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facing more complicated real-world cases, the aforementioned methods do not necessarily
work stable. Fortunately, it is documented in [16, 24] that a strongly or approximately low-
rank property is hidden in many real-world datasets. Therefore, a natural idea is to pursue
a low-rank objective while satisfying some desired constraints. However, due to the well-
known NP-hardness of the rank minimization, Fazel [5] accordingly introduced the nuclear
norm concept of matrix to approximate the rank function. As an important application of
the nuclear norm, Qian et al. [19] introduced a new model equipped with nulcear norm
and ℓ2 norm in objective function. Besides, Yang et al. [27] further studied low-rank based
matrix regression (MR), in addition to introducing a quadratically convergent algorithm to
solve the underlying MR model.

Compared with the aforementioned regression methods tailored for one- and two-
dimensional datasets, developing customized models for high-dimensional datasets is still
in its infancy. When dealing with high-dimensional cases, we usually unfold the data as
vectors or matrices so that the aforementioned methods could be applied. However, this un-
folding way often destroys the intrinsic multi-way structure of the data. Most recently, Gao
et al. [7] introduced a tensor linear regression model for three-dimensional datasets based
upon the well-known tensor-Singular Value Decomposition (t-SVD for short, see [12]). Given
a set of training samples A1,A2, . . . ,AN ∈ Km×n×p and a set of representation coefficients
x = (x1, x2, . . . , xN ), the tensor linear regression model [7] reads as

min
x,E

∥E∥TNN + λ∥x∥22

s.t. X = T (x) + E ,
(1.1)

where E is the representation residual, ∥ · ∥TNN is the so-called tensor nuclear norm (see
[30]), λ > 0 is a tuning parameter, X is a test sample, and T (x) is defined by

T (x) = x1A1 + · · ·+ xNAN .

However, model (1.1) represents the test sample as a linear combination of all training
samples with a vector x, which eventually treats each frontal slice with a same coefficient.
In this situation, we could rewrite T (x) as

unfold(T (x)) = x1unfold(A1) + · · ·+ xNunfold(AN ),

where ‘unfold(·)’ is a linear operator unfolding a tensor into a matrix (see [16]). Therefore,
such an approach can be regarded as a matrix-based method.

In this paper, we make a further study on tensor linear regression for high-dimensional
data analysis. Specifically, we introduce a low-rank tensor linear regression model, which is
based on the widely used transformed T-product (i.e., tensor-tensor product, see [12]). As
shown in [8, 20], the transformed T-product possibly yields better numerical performance
than the pure T-product versions when an appropriate transformation is chosen. Moreover,
transformed T-product not only inherits many promising properties of matrices, but also
can better exploit the multi-way structure of tensors than those matrix-based approaches.
Comparing with the methods directly unfolding tensors as matrices, our proposed method
is able to efficiently consider the information of the third direction of tensors. Moreover, to
avoid over-fitting, we impose a Tikhonov regularization term and a nuclear norm term on
the coefficient matrix. To tackle the nonsmoothness of the objective function, we propose an
implementable algorithm based on the classical ADMM (i.e., alternating direction method
of multipliers) framework. It is noteworthy that our algorithm enjoys easy subproblems
with closed-form solutions. To highlight the reliability of our approach, we conduct a series
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of numerical experiments on color face classification and traffic datasets. Computational
results support the idea of this paper.

This paper is divided into five parts. In Section 2, we summarize some notations and
recall some basic definitions that will be used in this paper. In Section 3, we introduce
our new tensor linear regression model. By introducing an auxiliary variable to separate
the nonsmooth and smooth terms, we propose an implementable algorithm to solve the
underlying model. Moreover, we establish the convergence result of the proposed algorithm.
In Section 4, we conduct the numerical performance of our method in synthetic and real-
world datasets. Finally, some concluding remarks are drawn in Section 5.

2 Preliminaries

Throughout this paper, the field of real numbers is denoted as K. Without special in-
structions, we denote scalars and vectors by lowercase letters (e.g., x, y, . . .) and boldfaced
lowercase letters (e.g., x,y, . . .), respectively. Matrices and tensors are denoted by capital
letters (e.g., X,Y, . . .) and calligraphic letters (e.g., X ,Y, . . .), respectively. For given integer
n, we denote [n] = {1, 2, . . . , n}.

