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where the quadratic term with A ∈ Rn×m, b ∈ Rm has the purpose to find an approximate
solution of Ax ≈ b, whereas the ℓ1-term with a regularization parameter λ > 0 controls
the sparsity of the solution. More details on this problem can be found in [19]. A wide
class of more general applications combines this regularization φ(x) = λ‖x‖1 with arbitrary
convex [4,11,17,27] or nonconvex [46] functions f which are also covered by our setting. In
particular, this includes problems with different loss functions like the logistic loss

f(x) := 1
m

m∑
i=1

log
(
1 + exp(aTi x)

)
,

see [10,33,36], or the nonconvex Student’s t-loss

f(x) := 1
m

m∑
i=1

log
(
1 + (aTi x− bi)2

)
,

for some data ai ∈ Rn, bi ∈ R, cf. [1, 46]. These loss problems are typically used to classify
data or reconstruct incomplete or blurred data. Alternative approaches are based on SVMs
(support vector machines). The corresponding loss functions are usually combined with a
suitable (frequently nonsmooth) regularization term which is added in order to impose some
further properties like existence, stability or sparsity of solutions. For more applications of
problem (1.1), we refer to [8, 17,29] and references therein.

There are countless algorithms for determining solutions of composite optimization problems.
These include semismooth Newton methods [39,46,49], interior point methods [32,33], trust-
region methods [2,15], fixed point methods [13,14], or reformulations into a smooth problem
with a forward backward envelope [60, 61], to name just a few. The focus in this paper,
however, is on proximal-type methods, as these offer a very efficient way for solving many
composite optimization problems.

Proximal-type methods for the solution of composite optimization problems trace back
to the generalized proximal-point method by Fukushima and Mine [23]. The general purpose
algorithm for solving (1.1) is to use a quadratic approximation of the smooth part f and to
solve, in each step, a problem of the form

min
x
f(xk) +∇f(xk)T (x− xk) + 1

2
(x− xk)THk(x− xk) + φ(x), (1.2)

where xk denotes the current iterate. A crucial point for developing such algorithms is the
choice of the matrix Hk ∈ Rn×n.

First-order methods use Hk as a positive multiple of the identity matrix and are often
referred to as proximal gradient methods. In many cases, Hk is constant over the complete
algorithm and does not depend on the iteration. The main advantage of these algorithms
is that the solution of the subproblems (1.2) can be done very efficiently or sometimes even
analytically (depending on the function φ). A prominent method of this kind is the Iterative
Shrinkage Threshold Algorithm [4] and its separable extension [62]. Many improvements are
possible to accelerate this approach [4, 26,51,66].

Proximal quasi-Newton and variable metric proximal methods choose Hk by using a
suitable updating technique, hence Hk changes from iteration to iteration, and the quadratic
part in the subproblem (1.2) typically yields a much better approximation of the nonlinear
function f than for the simple choice in proximal gradient methods. On the other hand,
this more advanced choice of Hk makes the subproblem (1.2) more difficult to solve, in
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particular, analytic solutions are usually no longer available. In order to deal with this
disadvantage, suitable methods therefore allow to solve these subproblems only inexactly.
Global convergence results for these proximal quasi-Newton methods are available in [7, 8,
21, 28, 41, 50, 60], which are based on different inexactness criteria, line search techniques,
and appropriate assumptions regarding the choice of the sequence {Hk} (usually uniform
boundedeness and positive definiteness).

Using (at least approximate) second-order information in Hk yields the class of proximal
Newton methods [5, 6, 34, 35, 53, 54]. The standard technique to ensure global convergence
is to combine the solution of the subproblems with some backtracking strategy. Similar
to proximal quasi-Newton methods, these proximal Newton approaches often use different
criteria to solve (1.2) only inexactly. Despite having suitable global convergence properties,
they also inherit the local fast convergence known from Newton-type methods under certain
assumptions, see [10,24,36,47,58,67] for several realizations.

In this article, we present a different approach, in which Hk is the sum of a matrix Bk

and a multiple µkI of the identity matrix for some regularization parameter µk > 0. The
purpose is to chose Bk as a (limited memory) quasi-Newton approximation to the Hessian
∇2f(xk) in the current iterate and to increase or decrease µk according to a trust-region-
type framework, depending on the merit of the iteration. As a consequence, the method gets
along without using a classical line search approach, which turns out to be more efficient
in numerical examples. Moreover, and this is a central point of our contribution, if Bk is
chosen as a limited memory quasi-Newton approximation of∇2f(xk), we combine the theory
of Becker et al. [6] with the compact representation of these limited memory quasi-Newton
methods in order to get a very efficient solution technique for the resulting subproblems (1.2).
To the authors’ knowledge, there exist only few publications dealing with limited memory
matrices and the advantages of their compact representation for proximal-type methods,
e.g. [30, 34]. The combination with the results in [6] outline the benefits and makes this
technique applicable to a wider class of applications, especially for large scale problems.

The idea of combining the regularization and (proximal) quasi-Newton techniques goes
back to the corresponding methods for smooth problems (φ = 0), where the subproblem
(1.2) reduces to Hk(x − xk) = −∇f(xk), at least if Hk is positive semidefinite. Some
improvements [37,59,63,64] have been made similar to our approach. Trust-region methods
for nonsmooth problems in the form of (1.1) are also considered in different papers [15, 20,
31,56]. Techniques for the regularization of proximal quasi-Newton methods are investigated
in several variations in literature. The proximal Newton method by Lee, Sun, Saunders [36]
does not explicitly use a regularization parameter, but the application to proximal quasi-
Newton methods covers this idea if the regularization parameter tends to zero. A similar
approach is used in the authors’ work in [29]. Regularization of Bk by adding a positive
multiple of the identity matrix is also used in [24, 58], but convergence is only shown for
convex functions f . Approaches for solving the subproblems inexactly are investigated in [35,
67]. Finally, we mention that the essence of the proximal quasi-Newton method from Karimi
and Vavasis [30] is similar to our approach. However, they only consider ℓ1-regularized least
squares problems and allow Hk to be a ’diagonal minus rank-1’-matrix. Furthermore, they
do not use a regularization of Hk. Their theoretical approach is generalized by the work of
Becker et al. [6]. We outline the main differences of these methods to the current one after
stating our algorithm in Section 3.

The paper is organized as follows. We first give an overview of some background material
in Section 2. The regularized proximal quasi-Newton method itself is presented in Section 3.
Global convergence of this method is shown in Section 4 under fairly mild assumptions in
the trust-region framework. In addition, under an error bound assumption we prove that
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a sequence generated by our method is convergent and summable. Section 6 describes the
new trick for an efficient solution of the resulting subproblems (1.2) if Bk is computed by
a limited memory quasi-Newton technique. Numerical results and comparisons with some
standard solvers are provided in Section 7 with a focus on proximal-type methods. We
conclude with some final remarks in Section 8.

Notation: The set of all symmetric positive definite matrices in Rn×n is denoted by Sn++.
We write A � B or A � B, if the matrix A−B is positive semidefinite or positive definite,
resp. For a symmetric matrix H ∈ Rn×n, λmin(H) and λmax(H) denote the smallest and
largest eigenvalue of H, respectively. Furthermore, ‖ · ‖ and 〈·, ·〉 are the Euclidean norm
and scalar product, while ‖ · ‖H and 〈·, ·〉H denote the norm and scalar product with respect
to H ∈ Sn++, i.e. 〈x, y〉H = xTHy and ‖x‖H =

√
〈x, x〉H . We write xI to describe the

subvector of x ∈ Rn consisting of all entries xi with i ∈ I. Finally, for a sequence {xk}, we
write xk →K x̄ for some infinite subset K ⊆ N if the subsequence {xk}K converges to x̄.

2 Preliminaries

This section summarizes some background material and states a preliminary result which will
be used in order to derive and investigate our regularized proximal quasi-Newton method.

The subdifferential ∂φ(x) of a convex function φ : Rn → R in a point x ∈ Rn is defined
as

∂φ(x) :=
{
s ∈ Rn | φ(y) ≥ φ(x) + sT (y − x) ∀y ∈ Rn

}
.

Some properties of this subdifferential are summarized in the following proposition, cf. the
classical monograph [57] by Rockafellar for more details.

Proposition 2.1. Let φ : Rn → R be convex. Then the following statements hold:

1. ∂φ(x) 6= ∅ for every x ∈ Rn [57, Theorem 23.4].

2. ∂φ maps bounded sets onto bounded sets [57, Theorem 24.7].

3. Let {xk}, {sk} ⊂ Rn be sequences such that xk → x∗, sk → s∗ and sk ∈ ∂φ(xk) for all
k ∈ N. Then s∗ ∈ ∂φ(x∗) (closedness of the subdifferential) [57, Theorem 24.4].

4. x∗ ∈ argminφ if and only if 0 ∈ ∂φ(x∗) (Fermat’s rule) [3, Theorem 16.3].

Note that, in general, parts (a) and (b) do not hold if φ is extended-valued.
The basis of proximal-type methods is the proximity operator, introduced by Moreau [48].

For a convex function φ : Rn → R and a positive definite matrix H ∈ Sn++, the proximity
operator with respect to H is the mapping

x 7→ proxHφ (x) := argmin
y

{
φ(y) +

1

2
(y − x)TH(y − x)

}
.

Since H is positive definite, the regularization φ(y)+ 1
2 (y−x)

TH(y−x) is strongly convex.
Hence, it has a unique minimizer for every x ∈ Rn, thus the proximity operator is well-
defined. If H is the identity matrix, we simply write

proxφ(x) := proxIφ(x).

