT )−1 for every v ∈ ℜm. Because of ∇Gu(v) =

∇Fk(v)−∇Fk(u), the preceding inequality is equivalent to

Fk(v)− Fk(u)−∇Fk(u)
T (v − u) ≥ 1

2
∥∇Fk(v)−∇Fk(u)∥2(AAT )−1 . (5.4)

Similarly, one can prove

Fk(u)− Fk(v)−∇Fk(v)
T (u− v) ≥ 1

2
∥∇Fk(v)−∇Fk(u)∥2(AAT )−1 . (5.5)

Summarizing two sides of (5.4) and (5.5) brings about our desired result.
In the subsequent analysis, let y∗ be the solution of problem (1.1) and x∗ be the associated

Lagrange multiplier vector, and s∗ = c − AT y∗. Thus, x∗ ◦ s∗ = 0. We need the following
blanket assumption.

Assumption 5.1. Denote I = {i = 1, . . . , n|x∗i > 0}. Suppose that the strict comple-
mentarity holds, and the columns of A corresponding to the positive components of x∗ are
linearly independent. That is, x∗ + s∗ > 0 and |I| = m, B = AIA

T
I is positive definite,

where | · | is the cardinality of the set, AI is a submatrix of A consisting of Ai, i ∈ I.

Under the Assumption 5.1, there exists a scalar δ > 0 such that, for i ∈ I and for all
ℓ ≥ 0, (sℓi + zℓi)

−1zℓi ≥ δ > 0. Thus, for any y ∈ ℜm,

yTA(S + Z)−1ZAT y ≥ yT (AI(SI + ZI)
−1ZIA

T
I )y

≥ δyT (AIA
T
I )y ≥ δ

′
yT y ≥ δ

′′
yTAAT y,

where δ
′ ≤ δλmin(AA

T ) and δ
′′ ≤ δ

′

λmax(AAT )
< 1.

Lemma 5.3. For given xk and parameters µk and ρk, let Fk(y) = LB(y, xk;µk, ρk). Under
the Assumption 5.1, there exists a scalar δ

′′ ∈ (0, 1) such that, for any u, v ∈ ℜm,

(∇Fk(u)−∇Fk(v))
T (u− v)

≥ 1

1 + δ′′ ∥∇Fk(u)−∇Fk(v)∥2(AAT )−1 +
δ
′′

1 + δ′′ ∥u− v∥2AAT . (5.6)

Proof. Let Gk(y) = Fk(y)− 1
2δ

′′
yTAAT y. Then Gk(y) and 1

2 (1− δ
′′
)yTAAT y −Gk(y) are

convex, which suggests that Gk(y) shares the similar properties with Fk(y). Thus, the result
of Lemma 5.2 still holds for Gk(y), i.e., for any u, v ∈ ℜm,

(∇Gk(u)−∇Gk(v))
T (u− v) ≥ 1

1− δ′′ ∥∇Gk(u)−∇Gk(v)∥2(AAT )−1 .

Due to ∇Gk(y) = ∇Fk(y)− δ
′′
AAT y, the preceding inequality can be rewritten as

(∇Fk(u)−∇Fk(v))
T (u− v)

≥ 1

1− δ′′ ∥∇Fk(u)−∇Fk(v)− δ
′′
AAT (u− v)∥2(AAT )−1 + δ

′′
∥u− v∥2AAT .

Thus, one has

(∇Fk(u)−∇Fk(v))
T (u− v)
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≥ 1

1 + δ′′ ∥∇Fk(u)−∇Fk(v)∥2(AAT )−1 +
δ
′′

1 + δ′′ ∥u− v∥2AAT ,

which completes our proof.
Set u = ŷℓ and v = y∗k. Due to ∇Fk(y

∗) = 0,

∇Fk(ŷℓ)
T (ŷℓ − y∗k) ≥

1

1 + δ′′ ∥∇Fk(ŷℓ)∥2(AAT )−1 +
δ
′′

1 + δ′′ ∥ŷℓ − y∗k∥2AAT .

The next result shows that sequence {ŷℓ} can be of global linear convergence for the SBAL
minimization subproblem.

Theorem 5.4. Let y∗k = argminFk(y). Under Assumption 5.1, there is a scalar τ ∈ (0, 1)
such that

∥ŷℓ − y∗k∥2AAT ≤ τ ℓ∥ŷ0 − y∗k∥2AAT .

That is, {ŷℓ} is of global linear convergence to y∗k.