For a third-order tensor A ∈ Km×n×p, we denote its (i, j, k)th entry as Aijk, use the
Matlab notation A(:, :, k) to denote the kth frontal slice, use the notation aij ∈ K1×1×p

to denote the (i, j)th tube fiber of A, that is, aij = A(i, j, :) for i ∈ [m] and j ∈ [n],
and denote the kth entry in the tube aij by aij(k) for k ∈ [p]. Accordingly, by using the
tube notation and introducing the notation Km×n

p in palace of Km×n×p, the third-order
tensor A ∈ Km×n×p can be viewed as an m × n matrix consisting of tubal scalars, which
is denoted by A = (aij) ∈ Km×n

p . Under this setting, we denote the kth frontal slice of
A ∈ Km×n

p by A(k) = (aij(k)) being exactly an m × n matrix. Moreover, for given A =
(aij),B = (bij) ∈ Km×n

p , their inner product is defined as ⟨A,B⟩ =
∑m

i=1

∑n
j=1⟨aij , bij⟩,

and the associated Frobenius norm of A is defined as ∥A∥F =
√
⟨A,A⟩. In particular,

when A,B are matrices, their the inner product is given by ⟨A,B⟩ = trace(A⊤B) with A⊤

denoting the transpose of A and trace(·) representing the trace of a matrix. Throughout,

∥A∥∗ =
∑min{m,n}

i=1 σi(A) is called the nuclear norm of a matrix A ∈ Km×n, and σmax(A) and
σmin(A) denote the largest and smallest singular value of A, respectively. Denote by Sm×m

the m×m real symmetric matrices set, and λmax(A) and λmin(A) stand for the largest and
smallest eigenvalues of given A ∈ Sm×m, respectively. For a given tube matrix C ∈ Km×n

p

(indeed a tensor C ∈ Km×n×p), we denote the operator by Vec(C) converting C into a tube
vector in Kmn

p by stacking columns of tube matrix C ∈ Km×n
p on top of another.

Let Q = (Qij) ∈ Kp×p be an orthogonal matrix. We define a mapping ϕQ : Kp → Kp

by ā := ϕQ(a) = Qa for a ∈ Kp, and its inverse mapping ϕ−1
Q : Kp → Kp is defined by

ϕ−1
Q (a) := Q−1a for a ∈ Kp. For given a, b ∈ Kp, their product with respect to Q is the

tubal scalar given by a ⊙Q b = ϕ−1
Q (ϕQ(a) ◦ ϕQ(b)), where ◦ is the Hadamard product of

vectors.

Definition 2.1. Let Q ∈ Kp×p be an orthogonal matrix. The transformed T-product of
A = (ail) ∈ Km×s

p and B = (blj) ∈ Ks×n
p , denoted by A⊛QB, is a tensor C ≡ (cij) ∈ Km×n

p ,
which is given by

cij =

s∑
l=1

ail ⊙Q blj , i ∈ [m] and j ∈ [n].

In particular, for x ∈ Kp and A = (aij) ∈ Km×n
p , we have (x ⊙Q A)ij = x ⊙Q aij , i ∈

[m] and j ∈ [n].
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Such a transformed T-product A⊛QB is equivalently derived by considering a third-order
tensor as a matrix of tube fibers, leaving matrix multiplication untouched, but replacing
scalar multiplication with the definition required to handle tube fibers. If Q is specified as
the discrete Fourier transform (DFT) matrix and both A and B are complex tensors, then
A ⊛Q B immediately reduces to the classical T-product introduced by Kilmer et al. [12].
The cosine transform product defined in [11] is also an example of a ⊛Q-family product.

Let Q ∈ Kp×p be orthogonal, A = (aij) ∈ Km×s
p ,B = (bij) ∈ Ks×n

p . Denote Ā :=

ΦQ(A) = (ϕQ(aij)) and B̄ := ΦQ(B) = (ϕQ(bij)). Then, we have ⟨A,B⟩ = ⟨Ā, B̄⟩ and

C = A⊛Q B ⇔ c̄ij(k) =

s∑
l=1

āil(l)b̄lj(l), k ∈ [p],

which means
C̄(k) = Ā(k)B̄(k), k ∈ [p]. (2.1)

Definition 2.2. Let Q be an orthogonal matrix and A ∈ Km×n
p . Then B = (bij) ∈ Kn×m

p

is called the transpose of A, and denoted as A⊤ = B, if bij = aji for i ∈ [n] and j ∈ [m].