Some basic properties of the proximity operator are summarized in the following result.

Proposition 2.2. Let φ : Rn → R be convex and H ∈ Sn++. Then the following statements
hold:
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1. The proximity operator is firmly nonexpansive with respect to the norm induced by
H [45, Lemma 3.1.1], i.e. for any x, y ∈ Rn there holds∥∥ proxHφ (x)− proxHφ (y)

∥∥2
H
≤

〈
proxHφ (x)− proxHφ (y), x− y

〉
H
.

2. p = proxHφ (x) if and only if p ∈ x−H−1∂φ(p) [3, Proposition 16.44].

Let x, d ∈ Rn. Then, the directional derivative of ψ in x and direction d is the one-sided
limit

ψ′(x; d) := lim
t↓0

ψ(x+ td)− ψ(x)
t

.

We call x∗ ∈ Rn a stationary point of ψ or a stationary point of problem (1.1) if 0 ∈
∇f(x∗) + ∂φ(x∗). Thus, we obtain the following characterizations:

x∗ stationary point of ψ ⇐⇒ −∇f(x∗) ∈ ∂φ(x∗)
⇐⇒ ψ′(x∗; d) ≥ 0 for all d ∈ Rn (2.1)

⇐⇒ x∗ = proxHφ (x∗ −H−1∇f(x∗)),

where the second line follows from [3, Proposition 17.14] and the final one is a consequence
of Proposition 2.2(b), which is independent of the particular matrix H ∈ Sn++. Given x ∈ Rn

and H ∈ Sn++, it follows that the norm of the corresponding residual

rH(x) :=argmin
d

{
∇f(x)T d+ 1

2
dTHd+ φ(x+ d)

}
= proxHφ

(
x−H−1∇f(x)

)
− x

can be used to measure the stationarity of x. For the special case H = I, we again simplify
the notation and write

r(x) := rI(x).

The relation between ‖rH(x)‖ and ‖rH̃(x)‖ for two different matrices H, H̃ is stated in the
next result.

Lemma 2.3. Let x ∈ Rn and H, H̃ ∈ Sn++. Then

‖rH̃(x)‖ ≤
(
1 +

λmax(H̃)

λmin(H)

)
· λmax(H)

λmin(H̃)
· ‖rH(x)‖.

Proof. By [62, Lemma 3], we get

‖rH̃(x)‖ ≤
1 + λmax(Q) +

√
1− 2λmin(Q) + λmax(Q)2

2

λmax(H)

λmin(H̃)
· ‖rH(x)‖,

where Q := H−1/2H̃H−1/2 is also positive definite. The claim follows from the inequalities

1− 2λmin(Q) + λmax(Q)2 ≤ 1 + λmax(Q)2 ≤ (1 + λmax(Q))2

and λmax(Q) ≤ λmax(H̃)/λmin(H). The latter estimate follows from

λmax(Q) = max
x ̸=0

xTH−1/2H̃H−1/2x

xTx
= max

z ̸=0

zT H̃z

zTHz
= max

z ̸=0

(
zT H̃z

zT z

zT z

zTHz

)
≤

(
max
z ̸=0

zT H̃z

zT z

)(
max
z≠0

1
zTHz
zT z

)
= λmax(H̃)

1

minz ̸=0
zTHz
zT z

= λmax(H̃) · 1

λmin(H)
,

and this completes the proof.
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3 The Regularized Proximal Quasi-Newton Method

This section contains a detailed derivation and discussion of our regularized proximal quasi-
Newton method. Given an iterate xk ∈ Rn, consider the subproblem

min
d
qk(d) with qk(d) := f(xk) +∇f(xk)T d+ 1

2d
TBkd+ φ(xk + d), (3.1)

where the first part is a quadratic approximation to the smooth function f , with Bk being a
(possibly bad) approximation of the (possibly not existing) Hessian ∇2f(xk). The main idea
of proximal quasi-Newton methods is then to compute dk as a solution of the subproblem
(3.1), and to set xk+1 := xk + dk provided that dk is accepted by a suitable line search or
trust-region strategy in order to obtain global convergence results. Here, the globalization
is done by a regularization parameter, no line search is required (which might result in
many function evaluations), and no trust-region radius is needed (in particular, no trust-
region-type subproblem has to be solved). Instead, however, additional evaluations of the
proximity operator may be required, which can be quite expensive. Nevertheless, numerical
tests show that this additional effort leads to significantly fewer iterations and thus lower
overall costs, and, furthermore, trust-region methods are more appropriate, especially for
non-convex global optimization problems.

The regularized proximal quasi-Newton method therefore considers the regularized ap-
proximation

q̂k(d) := qk(d) +
1
2µk‖d‖2 = f(xk) +∇f(xk)T d+ 1

2d
T (Bk + µkI)d+ φ(xk + d) (3.2)

with some parameter µk > 0. To control the success of a candidate dk, which is a solution
of the regularized subproblem mind q̂k(d), we define the predicted reduction of ψ as

predk := ψ(xk)− qk(dk) = −
(
∇f(xk)T dk + φ(xk + dk)− φ(xk)

)
− 1

2 (d
k)TBkd

k

and the actual reduction of ψ as aredk := ψ(xk)−ψ(xk + dk). The ratio ρk := aredk / predk
between these quantities is, similar to trust-region methods [18], used to control the update of
the regularization parameter and the iterate. Since Bk does not need to be positive definite,
we have to take into account that a minimizer of q̂k may not exist or the corresponding
value predk is not (sufficiently) positive. These situations are handled as unsuccessful steps.
Altogether, this motivates the following algorithm.

Algorithm 3.1 (Regularized Proximal Quasi-Newton Method).
(S.0) Choose x0 ∈ Rn, parameters µ0 > 0, pmin ∈ (0, 12 ), c1 ∈ (0, 12 ), c2 ∈ (c1, 1),

σ1 ∈ (0, 1), σ2 > 1, and set k := 0.

(S.1) If xk satisfies a suitable termination criterion: STOP.

(S.2) Choose Bk ∈ Rn×n, and find a solution dk of the problem

min
d
q̂k(d) = f(xk) +∇f(xk)T d+ 1

2d
T (Bk + µkI)d+ φ(xk + d). (3.3)

If this problem has no solution, or if

predk ≤ pmin‖dk‖ · ‖r(xk)‖, (3.4)

set xk+1 := xk, µk+1 := σ2µk, and go to (S.4). Otherwise go to (S.3).
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(S.3) Set ρk := aredk / predk and perform the following updates:

xk+1 :=

{
xk if ρk ≤ c1,
xk + dk otherwise,

µk+1 :=


σ2µk if ρk ≤ c1,
µk if c1 < ρk ≤ c2,
σ1µk otherwise.

(S.4) Update k ← k + 1, and go to (S.1).

In the following, we call an iteration k

• unsuccessful, if (S.3) is skipped or ρk ≤ c1,
• successful, if c1 < ρk ≤ c2,
• highly successful, if ρk > c2.

Note that, in an unsuccessful iteration, both (S.2) and (S.3) keep the current iterate xk and
choose a larger regularization parameter. In all other iterations, we update xk+1 and either
keep the regularization parameter µk (in all successful iterations) or reduce this parameter
(in all highly successful iterations). We also stress that a test like (3.4) is not required by
trust-region methods since, there, the corresponding predicted reduction is automatically
positive, whereas this cannnot be guaranteed in our setting. Whenever we reach (S.3),
however, the value of predk is (sufficiently) positive, which, in turn, implies that the overall
method is well-defined.

We briefly discuss the differences between Algorithm 3.1 and some affiliated methods. The
methods in [24,58] are based on a similar regularization than ours, where the regularization
parameter is only increased if a suitable criterion is not satisfied for the solution of the
subproblems. In contrast to our method, they do not consider the possibility to reduce
the regularization parameter if an iterate is highly successful. Convergence is shown under
the assumption of strong convexity of f . Furthermore, they combine the method with an
inexactness criterion on the subproblem and use a FISTA-type acceleration. In this case, a
main assumption on f is convexity.

The method by Karimi and Vavasis [30] is a basic proximal Newton method for solving ℓ1-
regularized least squares problems. No regularization is included and their analysis focusses
on Hk being a rank-1 modification of a multiple of the identity.

The inexact algorithms by Lee and Wright [35] use two different types of regularization:
Hk = Bk+µkI or Hk = µkBk with a positive regularization parameter µk, which is initially
set to 1 in each step and increased until a sufficient decrease condition is satisfied. In contrast
to our method, it is not possible to choose µk small when the iterate is close to a solution.
Convergence is shown for ∇f being Lipschitz continuous (but f is not necessarily convex).
Moreover, some improved convergence results are provided for strongly convex functions.

Yue et al. [67] develop another inexact regularized proximal Newton method. A main
difference to our approach is that, instead of an approximation Bk, the exact Hessian of f
is used and the regularization parameter µk is chosen due to the optimality of the current
iterate, and not based on the quality of the current update. Furthermore, the subproblems
are solved inexactly, and an Armijo-type line search is performed. The convergence proof
needs convexity of f and uses an error bound.

In contrast to these methods, we do not provide a theory for inexact solutions of the
subproblems in (S.2). It turns out that this is not necessary since these problems can be
solved very efficiently and with high accuracy in our numerical examples.
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In view of (2.1), we know that xk is a stationary point of ψ if and only if r(xk) = 0. Com-
bining this property with the (uniform) continuity of r(·) yields an appropriate termination
criterion for Algorithm 3.1. For the method to be well-defined, we need a similar property
for the value dk (note that, by definition, we have dk = rBk+µkI(x

k), if the matrix Bk +µkI
is positive definite).