Proof. Note that

∥ŷℓ+1 − y∗k∥2AAT = ∥ŷℓ − (AAT )−1∇Fk(ŷℓ)− y∗k∥2AAT

= ∥ŷℓ − y∗k∥2AAT − 2∇Fk(ŷℓ)
T (ŷℓ − y∗k) + ∥∇Fk(ŷℓ)∥2(AAT )−1

≤ (1− 2δ
′′

1 + δ′′ )∥ŷℓ − y∗k∥2AAT + (1− 2

1 + δ′′ )∥∇Fk(ŷℓ)∥2(AAT )−1

=
1− δ

′′

1 + δ′′
∥ŷℓ − y∗k∥2AAT − 1− δ

′′

1 + δ′′ ∥∇Fk(ŷℓ)∥2(AAT )−1

≤ 1− δ
′′

1 + δ′′
∥ŷℓ − y∗k∥2AAT .

By setting τ = 1−δ
′′

1+δ′′ , the result follows immediately.
Finally, based on the preceding global linear convergence result, we can obtain a new

iteration complexity result on the algorithms for linear programs.

Theorem 5.5. Suppose that both problems (1.1) and (1.2) are feasible, and Assumption 5.1
holds. For ρ0 sufficiently small, if Algorithm 3.3 is terminated when µk < ϵ, where ϵ > 0 is
a pre-given tolerance, then the iteration complexities of the MM methods for the subproblem
and for problem (1.1) are respectively

TMM = O

 1

ln
√

κA+δ
κA−δ

ln

(
1

ϵ

) , TPDMM = O

 1

ln
√

κA+δ
κA−δ

(
ln

(
1

ϵ

))2
 ,

where δ ∈ (0, 1) is a scalar independent of k.

Proof. Due to item (2) of Lemma 2.1, one has

∥Az(ŷℓ+1, xk;µk, ρ0)− ρ0b∥ = ∥∇yL(ŷℓ+1, xk;µk, ρ0)−∇yL(y
∗
k, xk;µk, ρ0)∥

≤ ∥ŷℓ+1 − y∗k∥AAT .

In order to obtain ∥Az(ŷℓ+1, xk;µk, ρ0)−ρ0b∥ ≤ µk ≤ ϵ, by Theorem 5.4, TMM should satisfy
√
τ
TMM∥yk − y∗k∥AAT ≤ ϵ,
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where yk = ŷ0, τ is denoted in Theorem 5.4 and can be replaced by τ = κA−δ
κA+δ in which

κA = λmax(AA
T )/λmin(AA

T ), δ ∈ (0, 1) is denoted such that (sℓi + zℓi)
−1zℓi ≥ δ for all

i ∈ I and for all ℓ > 0 in Assumption 5.1. Thus,

TMM ln
1√
τ
≥ ln

∥yk − y∗k∥AAT

ϵ
.

That is,

TMM = O

 1

ln
√

κA+δ
κA−δ

ln

(
1

ϵ

) .

In addition, similarly, the number of iterations needed for driving µk < ϵ is

Tout ≥
1

ln 1
γ

ln
µ0

ϵ
.

Thus, we have the estimate on the total number of iterations

TPDMM =

Tout∑
k=1

TMM = ToutTMM = O

 1

ln
√

κA+δ
κA−δ

(
ln

(
1

ϵ

))2
 , (5.7)

which completes our proof.

6 Conclusion

The simplex methods and the interior-point methods are two kinds of main and effective
methods for solving linear programming. Relatively, the former is more inexpensive for
every iteration but may require more iterations to find the solution, while the latter is
more expensive for one iteration but the number of iterations may not be changed greatly
with different problems. Theoretically, the iteration complexity of the simplex methods
can be exponential on the sizes of linear programs, while the interior-point methods can be
polynomial.

In this paper, we present a primal-dual majorization-minimization method for linear
programming. The method is originated from the application of the Hestenes-Powell aug-
mented Lagrangian method to the logarithmic-barrier problems. A novel barrier augmented
Lagrangian (SBAL) function with second-order smoothness and strict convexity is proposed.
Based the SBAL function, a majorization-minimization approach is introduced to solve
the augmented Lagrangian subproblems. Distinct from the existing simplex methods and
interior-point methods for linear programming, but similar to some alternate direction meth-
ods of multipliers (ADMM), the proposed method only depends on a factorization of the
constant matrix independent of iterations which can be done in the preprocessing, and does
not need any computation on step sizes, thus is much more inexpensive for iterations and
can be expected to be particularly appropriate for large-scale linear programming problems.
The global convergence is analyzed without prior assuming either primal or dual problem to
be feasible. Under the strict complementarity conditions at the solution, based on theory on
convex optimization, we prove that our method can be of globally linear convergence. The
results show that the iteration complexity on our method is dependent on the conditioned
number of the product matrix of the coefficient matrix and its transpose.
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