From Definition 2.2, we know that ΦQ(A⊤)(k) = (ΦQ(A)(k))⊤ for k ∈ [p].

Proposition 2.3. Let Q be an orthogonal transformation. The multiplication reversal prop-
erty of the conjugate transpose holds: (A⊛QB)⊤ = B⊤⊛QA⊤ for A ∈ Km×s

p and B ∈ Ks×n
p .

Proof. It follows from Definition 2.1 and Definition 2.2.

Letting A ∈ Km×m
p , A is f-diagonal if each frontal slice of A is diagonal, and we call

A an identity tensor under Q, denoted by Im, if it is f-diagonal and all of its diagonal tube
fibers are eQ, where eQ = ϕ−1

Q (e) and e = (1, 1, . . . , 1)⊤ ∈ Kp. It is obvious that A is an

identity tensor under Q, if and only if Ā(k) is an m ×m identity matrix for every k ∈ [p].
A tensor A ∈ Km×m

p is called nonsingular (invertible) under the transformed T-product
⊛Q, if A ⊛Q B = B ⊛Q A = Im for some B ∈ Km×m

p . In that case, we denote A−1 = B.
Particularly, if A−1 = A⊤, then we call A a ⊛Q-orthogonal tensor. If A ∈ Km×q

p (q ≤ m)

satisfies A⊤ ⊛Q A = Iq, we say that A is partially ⊛Q-orthogonal. Let A ∈ Km×n
p and

B ∈ Km×s
p , we call that the tube fiber column vectors in B, i.e., {B·1,B·2, . . . ,B·s}, is an

orthogonal basis for the tube fiber columns of A in the sense of ⊛Q, if B is partially ⊛Q-
orthogonal, and A = B⊛Q C for some C ∈ Ks×n

p , which is equivalent to A = B⊛Q B⊤⊛QA.

Proposition 2.4. Let Q ∈ Kp×p be an orthogonal matrix. For any given A ∈ Km×n
p and

B ∈ Kn×t
p , it holds that

min
1≤k≤p

σmin

(
Ā(k)

)
∥B∥F ≤

∥∥A⊛Q B
∥∥
F
≤ max

1≤k≤p
σmax

(
Ā(k)

)
∥B∥F .

Proof. It follows from (2.1) that

∥A⊛ B∥2F =

p∑
k=1

∥∥Ā(k)B̄(k)

∥∥2
F

and ∥B∥2F =

p∑
k=1

∥∥B̄(k)

∥∥2
F
.

By matrix theory, we know

σ2
min(Ā(k))∥B̄(k)∥2F ≤ ∥Ā(k)B̄(k)∥2F ≤ σ2

max(Ā(k))∥B̄(k)∥2F , for k = 1, 2, . . . , p.

Consequently, by the expressions above, we obtain the desired result and complete the
proof.
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Proposition 2.5. For given orthogonal matrices Ũ ∈ Km×m and Ṽ ∈ Kn×n, we have

∂∥Y ∥∗ =
{
ŨSṼ | S ∈ ∂∥X∥∗

}
and ∂(rank(Y )) =

{
ŨSṼ | S ∈ ∂(rank(X))

}
,

where rank(·) represents the rank function, X ∈ Km×n and Y = ŨXṼ .

Proof. It is obvious from [14, Definition 5.2] that ∥ · ∥∗ and rank(·) are singular value
functions. Since Ũ and Ṽ are orthogonal, it holds that σ(Y ) = σ(X). Moreover,
ŨUDiag(σ(X))V Ṽ is a singular value decomposition (SVD) of Y , provided that
UDiag(σ(X))V is a SVD of X. Hence, the desired formulas follow from [14, Theorem
7.1].

3 Model and Algorithm

In this section, we introduce a new low-rank prior tensor linear regression model. Then,
we propose an implementable algorithm to solve the underlying model. Finally, we further
establish the convergence result for the proposed algorithm.