Lemma 3.2. If dk = 0 in Algorithm 3.1, then xk is a stationary point of ψ. The converse
is true if Bk + µkI is positive definite.

Proof. Assume that dk = 0. From the definition of dk and Fermat’s rule, we get

0 ∈ ∇f(xk) + (Bk + µkI)d
k + ∂φ(xk + dk).

Plugging in dk = 0 yields 0 ∈ ∇f(xk) + ∂φ(xk), which is the desired result. Conversely,
let Bk + µkI be positive definite and xk a stationary point of ψ. Then −∇f(xk) ∈ ∂φ(xk),
which yields φ(xk + d) ≥ φ(xk)−∇f(xk)T d for every d ∈ Rn. Thus,

q̂k(0) = f(xk) + φ(xk) ≤ f(xk) +∇f(xk)T d+ φ(xk + d)

≤ f(xk) +∇f(xk)T d+ 1

2
dT (Bk + µkI)d+ φ(xk + d) = q̂k(d)

for all d ∈ Rn. Hence, dk = 0 due to the uniqueness of the global minimum for Bk + µkI
being positive definite.

It is not difficult to see that the converse statement in Lemma 3.2 may not hold if Bk+µkI is
only positive semidefinite or indefinite. Hence, the termination criterion in (S.1) of Algorithm
3.1 should rely on r(xk) instead of dk as positive definiteness of Bk + µkI is not required.

4 Global Convergence Theory

In this section, we investigate the global convergence properties of Algorithm 3.1. Similar
to convergence results for trust-region methods this means that lim infk→∞ ‖r(xk)‖ = 0 or
limk→∞ ‖r(xk)‖ = 0, depending on the assumptions. Using (2.1), this implies that every
accumulation point is a stationary point of ψ. To prove this, we assume that Algorithm 3.1
generates an infinite sequence {xk}. Though, formally, we did not specify the termination
criterion in (S.1), any suitable stopping criterion will include a test whether the current
point xk is already a stationary point of the given optimization problem. Now, to simplify
some of the subsequent phrases, we therefore assume throughout this section that none of
the iterations xk is already a stationary point. Then, by Lemma 3.2, we have dk 6= 0 for all
k.

The subsequent global convergence analysis of Algorithm 3.1 does not require the ma-
trices Bk to be good approximations of the corresponding (possibly not existing) Hessians
∇2f(xk). We only need that the sequence {Bk} is bounded. Before presenting the two main
global convergence theorems, we establish some technical results.

Lemma 4.1. Let {Bk} be a bounded sequence of symmetric matrices. Assume that µk →∞
and {xk} ⊂ Rn converges to a nonstationary point x of ψ. Then

lim sup
k→∞

‖r(xk)‖
‖rBk+µkI(x

k)‖ · µk
≤ 1.
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Proof. The assumptions imply that Bk + µkI is positive definite for all sufficiently large k.
Furthermore, ‖rBk+µkI(x

k)‖ 6= 0 for sufficiently large k ≥ 0 since x is not a stationary point
of ψ and r is continuous. Thus, we can apply Lemma 2.3 with H = Bk + µkI and H̃ = I to
get

‖r(xk)‖
‖rBk+µkI(x

k)‖
≤

(
1 +

1

λmin(Bk) + µk

)
·
(
λmax(Bk) + µk

)
.

Dividing this estimate by µk, using the boundedness of the sequence {Bk}, and taking
k → ∞, it follows that the expression on the right-hand side tends to 1, which yields the
claim.

Recall that if Bk + µkI is positive definite, step dk can be written as dk = rBk+µkI(x
k). In

the next result, we show that this sequence is a vanishing sequence under the assumptions
that the sequence {µk} tends to +∞ and {xk} is bounded.

Proposition 4.2. Let {Bk} be a bounded sequence of symmetric matrices. Assume that
µk → ∞ and the sequence {xk} ⊂ Rn generated by Algorithm 3.1 is bounded. Let dk :=
rBk+µkI(x

k). Then dk → 0.

Proof. Note that the boundedness of the sequence {Bk} and µk →∞ imply that dk is well
defined for sufficiently large k. Moreover, the definition of successful steps implies that the
sequence {ψ(xk)} is a monotonically decreasing. Hence, for all k ∈ N sufficiently large, we
have

ψ(x0) ≥ ψ(xk) = q̂k(0) ≥ q̂k(dk)

= f(xk) +∇f(xk)T dk +
1

2
(dk)T (Bk + µkI)d

k + φ(xk + dk)

≥ f(xk) +∇f(xk)T dk +
1

2
(dk)T (Bk + µkI)d

k + φ(xk) + (uk)T dk

for some uk ∈ ∂φ(xk). Since, by assumption, the sequences {xk} and {Bk} are bounded
and, therefore, the sequences {f(xk)}, {φ(xk)}, {∇f(xk)}, and {uk} are bounded by the
continuity of f , φ and ∇f and Propositon 2.1 (a), the limiting behaviour of the right-hand
side is dominated by the quadratic term 1

2 (d
k)T (Bk + µkI)d

k. Thus, this term is bounded
from above, and the assumption µk →∞ immediately implies dk → 0.

The following result will be applied to the situation where we have only finitely many
successful iterations, i.e., where xk stays constant eventually, say xk = xk0 for all k ≥ k0
and some sufficiently large index k0 ∈ N. We formulate this result in a slightly more general
context and assume that we have a nonstationary limit point x. To avoid any ambiguity in
the notation, we write d̄k := rBk+µkI(x), although, in the subsequent application, we will
eventually have d̄k = dk since x corresponds to xk0 (= xk for all k ≥ k0).

Lemma 4.3. Let {Bk} be a bounded sequence of symmetric matrices. Assume that µk →∞
and x is a nonstationary point of ψ. Define d̄k := rBk+µkI(x), and let s be an accumulation
point of the sequence {d̄k/‖d̄k‖}. Then ψ′(x; s) < 0.

Proof. Using the previous result, we get d̄k → 0. Furthermore, using Fermat’s rule, we
obtain

0 = ∇f(x) + (Bk + µkI)d̄
k + uk (4.1)
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for some uk ∈ ∂φ(x + d̄k). The boundedness of the subdifferential (Proposition 2.1 (b))
yields that the sequence {uk} is bounded. Thus, we can choose a subsequence K ⊂ N such
that

d̄k

‖d̄k‖
→K s and uk →K u.

The closedness of the subdifferential (Proposition 2.1 (c)) yields u ∈ ∂φ(x). By assumption,
we therefore have ∇f(x) + u 6= 0.

Furthermore, using the results of [36, Proposition 2.4], see also equation (2.16) in that
paper, we obtain

ψ′(x, d̄k) ≤ −(d̄k)T (Bk + µkI)d̄
k ≤ −

(
λmin(Bk) + µk

)
‖d̄k‖2.

Since (4.1) implies ‖∇f(x) + uk‖ = ‖(Bk + µkI)d̄
k‖ ≤ (‖Bk‖+ µk)‖d̄k‖, we get

ψ′(x, d̄k) ≤ −
(
λmin(Bk) + µk

)
‖d̄k‖2 ≤ −‖∇f(x) + uk‖ · λmin(Bk) + µk

‖Bk‖+ µk
· ‖d̄k‖.

Thus, the sublinearity of ψ′(x, ·) yields

ψ′(x, d̄k

‖d̄k‖
)
≤ −‖∇f(x) + uk‖ · λmin(Bk) + µk

‖Bk‖+ µk
.

For k →K ∞, the right-hand side converges to −‖∇f(x) + u‖. Since φ is real-valued, the
directional derivative ψ′(x, ·) is continuous, and we obtain

ψ′(x, s) = lim
K∋k→∞

ψ′
(
x,

d̄k

‖d̄k‖

)
≤ −‖∇f(x) + u‖ < 0.

This completes the proof.

We now apply the previous result to show that there always exist infinitely many successful
or highly successful iterations.

Lemma 4.4. Let {Bk} be a bounded sequence of symmetric matrices. Then Algorithm 3.1
performs infinitely many successful or highly successful steps.

Proof. We follow the proof of [59] and assume, by contradiction, that there exists k0 ∈ N
such that all steps k ≥ k0 are unsuccessful. This implies xk = xk0 for all k ≥ k0 and, due to
the implicit assumption that Algorithm 3.1 generates an infinite sequence, that µk → +∞.
Since {Bk} is a bounded sequence, the matrices Bk + µkI are therefore positive definite
for all sufficiently large k. In view of Lemma 3.2 and dk 6= 0 (otherwise we would have
stopped after finitely many iterations), it follows that xk0 is a nonstationary point of ψ, i.e.,
r(xk0) 6= 0. Moreover, the positive definiteness of Bk + µkI also guarantees that the search
directions dk are well-defined. In view of Lemma 4.1, we have

‖r(xk)‖
‖dk‖µk

<
1

2pmin

for sufficiently large k (recall that pmin <
1
2 and dk = rBk+µkI(x

k)). Using q̂k(dk) ≤ q̂k(0),
we then obtain

predk = ψ(xk)− qk(dk) = ψ(xk)− q̂k(dk) +
µk

2
‖dk‖2
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≥ ψ(xk)− q̂k(0) +
µk

2
‖dk‖2 =

µk

2
‖dk‖2 > pmin‖r(xk)‖ · ‖dk‖. (4.2)

Hence, for all sufficiently large k, Algorithm 3.1 performs (S.3). Since all iterations k ≥ k0
are unsuccessful, this means aredk ≤ c1 predk. It follows that

ψ(xk0 + dk)− ψ(xk0) ≥ c1
(
∇f(xk0)T dk + φ(xk0 + dk)− φ(xk0) + 1

2 (d
k)TBkd

k
)
.

Setting tk = ‖dk‖ and dividing this estimate by tk yields

ψ(xk0 + tk
dk

∥dk∥ )− ψ(x
k0)

tk

≥ c1
(
∇f(xk0)T

dk

‖dk‖
+
φ(xk0 + tk

dk

∥dk∥ )− φ(x
k0)

tk
+

1

2

(dk)T

‖dk‖
Bkd

k

)
.

Choosing a subsequence K such that dk/‖dk‖ → s, and using the local Lipschitz continuity
of ψ, the left-hand side converges to the directional derivative ψ′(xk0 ; s) when taking the
limit in K. In the same way, the limit of the second term on the right-hand side converges
to φ′(xk0 ; s). Thus, using dk → 0, see Proposition 4.2, and the boundedness of {Bk}, taking
the limit on K in the entire estimate gives ψ′(xk0 ; s) ≥ c1ψ

′(xk0 ; s). Since c1 ∈ (0, 1), this
yields ψ′(xk0 ; s) ≥ 0, a contradiction to Lemma 4.3. This shows that there are infinitely
many successful or highly successful iterations.

We next formulate two global convergence results. The corresponding statements are similar
to those known for trust-region methods in, e.g., unconstrained optimization.

Theorem 4.5. Let {Bk} be a bounded sequence of symmetric matrices, and assume that
ψ is bounded from below. Then any sequence {xk} generated by the regularized proximal
Newton-type method (Algorithm 3.1) satisfies lim infk→∞ ‖r(xk)‖ = 0.

Proof. Let S ⊂ N be the (infinite) set of successful or highly successful iterations. Contrary
to the claim, assume that lim infk→∞ ‖r(xk)‖ > 0. Then there exists k0 ∈ N and ε > 0 such
that ‖r(xk)‖ ≥ ε for all k ≥ k0. By the definition of successful steps, we get

ψ(xk)− ψ(xk+1) ≥ c1 predk ≥ pminc1‖dk‖ · ‖r(xk)‖ ≥ pminc1ε‖dk‖

for all k ∈ S, k ≥ k0. Since ψ is bounded from below, summation yields

∞ >

∞∑
k=0

[
ψ(xk)− ψ(xk+1)

]
=

∑
k∈S

[
ψ(xk)− ψ(xk + dk)

]
≥ pminc1ε

∑
k∈S

‖dk‖.

Taking into account that xk is not updated in unsuccessful steps, it follows that

∞ >
∑
k∈S

‖dk‖ =
∑
k∈S

‖xk+1 − xk‖ =
∞∑
k=0

‖xk+1 − xk‖.

Hence, {xk} is a Cauchy sequence and therefore convergent to some x ∈ Rn. Since ‖r(x)‖ =
limk→∞ ‖r(xk)‖ ≥ ε, x is not a stationary point of ψ.

By Lemma 4.4, there are infinitely many successful or highly successful steps and, as
shown above, we have ‖dk‖ →S 0. Similar to (4.1) there holds

0 = ∇f(xk) + (Bk + µkI)d
k + uk
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for some uk ∈ ∂φ(xk + dk). Assuming that {µk}S is bounded, (Bk + µkI)d
k converges to

0 for k →S ∞. Furthermore, Proposition 2.1 (b), (c) yields that {uk}S is bounded and
we can choose a subsequence K ⊂ S such that uk →K u with u ∈ ∂φ(x). Taking the
limit K 3 k → ∞ in the above equation then yields 0 = ∇f(x) + u ∈ ∇f(x) + ∂φ(x), in
contradiction to the nonstationarity of x.

Hence, without loss of generality, we have {µk}S →∞. It follows that {µk} → ∞ since
µk cannot decrease during unsuccessful iterations. This implies that Algorithm 3.1 also
performs infinitely many unsuccessful iterations. On the other hand, in the same way as
(4.2), we get

predk ≥ pmin‖dk‖ · ‖r(xk)‖ ≥ pminε‖dk‖

for sufficiently large k. For every such k, there exists ξk on the straight line between xk and
xk + dk such that f(xk + dk) − f(xk) = ∇f(ξk)T dk. By the convergence of {xk} to x and
since {dk} → 0 in view of Proposition 4.2, the sequence {ξk} also converges to x. Thus, we
obtain ∣∣ρk − 1

∣∣ = ∣∣∣aredk
predk

− 1
∣∣∣ = ∣∣∣ψ(xk)− ψ(xk + dk)

ψ(xk)− qk(dk)
− 1

∣∣∣
=

∣∣∣ψ(xk + dk)− qk(dk)
ψ(xk)− qk(dk)

∣∣∣
≤ 1

pminε

∣∣f(xk + dk)− f(xk)−∇f(xk)T dk
∣∣+ 1

2

∣∣(dk)TBkd
k
∣∣

‖dk‖

≤ 1

pminε

∣∣∇f(ξk)T dk −∇f(xk)T dk∣∣
‖dk‖

+
1

2pminε

∣∣∣∣(dk)TBk
dk

‖dk‖

∣∣∣∣ −→ 0

for k → ∞. Hence, {ρk} → 1, i.e., eventually all steps are successful or highly successful,
which yields a contradiction.

Similar to trust-region methods, the previous result can be used to prove a stronger statement
for functions with a uniformly continuous gradient. The proof generalizes the one of [59,
Theorem 3.5].

Theorem 4.6. Let {Bk} be a bounded sequence of symmetric matrices, assume that ψ is
bounded from below and that ∇f is uniformly continuous on a set X satisfying {xk} ⊂ X,
where {xk} denotes a sequence generated by Algorithm 3.1. Then limk→∞ ‖r(xk)‖ = 0 holds;
in particular, every accumulation point of {xk} is a stationary point of ψ.

Proof. Assume, by contradiction, that there exists δ > 0 and K ⊂ N such that ‖r(xk)‖ ≥ 2δ
for all k ∈ K. By Theorem 4.5, for each k ∈ K, there is an index ℓ(k) > k such that
‖r(xl)‖ ≥ δ for all k ≤ l < ℓ(k) and ‖r(xℓ(k))‖ < δ.

If, for k ∈ K, an iteration k ≤ l < ℓ(k) is successful or highly successful, we get

ψ(xl)− ψ(xl+1) ≥ c1 predl ≥ c1pmin‖r(xl)‖ · ‖dl‖ ≥ c1pminδ‖xl+1 − xl‖.

For unsuccessful iterations l, this estimate holds trivially. Thus,

pminc1δ‖xℓ(k)−xk‖ ≤ pminc1δ

ℓ(k)−1∑
l=k

‖xl+1−xl‖ ≤
ℓ(k)−1∑
l=k

ψ(xl)−ψ(xl+1) = ψ(xk)−ψ(xℓ(k))

holds for all k ∈ K. By assumption, ψ is bounded from below, and by construction, the
sequence {ψ(xk)} is monotonically decreasing, hence convergent. This implies

{
ψ(xk) −
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ψ(xℓ(k))
}
→K 0. Hence, we get

{
‖xℓ(k) − xk‖

}
→K 0. The uniform continuity of ∇f and

of the proximity operator (Proposition 2.2 (a)) together with the fact that the composition
of uniformly continuous functions is uniformly continuous, yields the uniform continuity of
the residual function r(·). Thus, we get

{
‖r(xℓ(k))− r(xk)‖

}
→K 0. On the other hand, by

the choice of ℓ(k), we have∥∥r(xk)− r(xℓ(k))∥∥ ≥ ∥∥r(xk)∥∥− ∥∥r(xℓ(k))∥∥ ≥ 2δ − δ ≥ δ,

which yields the desired contradiction.

5 Convergence Using an Error Bound Condition

The aim of this section is to provide further convergence results for the regularized proximal
quasi-Newton method in Algorithm 3.1. To this end, we start with some technical results
and then assume that ∇f is Lipschitz continuous to show the boundedness of the sequence
{µk}. Together with an error bound condition, we then deduce the convergence of the entire
sequence. We start with some technical results.

Lemma 5.1. Assume that the sequence {Hk} is uniformly bounded and positive definite,
i.e. there exist constants 0 < m ≤ M such that mI � Hk � MI holds for all k ≥ 0. Then
the following estimates hold:

(a) predk ≥
1

2
(m+ 2µk)‖dk‖2,

(b)
‖r(xk)‖
‖dk‖

≤
(
1 +

1

m+ µk

)
(M + µk) ≤

m+ 1

m
(M + µk),

(c)
‖dk‖
‖r(xk)‖

≤ 1 +M + µk

m+ µk
≤ 1 +M

m
.

Proof. (a) Using [36, Proposition 2.4], we get

predk = −
(
∇f(xk)T dk + φ(xk + dk)− φ(xk)

)
− 1

2
(dk)THkd

k

≥ (dk)T (Hk + µkI)d
k − 1

2
(dk)THkd

k

≥ 1

2
(m+ 2µk)‖dk‖2.

(b) and (c) follow directly from Lemma 2.3 using λmax(Hk +µkI) ≤M +µk and λmin(Hk +
µkI) ≥ m+ µk.

The next result is essential to prove the boundedness of the sequence of regularizers {µk}.

Lemma 5.2. Assume that ∇f is Lipschitz continuous with Lipschitz constant L > 0 and
Hk � mI for some m > 0. If, in some iterate xk, we have µk ≥ µ := max{L−m, 0}, there
holds aredk > c1 predk .