3.1 Low-rank prior tensor linear regression model

Given a set of training tensor samples A1,A2, . . . ,Aq ∈ Km×n
p and a test tensor sample

B ∈ Km×n
p , we consider B is a linear combination of A1,A2, . . . ,Aq in the sense of ⊙Q-

product, i.e.,
B = x1 ⊙Q A1 + x2 ⊙Q A2 + . . .+ xq ⊙Q Aq + E , (3.1)

where xi ∈ Kp (i = 1, 2, . . . , q) are tubal fiber coefficients and E is the representation
residual, which is assumed to obey a Gaussian distribution. Recalling the definitions of
operator Vec(·) converting a tensor into a tube vector, the ⊙Q-product and ⊛Q-product, we
have

x1 ⊙Q A1 + x2 ⊙Q A2 + · · ·+ xq ⊙Q Aq

= x1 ⊙Q Vec(A1) + x2 ⊙Q Vec(A2) + · · ·+ xq ⊙Q Vec(Aq)

= A⊛Q X,

where A =
[
Vec(A1),Vec(A2), . . . ,Vec(Aq)

]
∈ Kmn×q

p and X = [x1;x2; . . . ;xq] ∈ Kq
p.

Consequently, (3.1) can be written into a compact form as follows

B = A⊛Q X +E, (3.2)

where B and E are tube matrices of B and E , respectively. Clearly, (3.2) is a natural
extension of the matrix linear regression, which is a special case with setting p = 1. Unlike
the model (1.1), we use vector coefficients xi instead of scalars so that the information of
each frontal slice of all training tensors is possibly to be considered with different weights.
On the other hand, the appearance of transformation Q is possibly able to explore the
inherent property. Therefore, our model are comparatively more flexible and reasonable
than the model (1.1).

Generally speaking, it is not an ideal way to find the coefficient matrix X by directly
solving (3.2). Moreover, from the practical applications (e.g., see [24, 16]), the coefficient
matrix X often has a low-rank structure, which at least is what we expected. Accordingly,
we are concerned with the following model:

min
X∈Kq

p

rank(X) +
α

2

∥∥A⊛Q X −B
∥∥2
F
, (3.3)
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where α > 0 is a tuning parameter. However, solving model (3.3) is NP-hard due to the
appearance of the rank function. Therefore, we directly follow the idea of [1, 2, 6, 21] by
using the classical nuclear norm to approximate the rank function rank(X). Moreover, to
avoid over-fitting, we follow the spirit of ridge regression to impose a Tikhonov regularization
term on the coefficient matrix X. Specifically, we consider the following doubly regularized
minimization model:

min
X∈Kq

p

∥X∥∗ +
α

2

∥∥A⊛Q X −B
∥∥2
F
+
τ

2
∥X∥2F , (3.4)

where τ > 0 is a Tikhonov regularization parameter. Revisiting the model (1.1), we notice
that the low-rank promoting term ∥E∥TNN requires the full size of tensor E , which would
suffer from expensive computational cost when E is of big size. Comparatively, the coefficient
matrixX in our model usually has much smaller size than the tensor E . Therefore, our model
often enjoys lower computational cost than (1.1) when dealing with large-scale problems.

3.2 Algorithm

To find a numerical solution of (3.4), we observe that the nonsmooth nuclear norm term
makes (3.4) intractable. However, the good news is that the last two terms of (3.4) are
differentiable. Therefore, to separate the nonsmooth and smooth terms, we introduce an
auxiliary variable Y ∈ Kq

p and rewrite (3.4) as the following separable minimization problem:

min
X,Y

∥Y ∥∗ +
α

2
∥A⊛Q X −B∥2F +

τ

2
∥X∥2F

s.t. X = Y .
(3.5)

Clearly, (3.5) is a linearly constrained convex optimization problem. As we know, one of
the most popular solvers to solve (3.5) is the well-known ADMM. Here, we first recall the
augmented Lagrangian function associated with (3.5), which is given by

L (X,Y ,U) = ∥Y ∥∗ +
α

2
∥A⊛Q X −B∥2F +

τ

2
∥X∥2F +

〈
U ,X − Y

〉
+
β

2

∥∥X − Y
∥∥2
F
,

(3.6)

where U is the Lagrangian multipliers and β > 0 is a penalty parameter. Below, we shall
show the customized implementation of ADMM to (3.5). Since the Y -part subproblem
amounts to a proximal operator, which is simpler than the X-part, we then update variables
in order Y → X → U . More specifically, for given the l-th iterate

(
X l,Y l,U l

)
, the iterative

scheme of ADMM for (3.5) reads as
Y l+1 = argmin

Y
L
(
X l,Y ,U l

)
,

X l+1 = argmin
X

L
(
X,Y l+1,U l

)
,

U l+1 = U l + β
(
X l+1 − Y l+1

)
.