Proof. Let µk ≥ µ. Then Hk + µkI � LI, and the Lipschitz continuity of ∇f yields

f(xk + dk)− f(xk) ≤ ∇f(xk)T dk +
1

2
L‖dk‖2 ≤ ∇f(xk)T dk +

1

2
(dk)T (Hk + µkI)d

k,
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which is equivalent to

ψ(xk + dk)− ψ(xk) ≤ ∇f(xk)T dk + φ(xk + dk)− φ(xk) + 1

2
(dk)T (Hk + µkI)d

k.

Hence, using the definitions of predk and aredk, we get − aredk ≤ − predk +µk/2 ‖dk‖2. A
combination with Lemma 5.1 (a) yields

aredk ≥ predk −
µk

2
‖dk‖2 ≥ predk ·

µk +m

2µk +m
>

1

2
predk ≥ c1 predk,

which had to be shown (note that we need c1 ≤ 1
2 at this point).

For the boundedness of the sequence {µk}, it remains to prove that (3.4) holds for sufficiently
large µk > 0, which is the aim of the next result.

Proposition 5.3. Assume that ∇f is Lipschitz continuous with Lipschitz constant L > 0
and MI � Hk � mI for some M ≥ m > 0. Then, the sequence {µk} generated from
Algorithm 3.1 is bounded.

Proof. Assume that the sequence {µk} is unbounded. This means, there is a subsequence
K ⊂ N0 such that {µk}K →∞. Since µk cannot increase in successful or highly successful
steps, this implies that there are infinitely many unsuccessful steps. Without loss of gener-
ality we assume that all steps k ∈ K are unsuccessful. In view of Lemma 5.2 this is only
possible if for sufficiently large k ∈ K we have predk < pmin‖dk‖ · ‖r(xk)‖. Using Lemma
5.1 (a), this yields

m+ 2µk

2
‖dk‖ < pmin‖r(xk)‖ ⇐⇒ ‖r(xk)‖

µk‖dk‖
>
m+ 2µk

2pminµk
.

We combine this estimate with Lemma 5.1 (b) to get(
1 +

1

m+ µk

)
M + µk

µk
>
m+ 2µk

2pminµk

for k ∈ K. Taking the limit in K, the left hand side of this estimate converges to 1, whereas
the right hand side converges to 1/pmin > 1, which yields a contradiction. Hence, the
sequence {µk} is bounded.

For the convergence of the complete sequence, we need an additional assumption. In many
papers the main assumption to prove local convergence and state a convergence rate is strong
convexity. Here, more generally, we assume that ψ satisfies a local error bound condition,
which is used by Tseng and Yun in [62].

Assumption 5.1. Assume that ψ is bounded from below and X ∗ 6= ∅, where X ∗ is the set
of stationary points of ψ.

(a) For any ζ ≥ minx ψ(x), there exist scalars τ > 0 and ε > 0 such that

dist(x,X ∗) ≤ τ‖r(x)‖ whenever ψ(x) ≤ ζ, ‖r(x)‖ ≤ ε.

(b) There exists a scalar δ > 0 such that

‖x− y‖ ≥ δ whenever x ∈ X ∗, y ∈ X ∗, ψ(x) 6= ψ(y).
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Similar assumptions to (a) have been investigated by Luo and Tseng in [42, 43]. Note that
if a function satisfies the above error bound condition, then it also satisfies the Kurdyka-
Łojasiewicz property [38]. Error bounds of this type have been studied by many authors,
see e.g. [67, 68].

Some examples of problem classes of the form (1.1) that satisfy Assumption 5.1 (a) are,
cf. [62, 67] and the references therein:

• The function f is strongly convex, ∇f is Lipschitz continuous and φ is an arbitrary
convex function.

• f(x) = h(Ax) + cTx, where h : Rm → R is a continuously differentiable and strongly
convex function such that ∇h is Lipschitz continuous on every compact set, A ∈
Rm×n, c ∈ Rn, and φ has a polyhedral epigraph.

• f(x) = h(Ax), where A ∈ Rm×n and h is given as above, and φ(x) =
∑s

i=1 ‖xGi‖2,
where the sets Gi ⊂ {1, . . . , n} form a partition of {1, . . . , n} .

Many more functions of type (1.1) fulfill Assumption 5.1 (a) even if they are not covered by
the above problem classes. For more information and properties of error bound conditions,
we refer to [62,67,68].

Assumption 5.1 (b) guarantees that the sets of stationary points of ψ with different
function values are properly separated. This assumption holds, in particular, if ψ is convex.

It is important to note that we do not assume the convergence of the sequence {xk}.
Instead, this is a consequence of the above assumptions, as the following result shows.

Theorem 5.4. Let {xk} be a sequence generated by Algorithm 3.1 such that ∇f is Lipschitz
continuous, MI � Hk � mI for some M ≥ m > 0, and let Assumption 5.1 hold. Then the
sequence {xk} converges to some x ∈ Rn and

∑∞
k=0 ‖xk+1 − xk‖ <∞.

This result is a simplified version of Theorem 2 in [62] and, therefore, we skip the proof
here. However, we briefly discuss the essential adaptations: First, the estimate of Lemma
5.1 (c) in combination with Theorem 4.6 yields dk → 0. Moreover, the crucial preliminary
of [62, Theorem 2] is the boundedness of the analogous sequence to {Bk+µkI}, which in our
analysis is the result of the assumption on {Bk} and Proposition 5.3. The further details of
the proof are left to the reader.
We note that it is also possible to develop a local convergence theory for Algorithm 3.1 with
small adjustments and under appropriate assumptions. In this paper, we focus on limited
memory quasi-Newton approximations and therefore focus on the efficient solution of the
related subproblems, which is the topic of the next section.

6 Application to Limited Memory Proximal Quasi-Newton Meth-
ods

This section describes the central part for an efficient implementation of Algorithm 3.1 using
limited memory matrices for Bk. Since the idea itself is central for our work, we first present
the basic steps in a slightly simplified framework in Section 6.1, and then come to the details
for the actual realization in Section 6.2.
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6.1 Main Idea Based on Compact Representations

The most costly part of Algorithm 3.1 is the computation of dk in (S.2), which requires the
solution of the minimization problem

min
d
f(xk) +∇f(xk)T d+ 1

2d
T (Bk + µkI)d+ φ(xk + d). (6.1)

In the following, we assume that the matrix Bk + µkI is positive definite to ensure that the
problem is solvable. If this is not the case, the problem might be unsolvable (depending on
the properties of φ). Nevertheless, the following explanation mainly considers quasi-Newton
matrices Bk which fulfil this requirement under mild assumptions. If these are not met, the
update is skipped.

So, if Bk + µkI is positive definite, we use the proximity operator to reformulate the
problem to

dk = rBk+µkI(x
k) = proxBk+µkI

φ

(
xk − (Bk + µkI)

−1∇f(xk)
)
− xk. (6.2)

Hence, the main effort is the computation of the proximity operator with respect to the
norm induced by Bk+µkI, where we are especially interested in the case that Bk is obtained
using a limited memory quasi-Newton update. Since this is usually not possible analytically,
appropriate algorithms must be used for this computation. A general approach is to apply
first-order proximal methods like FISTA [4] for the solution of the subproblem, cf. [29, 36].
Further methods as [6,22,30] exploit the structure of limited memory quasi-Newton matrices,
but these methods are only considered for memoryless updates.

The crucial point of our method to compute the solution of (6.1) consists in a suitable
combination of a recent result by Becker et al. [6] with the compact representation of lim-
ited memory quasi-Newton matrices introduced by Byrd et al. [12]. We first describe the
idea of our approach, and then provide the corresponding details for the actual realization
(implementation) of the resulting method.

The class of quasi-Newton methods generates a sequence {xk} using the recursion xk+1 :=
xk−H−1

k ∇f(xk) for some suitable approximationHk of the (not necessarily existing) Hessian
∇2f(xk) (in our setting, we have Hk = Bk + µkI). The matrices Hk are usually updated
using rank-one or rank-two modifications; two well-known examples are the SR1 update
(symmetric rank-one)

Hk+1 := HSR1
k+1 := Hk +

(yk −Hks
k)(yk −Hks

k)T

(yk −Hksk)T sk

and the BFGS update (Broyden-Fletcher-Goldfarb-Shanno)

Hk+1 := HBFGS
k+1 := Hk +

yk(yk)T

(sk)T yk
− Hks

k(sk)THk

(sk)THksk
,

where
sk := xk+1 − xk, yk := ∇f(xk+1)−∇f(xk) ∀k ∈ N.

These quasi-Newton methods are not applicable to large-scale problems since the matrices
Hk are dense. This problem can be avoided based on the following observation: The matrix
Hk+1 can, in principle, be re-computed using the data H0 together with the vectors sj and yj
for all j = 1, 2, . . . , k. Now, if we skip the first of these vectors and use only the final m ones
(for some small memory m ∈ N), we obtain a limited memory quasi-Newton method, cf. [52],
which, due to a much smaller storage requirement, can be applied to large-scale problems.
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These limited memory versions of standard quasi-Newton updates, however, may not start
with the same initial matrix H0, instead they often use an initialization Hk,0 depending on
the current iterate k.

Now, consider the proximal subproblem

min
d
f(xk) +∇f(xk)T d+ 1

2d
THkd+ φ(xk + d) (6.3)

for some suitable matrix Hk. Using Hk := λkI (λk > 0), this subproblem is often easy
to solve (sometimes even analytically), whereas we obtain a much better approximation of
the given composite optimization problem if Hk is chosen as a better approximation of the
Hessian ∇2f(xk), but then the subproblem itself is more difficult to solve. However, if

Hk = Hk,0 + U1U
T
1 − U2U

T
2 (6.4)

with suitable matrices Ui ∈ Rn×ri (usually depending on k, but to simplify the notation, we
skip this index here) for some small ri ∈ N (i = 1, 2) and a simple matrix Hk,0 (typically
a multiple of the identity matrix such that the corresponding proximal subproblem is easy
to solve), so that Hk is obtained from Hk,0 by a small rank-modification, then it is shown
in Becker et al. [6] that the solution of the difficult subproblem (6.3) can be computed
from the solution of the (easy) proximal subproblem corresponding to the matrix Hk,0 using
only some matrix-vector multiplications and solving a (strongly monotone, hence uniquely
solvable) nonlinear system of equations of (small) dimension r1 + r2.

Recalling the typical updates of quasi-Newton matrices, we immediately see that a single
update of, e.g., the SR1- and the BFGS-method is precisely of the form required in (6.4)
with suitable matrices U1, U2 of rank (at most) one. However, since the additive terms in
these quasi-Newton updates depend on Hk itself, these formulas cannot be used (directly)
to apply the result from [6], which is based on the representation (6.4), to limited memories
with m ≥ 2. In fact, numerical results presented in [6] are based on taking a limited memory
of m = 1 only. Their point is that for m = 1 in the SR1-update, the occuring nonlinear
system is of dimension 1 and can, hence be solved by bisection, and, if φ is piecewise linear,
even exact in log-linear time.

For many medium-sized problems, however, there are advantages to use a memory larger
than 1. This is the point where we can use the so-called compact representations of limited
memory quasi-Newton matrices.

The Hessian approximations generated by most limited memory quasi-Newton methods
can be written using a compact representation of the form

Hk = Hk,0 +AkQ
−1
k AT

k (6.5)

for some (usually diagonal) symmetric positive definite matrix Hk,0 ∈ Rn×n, Ak ∈ Rn×s,
and a symmetric and nonsingular matrix Qk ∈ Rs×s, where, again, s� n is typically a very
small number. Such a compact representation can be used in order to rewrite Hk in a form
required in (6.4). To this end, we compute a spectral decomposition Q−1

k = VkΛkV
T
k of

Q−1
k , i.e., Vk ∈ Rs×s is orthogonal and Λk ∈ Rs×s is a diagonal matrix with diagonal entries

λki (recall that s is small, hence the computation of this spectral decomposition is not at all
time-consuming). We then split the diagonal matrix Λk into

Λk = Λ+
k − Λ−

k ,

where Λ+
k and Λ−

k are diagonal matrices consisting of the elements max{0, λki } and
max{0,−λki }, respectively. Note that this implies that these two diagonal matrices are
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positive semidefinite and, therefore, possess a matrix square root. Substituting this into
(6.5) yields the representation (6.4) with the matrices (their dependence on k is neglected
here)

U1 := AkVk(Λ
+
k )

1/2 and U2 := AkVk(Λ
−
k )

1/2.

Note that the two matrices U1, U2 actually simplify to some extent since some of their
columns are multiplied with zero entries of the corresponding diagonal matrices. This com-
pletes the general description which allows an efficient implementation of our regularized
proximal limited memory quasi-Newton method.

6.2 Realization of Proximal Subproblem Solutions

We now present the details of our realization of Algorithm 3.1 where, we recall, we have
Hk = Bk + µkI in the notation of the previous subsection, and where we use a limited
memory update of Bk (not of Hk itself), whereas the regularization term essentially only
influences the initial matrix Hk,0 (or Bk,0 in our subsequent notation) since, in any case,
this is typically just a multiple of the identity matrix. Hence, assume we have a compact
representation of the form

Bk = Bk,0 +AkQ
−1
k AT

k ,

where Bk,0 ∈ Rn×n is a symmetric positive definite matrix, usually chosen as a multiple of
the identity, Qk ∈ Rs×s is a symmetric and nonsingular matrix with s� n, and Ak ∈ Rn×s,
cf. [12]. The following example states explicitly the compact representations of the SR1-
and the BFGS-updates, since these two will be exploited in our numerical experiments.

Example 6.1. As before, let sj = xj+1 − xj and yj = ∇f(xj+1)−∇f(xj) for all j. Then,
in iteration k, we define the matrices

Sk := [sk−m . . . sk−1] ∈ Rn×m and Yk := [yk−m . . . yk−1] ∈ Rn×m.

Furthermore, let Dk = D(ST
k Yk) and Lk = L(ST

k Yk) denote the diagonal part and the strict
lower triangle of the matrix ST

k Yk. Then, the corresponding limited memory BFGS-update
is given by the compact representation

Bk := BBFGS
k = Bk,0 −

[
Bk,0Sk Yk

] [ST
k Bk,0Sk Lk

LT
k −Dk

]−1 [
ST
k Bk,0

Y T
k

]
,

hence,

Ak =
[
Bk,0Sk Yk

]
∈ Rn×2m and Qk =

[
−ST

k Bk,0Sk −Lk

−LT
k Dk

]
∈ R2m×2m.

Similarly, the limited memory SR1-update can be written as

Bk := BSR1
k = Bk,0 + (Yk −Bk,0Sk)(Dk + Lk + LT

k − ST
k Bk,0Sk)

−1(Yk −Bk,0Sk)
T ,

which yields

Ak = Yk −Bk,0Sk ∈ Rn×m and Qk = Dk + Lk + LT
k − ST

k Bk,0Sk ∈ Rm×m,

see [12, Theorems 2.3 and 5.1]. 3
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To simplify the following discussion, we consider a fixed iteration k and therefore omit this
index in the subsequent notation.

Similar to Section 6.1, with the matrix Q = Qk available from the compact representa-
tion, we then compute a spectral decomposition Q−1 = V ΛV T of Q−1 with V ∈ Rs×s being
orthogonal and Λ ∈ Rs×s being a diagonal matrix. Let I1, I2 ⊂ {1, 2, . . . , s} be the sets of
indices corresponding to the positive and negative entries of the diagonal of Λ, respectively.

Define Λ1 as the submatrix of Λ with the rows and columns in I1 and Λ2 as the submatrix
of −Λ with the rows and columns in I2, and let (AV )1, (AV )2 be the submatrices of A · V
with the column indices in I1 and I2, respectively. Then we can write

B = B0 + U1U
T
1 − U2U

T
2

with
U1 := (AV )1Λ

1/2
1 and U2 := (AV )2Λ

1/2
2 . (6.6)

Note that, by defining B̂0 = B0+µI, we obtain a similar formula for the matrix B̂ = B+µI.
At this point, we can use the following result from [6, Corollary 3.6] for the solution of (6.2).

Theorem 6.2. Let B̂ = B̂0 + U1U
T
1 − U2U

T
2 ∈ Sn++ with B̂0 ∈ Sn++ and Ui ∈ Rn×ri with

rank ri (i = 1, 2). Set B̂1 = B̂0 + U1U
T
1 . Then, the following holds:

proxB̂φ (y) = proxB̂0
φ (y + B̂−1

1 U2α
∗
2 − B̂−1

0 U1α
∗
1), (6.7)

where α∗
i ∈ Rri , i = 1, 2, are the unique zeros of the coupled system L(α) = L(α1, α2) = 0,

where L =
(
L1,L2

)
is defined by

L1(α1, α2) = UT
1 (y + B̂−1

1 U2α2 − proxB̂0
φ (y + B̂−1

1 U2α2 − B̂−1
0 U1α1)) + α1,

L2(α2, α2) = UT
2 (y − proxB̂0

φ (y + B̂−1
1 U2α2 − B̂−1

0 U1α1)) + α2. (6.8)

In the following, we restrict the analysis to the case B0 = γI for some γ > 0. Hence, in
Theorem 6.2 we have B̂0 = γ̂I with γ̂ = γ+µ, which can be easily inverted and the proximity
operator proxB̂0

φ can often be computed analytically. For the computation of B̂−1
1 and B̂−1,

we use the Sherman-Morrison-Woodbury formula to obtain

B̂−1
1 = γ̂−1I − γ̂−2U1(I + γ̂−1UT

1 U1)
−1U1 and

B̂−1 = B̂−1
1 + B̂−1

1 U2(I − UT
2 B̂

−1
1 U2)

−1UT
2 B̂

−1
1 .

Since the proximity operator is Lipschitz continuous, nonsmooth (semismooth) Newton
methods are suitable candidates for the numerical computation of the unique zero α∗ =
(α∗

1, α
∗
2) of the nonlinear system of equations L(α) = 0 in Theorem 6.2. An iteration of the

semismooth Newton method is given by

αj+1 = αj −G−1
j L(α

j), (6.9)

where Gj = G(αj) is a Newton derivative of L in αj , cf. [55]. For some details on New-
ton differentiable functions, we refer to [25]. Provided that the Newton derivative of the
proximity operator can be computed, a short calculation and the chain rule for generalized
derivatives [25, Theorem 3.5] show the following result.
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Proposition 6.3. Let proxB̂0
φ be Newton-differentiable with generalized derivative P . Then

L is also Newton-differentiable, and the generalized derivative is given by

G(α) =
[
U1 U2

]T
P (z)

[
B̂−1

0 U1 −B̂−1
1 U2

]
+

[
I UT

1 B̂
−1
1 U2

0 I

]
, (6.10)

where z = y + B̂−1
1 U2α2 − B̂−1

0 U1α1.

In many applications the generalized derivative of the proximity operator can be computed
analytically.