(3.7)

Below, we present the concrete updating scheme of each variable and show that our algorithm
enjoys closed-form solutions for each subproblem.

The Y subproblem: For the l-th iteration, the Y subproblem is specified as

Y l+1 = argmin
Y

L
(
X l,Y ,U l

)
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= argmin
Y

{
∥Y ∥∗ +

β

2

∥∥X l − Y + (1/β)U l
∥∥2
F

}
= SVT

(
X l + (1/β)U l, 1/β

)
, (3.8)

where SVT(·, ·) is the well-known singular value shrinkage operator defined by

SVT(M, τ) = Ushrinkτ (Σ)V
⊤

with M = UΣV ⊤ being the SVD of matrix M ∈ Km×n of rank r in the reduced
form, U and V are m × r and n × r matrices with orthogonal columns, respectively,
Σ = diag ({σi}1≤i≤r) is a diagonal matrix and shrinkτ (Σ) = diag (max{σi − τ, 0}) for
τ ≥ 0.

The X-subproblem: Updating X l+1 amounts to solving the following optimization
problem:

min
X∈Kq

p

{
α

2

∥∥A⊛Q X −B
∥∥2
F
+
τ

2

∥∥X∥∥2
F
+
β

2

∥∥X − Y l+1 + (1/β)U l
∥∥2
F

}
,

which is equivalent to

min
X̄(k)

{
α

2

p∑
k=1

∥∥Ā(k)X̄(k) − B̄(k)

∥∥2
F
+
τ

2

p∑
k=1

∥∥X̄(k)

∥∥2
F
+
β

2

p∑
k=1

∥∥X̄(k) − Ȳ l+1
(k) +

1

β
Ū l
(k)

∥∥2
F

}
,

(3.9)
where Ā(k), B̄(k), X̄(k), Ȳ

l+1
(k) and Ū l

(k) are the k-th frontal slices of Ā, B̄, X̄, Ȳ l+1 and

Ū l, respectively. Thanks to the full separable structure with respect to X̄(k) for k =
1, 2, . . . , p, solving (3.9) amounts to individually finding a solution of

min
X̄(k)∈Kq

p

{
α

2

∥∥Ā(k)X̄(k) − B̄(k)

∥∥2
F
+
τ

2

∥∥X̄(k)

∥∥2
F
+
β

2

∥∥X̄(k) − Ȳ l+1
(k) +

1

β
Ū l
(k)

∥∥2
F

}
. (3.10)

By the optimality condition of (3.10), it is easy to see that for k = 1, 2, . . . , p,

αĀ⊤
(k)

(
Ā(k)X̄

l+1
(k) − B̄(k)

)
+ τX̄ l+1

(k) + β

(
X̄ l+1

(k) − Ȳ l+1
(k) +

1

β
Ū l
(k)

)
= 0, (3.11)

which implies

X̄ l+1
(k) =

(
(τ + β)I + αĀ⊤

(k)Ā(k)

)−1 (
αĀ⊤

(k)B̄(k) + βȲ l+1
(k) − Ū l

(k)

)
for k = 1, 2, . . . , p. Therefore, we have

X l+1 =
(
(τ + β)I + αA⊤ ⊛Q A

)−1 ⊛Q

(
αA⊤ ⊛Q B + βY l+1 −U l

)
. (3.12)

Note that Ū l+1
(k) = Ū l

(k)+β
(
X̄ l+1

(k) − Ȳ l+1
(k)

)
for k = 1, 2, . . . , p. It then follows from (3.11)

that
αĀ⊤

(k)

(
Ā(k)X̄

l+1
(k) − B̄(k)

)
+ τX̄ l+1

(k) + Ū l+1
(k) = 0,

which immediately implies that, for any l ≥ 0,

U l+1 = αA⊤ ⊛Q

(
B −A⊛Q X l+1

)
− τX l+1. (3.13)

Clearly, (3.13) provides an alternative updating formula for U l+1 without Y l+1. In
this situation, the Y can be regarded as an intermediate variable.
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Algorithm 1 ADMM for solving (3.5)

Input: α > 0, β > 0, and τ > 0. Choose starting points (X0,U0).