Example 6.4. (a) Let φ(x) := λ‖x‖1 and B̂0 = γ̂I for some λ, γ̂ > 0. Then the proximity
operator is given (component-wise) by

(
proxγ̂Iφ

)
i
(x) =


xi − λγ̂, if xi ≥ λγ̂,
0, if |xi| < λγ̂,

xi + λγ̂, if xi ≤ −λγ̂,

cf. [45, Example 3.2.8]. Hence, the diagonal matrix P (x) with diagonal entries

Pii(x) =

{
1, if |xi| ≥ λγ̂,
0, otherwise

is an element of the generalized Jacobian in the sense of Clarke, cf. [16], and, therefore, a
Newton derivative.

(b) Let φ(x) := λ‖x‖2. Then, an elementary calculation shows

proxγ̂Iφ (x) = x ·max
{
1− λγ̂

‖x‖2
, 0
}

cf. [45, Example 3.2.8]. A short computation therefore shows that the following is a Newton
derivative of this proximity operator:

P (x) =

{ (
1− λγ̂

∥x∥2

)
I + λγ̂

∥x∥3
2
xxT , if ‖x‖2 ≥ λγ̂,

0, otherwise.

The two examples given here will be used in our numerical section. 3

We summarize the previous discussion and present our method for the computation of (6.2)
in the following algorithm.

Algorithm 6.5 (Solution of the subproblem (6.2)).
(S.0) Given an iterate xk, a compact representation Bk = γkI + AkQ

−1
k AT

k of the corre-
sponding Hessian approximation, and µk > 0.

(S.1) Compute the spectral decomposition Q−1
k = VkΛkV

T
k , define

I1 :=
{
i ∈ {1, . . . , s} | Λk(i, i) > 0

}
, I2 :=

{
i ∈ {1, . . . , s} | Λk(i, i) < 0

}
,

and determine U1, U2 according to (6.6).

(S.2) Choose α0 ∈ Rr1+r2 and compute the zero α∗ of L = (L1,L2) defined in (6.8), using
a semismooth Newton method with the updates given in (6.9) and the generalized
Jacobian given in (6.10), until a suitable termination criterion holds.

(S.3) Compute dk = proxBk+µkI
φ

(
xk − (Bk + µkI)

−1∇f(xk)
)
− xk using (6.7).

Of course, the most expensive part of Algorithm 6.5 is the solution of the semismooth Newton
equation in (S.2). While Becker et al. [6] suggest a solution using an inexact semismooth
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Newton method in the general case, our experiments show that using the above described
method performs just a few (in most cases 1-2) iterations to end up with an approximation
of α∗ satisfying ‖L(α∗)‖ < 10−10 independently of the size of the memory. This underlines
the high efficiency of Algorithm 6.5, in particular using memories larger than one.

7 Numerical Results

In this section, we report numerical results for solving problem (1.1) using the Regularized
Proximal Quasi-Newton Method (RPQN) from Algorithm 3.1 with limited memory quasi-
Newton matrices. After comparing different limited memory methods for the computation of
the occuring proximity operators, we compare this method with several methods applicable
to solve problem (1.1).

The numerical results have been obtained in MATLAB R2020b using a machine running
Open SuSE Leap 15.2 with an Intel Core i5 processor 3.2 GHz and 16 GB RAM.

7.1 Least Squares Problems with Group Sparse Regularizer

In our first example, we consider the least squares problem for A ∈ Rm×n and b ∈ Rm with
an ℓ1-ℓ2-sparsity regularizer, which is also called a group sparse regularizer in the literature.
The problem is given by

min
x

1

2

∥∥Ax− b‖22 + λ‖x‖2,1,

where

‖x‖2,1 :=

p∑
j=1

‖xIj
‖2.

Here, the index sets Ij (j = 1, . . . , p) form a partition of {1, . . . , n}. Since the groups Ij are
pairwise disjoint, the proximity operator proxλ∥·∥2,1

and a Newton derivative thereof can be
computed block-wise using the formulas in Example 6.4. The use of the ℓ1-ℓ2-regularizer
makes sense in many applications, where sparsity should be achieved with respect to some
groups of variables. We refer to [44] for more information about group (sparse) regularizers.

Note that the gradient ∇f(x) = AT (Ax − b) of the function f(x) = 1
2‖Ax − b‖22 is

obviously Lipschitz continuous. Hence, the assumptions of Theorem 4.6 are satisfied. Fur-
thermore, by discussion in Section 5, this problem setting also satisfies Assumption 5.1
which, due to the convexity of the problem setting, implies the convergence of the complete
sequence to a global minimizer.

7.1.1 Problem Setting and Implementation

We follow the generic example in [6] and choose the entries in A and b from a uniform
distribution in [0, 1] with n = 25k and m = 16k for various k ∈ N. The parameter λ is
set to 1. Furthermore, the index sets Ij are chosen randomly with 4 to 12 elements. The
initial guess for the iterate is x0 = 0. In Algorithm 3.1, we choose the parameters µ0 = 1,
pmin = c1 = 10−4, c2 = 0.9, σ1 = 0.5 and σ2 = 4. These values are quite typical: pmin > 0
should be taken small in order to guarantee that many iterations are successful or highly
successful. For the same reason, c1 is a small positive constant, whereas a practical choice for
c2 in the related context of trust-region methods is usually some number from the interval
[0.7, 0.9]. The values of σ1 and σ2 are also motivated from the corresponding updates used
for trust-region methods.
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Furthermore, our tests showed that the semismooth Newton method for the computation
of the proximity operators in Algorithm 6.5 converges very fast (mostly within 1 or 2 steps),
so we stop if ‖L(α)‖ < 10−10 and use a maximal iteration number of 10. Since the limited
memory BFGS-updates are only well-defined if (sk)T yk > 0, it is common to skip the update
of the limited memory matrices if (sk)T yk < ε‖sk‖2. For the SR1-update ill-conditioned
steps are skipped easily in a similar way as described in [12]: Instead of computing the
spectral decomposition of Q−1

k in Algorithm 6.5, we compute the spectral decomposition
VkΛkV

T
k of Qk and define the index sets I1 and I2 to contain the indices such that Λk(i, i) > ε

and Λk(i, i) < −ε, respectively. With this strategy, rows and columns with ill-conditioned
steps (|Λk(i, i)| ≤ ε) are skipped. We choose ε = 10−8 in our experiments and note that
updates are almost never skipped. The initial estimate γk for the computation of the limited
memory quasi Newton matrices is set to

γk =
(yk)T yk

(sk)T yk
,

following the approach of Liu and Nocedal [40]. There are several ways to update the matrix
Bk if a step was unsuccessful. In this case one could start again with memory 0. However,
our experiments show better results if the update of Bk is simply skipped.

An obvious termination criterion would be the size of ‖r(xk)‖. However, this is less
suitable for comparing different methods, as this quantity is not computed automatically by
other methods, which then leads to an additional computational effort. Thus, to compare
different methods, we initially run the algorithm once with a very high accuracy to determine
a good approximation to the optimal function value ψ∗, and then terminate the methods if
the current iterate xk satisfies

ψ(xk)− ψ(x∗)
max(1, |ψ(x∗)|)

≤ 10−6, (7.1)

where the term on the left hand side is referred to as objective value error. Besides analysing
the regularized proximal quasi-Newton method (RPQN) itself, we compare it to the following
methods:

• QGPN (Globalized Proximal Quasi-Newton Method [29])

This method represents a class of several proximal quasi-Newton methods, which use
an Armijo-type line search strategy to guarantee convergence. In contrast to other
methods, e.g. [6,36], a further globalization using a proximal gradient method is applied,
which has shown to improve the performance. Parameters are chosen as in [29].

In addition to this second order proximal method, we use two well known proximal first
order methods to compare the results to. Although there are plenty of accelerated proximal
first order methods, to the author’s knowledge there is no clear favourite regarding the
performance. Hence, we chose the following well-known ones.

• FISTA (Fast Iterative Shrinkage Thresholding Algorithm [4])

FISTA is one of the most common accelerated first order methods for solving convex
problems with composite functions. In every step a subproblem of the form (6.2) is
solved, where Bk+µkI is replaced by LkI and Lk is an approximation to the Lipschitz
constant of ∇f . We start with the initial guess L0 = 1 and increase with η = 2, if the
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Figure 1: Convergence plot for RPQN with lim-
ited memory BFGS approach and different mem-
ories for the setting in Section 7.1 for solving
the least squares problem with group sparse
regularizer. The run time is the average of
10 runs.

step is not successful.
Although there are several adaptations of FISTA in the nonconvex setting, e.g. [53],
we restrict the analysis to the convex version.

• SpaRSA (Sparse Reconstruction by Separable Approximation [66])

SpaRSA is another first order method for the considered problem class. The main
difference to FISTA is the update of the factor Lk, which is done by a Barzilai-Borwein
approach. Hence, the method is related to RPQN with a memory of 0. Furthermore,
the theory of SpaRSA also includes nonconvex functions.

All that techniques are proximal-type methods, since these are highly efficient for solving
optimization problems with composite functions. In the above setting, we also tested a
method based on the forward backward envelope [61]. Furthermore, the setting in the
subsequent section allows using an interior point method, cf. [32]. However, these methods
did not yield benefits in comparison to the above mentioned methods. Instead, we also
provide comparisons with the following non-proximal method.

• SNF (Semismooth Newton Method with Multidim. Filter Globalization [45,46])

This method by Milzarek and Ulbrich is based on the semismooth Newton method to
find a zero of r(x), combined with a globalization using a filter strategy. There is a
convex and nonconvex version of the filter conditions to decide whether the computed
update is applied or a proximal gradient step is performed instead.

7.1.2 Discussion of the Results

We start comparing the size of the memory using the dimension k = 100, i.e. n = 2500 and
m = 1600, which should be chosen for the limited memory quasi-Newton method. Figure 1
shows the relation between the elapsed run time and the current error as defined in (7.1),
when RPQN is applied to the test problem with limited memory BFGS-updates. To avoid
side effects and first-time computation costs, the time is averaged over 10 runs. The choice
of the memory size should be big enough to achieve good performance, but preferably small
to save computation costs. Figure 1 indicates that the impact of the memory size to the
run time is relatively small, but the memory 3 showed the best performance. This is also
validated by the data given in Table 1. In a similar test with limited memory SR1-updates,
the best results were achieved with a memory of 5. RPQN with limited memory BFGS- and
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SR1-updates and the determined optimal memory sizes are denoted by RPQN (L-BFGS)
and RPQN (L-SR1), respectively.

For a comparison to other state-of-the-art methods, we take k ∈ {1, 3, 10, 30, 100, 300}
and run all algorithms on 10 random examples as described above. The average computation
time in relation to the problem dimension is visualized in Figure 2. For the comparison we
used RPQN and QGPN with limited memory BFGS-updates and a memory of 10. Note
that QGPN did not converge within 104 (outer) iterations for n = 7500. One sees that the
performance of the first-order methods is better for small problem sizes. This follows from
the high computation costs for solving the subproblems, which does not yield a profit for
small dimensions. On the other hand, starting with n = 750, RPQN clearly outperforms the
other methods, not only first-order, but also the tested second-order methods. This shows
that the regularization in Algorithm 3.1 is superior although some iterations are unsuccessful
and the computed solutions of the corresponding subproblems are discarded.
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Figure 2: Comparison of the performance of several methods depending on the problem dimension as
described in Section 7.1.

7.2 ℓ1-regularized Least Squares Problem (LASSO)

We demonstrate the performance of our method for the unconstrained LASSO (least absolute
shrinkage and selection operator) problem

min
x

1

2
‖Ax− b‖22 + λ‖x‖1,

method iter highly succ. unsucc. sub- function proximity matrix-vector
(memory) s. iter iter iter iter eval eval products

L-BFGS (1) 46 18 14 14 199 47 442 94
L-BFGS (2) 36 18 5 13 149 36 333 73
L-BFGS (3) 49 27 6 16 208 50 461 100
L-BFGS (5) 55 32 3 20 265 53 577 106

L-BFGS (10) 34 20 2 12 121 33 276 66

Table 1: Values of the test example in Section 7.1 for the RPQN method with limited memory
BFGS update and various memories.
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with A ∈ Rm×n, b ∈ Rm and λ > 0. This formulation is used for many problems to handle
sparsity when finding a solution of Ax ≈ b, see e.g. [4, 19]. Again, we use a test setting
from [6] with n = 3000 and m = 1500, which is typical for compressed sensing. The entries
of A and b are independently and identically distributed according to the standard normal
distribution, the penalty parameter is chosen as λ = 0.1. We use the methods described in
Section 7.1 and almost all parameters are used as before, except that the memory for RPQN
(L-BFGS) is set to m = 10, and QGPN is applied with a limited memory BFGS-update and
a memory of 5, as these proved to be the best choices in our tests.

The results are illustrated in Figure 3 (a). Again one sees that there is almost no differ-
ence between the optimal versions (concerning the size of the memory) of the limited memory
BFGS- and SR1-updates of RPQN. Furthermore, these methods perform significantly better
than the other tested methods. While QGPN can keep up until an objective value error
of approximately 10−1, its performance gets very slow afterwards. The first order methods
FISTA and SpaRSA have by far longer running times to achieve appropriate errors.
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(a) Comparison of different methods for the
example in Section 7.2.
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(b) Comparison of different methods for the
example in Section 7.3.

Figure 3: Convergence plots for the ℓ1-regularized least squares problem (a) and the nonconvex image
restoration (b). The run time is the average of 10 runs, the term "objective value error" refers again to
the stopping criterion defined in (7.1).

7.3 Nonconvex Image Restoration

In this section, we consider a nonconvex image restoration problem. Given a noisy blurred
image b ∈ Rn and a blur operator A ∈ Rn×n, the aim is to restore the original image x ∈ Rn

such that Ax ≈ b. If there are Gaussian errors on the image b, this problem can be solved
efficiently using a quadratic loss similar to the previous sections. If the errors are distributed
by Student’s t-distribution, cf. [1], this approach usually does not perform well. For that
purpose, the quadratic loss can be replaced by

f(x) :=

n∑
i=1

log
(
(Ax− b)2i + 1

)
,

cf. [60]. To guarantee antialiasing, we add the nonsmooth term φ(x) := λ‖Bx‖1, where
B ∈ Rn×n is a two dimensional Haar wavelet transform and λ > 0. Since B is orthogonal,



562 C. KANZOW AND T. LECHNER

we can reformulate the problem minx f(x) + φ(x) into

min
y

n∑
i=1

log
(
(ABT y − b)2i + 1

)
+ λ‖y‖1,

where y := Bx. The function f is not convex, but ∇f is Lipschitz continuous. Furthermore,
we expect a solution to this problem to approximately fulfill ABT y∗ = b, so f is strongly
convex in a neighbourhood of the solution if A as full range. This means that our convergence
theory applies here and we again get the convergence of the complete sequence of iterates
to a stationary point.

We follow the test setting in [9], see also [29, 60], to restore a 256 × 256 test image,
hence n = 2562 = 65536. The mapping A is a Gaussian blur operator of size 9 × 9 and
with standard deviation 4 and B is the two dimensional discrete Haar wavelet of level 4.
Furthermore, we choose λ = 10−4. The noisy blurred image b is created from the original
cameraman image by applying A and adding Student’s t-noise with degree of freedom 1 and
rescaled by 10−3, and we start with y0 = b.

For our analysis, we solve the image restoration with RPQN and QGPN with limited
memory SR1-updates and a memory of 2 (which, again, behaved best in our tests), SNF
and SpaRSA. Details on the methods are given in Section 7.1. Note that we do not apply
FISTA to this problem since this solver is designed for convex problems.

As before, using the same rules, we sometimes skip the limited memory updates. How-
ever, even though the problem is nonconvex and one can therefore expect that this case
occurs more frequently, our experiments reveal that there is a maximum of one or two
skipped updates per run of RPQN.

Here, we do not compute ψ∗ as the optimal value of the objective function, but as the
function value of the original image (which are not the same in this case). For that reason,
we terminate the methods if ψ(xk) ≤ ψ(x∗) holds for an iterate xk. The results, again
averaged over 10 runs, are shown in Figure 3 (b). For the first iterations, all methods
show similar performance and there are only minor differences. At some point, however,
RQPN and shortly after QGPN instantly satisfy the termination criterion, whereas SpaRSA
performs several more iterations until this goal is reached. Note that the performance of
SNF is not satisfactory in this example and not shown in Figure 3 (b). In the nonconvex
setting, this might be due to the structure, where semismooth iterations reducing ‖r(xk)‖
but probably increasing ψ(xk) and proximal gradient iterations, which decrease ψ(xk) but
probably increase ‖r(xk)‖ are expected to alternate. We report some of the resulting data
in Table 2.

Looking at the performance in Figure 3 (b), we also display the resulting images of the
tested methods after a computation time of 12 seconds (and not using the above termination
criterion) in Figure 4. It can be observed that RPQN and QGPN restore the image relatively
well, while the result of SpaRSA is also satisfactory, but SNF is clearly outperformed.

method iter Newton- succ. sub- function proximity matrix-vector
iter iter iter eval eval products

RPQN 890 - 866 1790 891 4448 1790
QGPN 1101 1098 - 1175 1113 2354 2215

SNF 183 91 - 1189 784 408 3855
SpaRSA 1089 - - 1964 1965 1964 3930

Table 2: Numerical data for the image restoration example in Section 7.3.



EFFICIENT REGULARIZED PROXIMAL QUASI-NEWTON METHODS 563

(a) Original Image (b) Noisy Image (c) SNF

(d) RPQN (e) QGPN (f) SpaRSA

Figure 4: Nonconvex image restoration from Section 7.3: Original and noisy image and recovered
images using the stated algorithms and terminated after a computation time of 12 seconds.

8 Final Remarks

In this paper, we proposed a proximal quasi-Newton method with a regularization technique
for a globalization, and presented the corresponding global convergence theory. After that we
described a very efficient method for the computation of the occurring proximity operators
using compact representations of limited memory quasi-Newton matrices. The numerical
results show that the regularized method in combination with the efficient proximity operator
computation accelerates the performance and outperforms both some standard first-order
and some second-order methods.

Since our focus was on the limited memory quasi-Newton approach, we only presented
a global convergence theory. A future approach is therefore to develop local convergence
results under appropriate assumptions including a convergence assumption on the matrices
Bk.

Furthermore, a main issue is the assumption that the convex function φ is real-valued,
and this fact is exploited in several steps of the current analysis. In the authors’ opinion, the
deduced algorithm should perform well also for problems with extended-valued functions φ.
Thus, a main task of future research is the investigation of the convergence theory for this
class of functions.

Finally, the computation of the variable metric proximity operators can be investigated.
Many authors [8,24,58,67] provide convergence results for inexact solutions of this problem in
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the setting of their proposed methods. Although our experiments reach very high accuracies
in solving the subproblems within a very few steps, an improvement of the presented method
could be to connect it to some of these criteria.
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