1: for l = 0, 1, 2, · · · do
2: Update Y l+1 via (3.8);
3: Update X l+1 via (3.12);
4: Update U l+1 via the third one of (3.7) or (3.13);
5: end for

Output: Optimal regression coefficient matrix X̂.

With the above preparations, we formally summarize the updating schemes for model (3.5)
in Algorithm 1.

When implementing Algorithm 1, we shall set a stopping criterion. Actually, it is not
difficult to see that the first-order optimality conditions for (3.5) can be written as the
following  ∂∥Y ∥∗ −U ∋ 0,

αA⊤ ⊛Q

(
A⊛Q X −B

)
+ τX +U = 0,

X − Y = 0.
(3.14)

Moreover, we call the triple
(
X∗,Y ∗,U∗) satisfying (3.14) a stationary point of (3.5). In

practice, we can use the following termination criterion:

max
{∥∥X l+1 − Y l+1

∥∥
F
,
∥∥A⊛Q X l+1 −B

∥∥
F

}
≤ ϵ, (3.15)

where ϵ > 0 is a preset precision.

3.3 Convergence analysis

In this subsection, we analyze the convergence of Algorithm 1 and begin this part with the
following lemma.

Lemma 3.1. Let
{(

X l,Y l,U l
)}∞

l=0
be the sequence generated by Algorithm 1. Then, we

have

L
(
X l,Y l+1,U l

)
≤ L

(
X l,Y l,U l

)
. (3.16)

Proof. Since Y l+1 is the optimal solution of the Y -subproblem (i.e., (3.8)), we know

∥∥Y l+1
∥∥
∗ +

β

2

∥∥X l − Y l+1 +
1

β
U l
∥∥2
F
≤
∥∥Y l

∥∥
∗ +

β

2

∥∥X l − Y l +
1

β
U l
∥∥2
F
,

which, together with the definition of L , implies the desired result.

Lemma 3.2. Let
{(

X l,Y l,U l
)}∞

l=0
be the sequence generated by Algorithm 1. It holds that

L
(
X l+1,Y l+1,U l

)
≤ L

(
X l,Y l+1,U l

)
− ζ

2

∥∥X l+1 −X l
∥∥2
F
, (3.17)

where ζ = τ + β + α λ̄min with λ̄min = min
1≤k≤p

λmin

(
Ā⊤

(k)Ā(k)

)
.
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Proof. For every k = 1, 2, . . . , p and l ≥ 1, we define φlk : Kq → K by

φlk(X̄(k)) =
α

2

∥∥Ā(k)X̄(k) − B̄(k)

∥∥2
F
+
τ

2

∥∥X̄(k)

∥∥2
F
+
β

2

∥∥X̄(k) − Ȳ l+1
(k) +

1

β
Ū l
∥∥2
F
.

It is obvious that φlk(·) is strongly convex with modulus at least ζk := τ+β+αλmin

(
Ā⊤

(k)Ā(k)

)
on Kq, which implies

φlk(X̄
′
(k)) ≥ φlk(X̄(k)) +

〈
∇φlk(X̄(k)), X̄(k) − X̄ ′

(k)

〉
+
ζk
2
∥X̄ ′

(k) − X̄(k)∥2F

for any X̄ ′
(k), X̄(k) ∈ Kq. Since X̄ l+1

(k) minimizes φlk(X̄(k)), it holds that ∇φlk

(
X̄ l+1

(k)

)
= 0.

Consequently, it holds that

φlk

(
X̄ l

(k)

)
≥ φl

(
X̄ l+1

(k)

)
+
ζk
2

∥∥X̄ l+1
(k) − X̄ l

(k)

∥∥2
F
,

which implies

L
(
X l,Y l+1,U l

)
≥ L

(
X l+1,Y l+1,U l

)
+
ζ

2

∥∥X l+1 −X l
∥∥2
F
,

where ζ = min{ζk | k = 1, 2, . . . , p}. We obtain the desired result and complete the proof.

Proposition 3.3. Let
{(

X l,Y l,U l
)}∞

l=0
be a sequence generated by Algorithm 1. Let

c0 := L
(
X0,Y 0,U0

)
and σ̄max = max

1≤k≤p
σmax

(
(Ā(k))

⊤Ā(k)

)
. We have the following conclu-

sions:

(a). If β
(
τ + β + α λ̄min

)
− 2
(
τ + α σ̄max

)2
> 0, then the sequence

{(
X l,Y l,U l

)}∞
l=0

satisfies the following formula

L
(
X l+1,Y l+1,U l+1

)
+ ξ
∥∥X l+1 −X l

∥∥2
F
≤ L

(
X l,Y l,U l

)
for any l ≥ 1, where ξ = 1/(2β)

{
β
(
τ + β + α λ̄min

)
− 2
(
τ + α σ̄max

)2}
.

(b). If β
(
τ + β + αλ̄min

)
− 2
(
τ + ασ̄max

)2
> 0 and τβ − 2 (τ + ασ̄max)

2
> 0, then the

sequence
{(

X l,Y l,U l
)}∞

l=0
is bounded.

Proof. First, by the update formula of Lagrangian multiplier in (3.7), we know that for any
l ≥ 0,

L
(
X l+1,Y l+1,U l+1

)
= L

(
X l+1,Y l+1,U l

)
+

1

β

∥∥U l+1 −U l
∥∥2
F
,

which, together with Lemmas 3.1 and 3.2, implies that, for any l ≥ 0,

L
(
X l+1,Y l+1,U l+1

)
≤ L

(
X l,Y l,U l

)
− ζ

2

∥∥X l+1 −X l
∥∥2
F
+

1

β

∥∥U l+1 −U l
∥∥2
F
. (3.18)

On the other hand, it follows from (3.13) that∥∥U l+1 −U l
∥∥2
F
=
∥∥(τI + αA⊤ ⊛Q A

)
⊛Q

(
X l+1 −X l

)∥∥2
F

≤ max
1≤k≤p

σ2
max

(
τI + αĀ⊤

(k)Ā(k)

)∥∥X l+1 −X l
∥∥2
F
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=
(
τ + α σ̄max

)2∥∥X l+1 −X l
∥∥2
F
, (3.19)

where the inequality comes from Proposition 2.4. Consequently, it holds from (3.18) and
(3.19) that

L
(
X l+1,Y l+1,U l+1

)
≤ L

(
X l,Y l,U l

)
−

(
ζ

2
−
(
τ + α σ̄max

)2
β

)∥∥X l+1 −X l
∥∥2
F

= L
(
X l,Y l,U l

)
−
β
(
τ + β + α λ̄min

)
− 2
(
τ + α σ̄max

)2
2β

∥∥X l+1 −X l
∥∥2
F
.

Therefore, we obtain the conclusion (a).
Now we prove (b). By (3.13), it holds that∥∥U l

∥∥2
F
≤
(∥∥αA⊤ ⊛Q B

∥∥
F
+
∥∥(τI + αA⊤ ⊛Q A)⊛Q X l

∥∥
F

)2
≤ 2α2

∥∥A⊤ ⊛Q B
∥∥2
F
+ 2
(
τ + ασ̄max

)2∥∥X l
∥∥2
F
,

where the second inequality comes from Proposition 2.4. As a consequence, we have

L
(
X l,Y l,U l

)
=
∥∥Y l

∥∥
∗ +

α

2

∥∥A⊛Q X l −B
∥∥2
F
+
τ

2

∥∥X l
∥∥2
F

+
β

2

∥∥X l − Y l +
1

β
U l
∥∥2
F
− 1

2β

∥∥U l
∥∥2
F

≥
∥∥Y l

∥∥
∗ +

α

2

∥∥A⊛Q X l −B
∥∥2
F
+
τ

2

∥∥X l
∥∥2
F

+
β

2

∥∥X l − Y l +
1

β
U l
∥∥2
F
− α2

β

∥∥A⊤ ⊛Q B
∥∥2
F
− 1

β

(
τ + ασ̄max

)2∥∥X l
∥∥2
F

=
∥∥Y l

∥∥
∗ +

α

2

∥∥A⊛Q X l −B
∥∥2
F
+

(
τ

2
− 1

β

(
τ + ασ̄max

)2)∥∥X l
∥∥2
F

+
β

2

∥∥X l − Y l +
1

β
U l
∥∥2
F
− α2

β

∥∥A⊤ ⊛Q B
∥∥2
F
. (3.20)

By conclusion (a), we know that L
(
X l,Y l,U l

)
≤ c0 for any l ≥ 0, which, together with

(3.20), implies that∥∥Y l
∥∥
∗ +

α

2

∥∥A⊛Q X l −B
∥∥2
F

+

(
τ

2
− 1

β

(
τ + ασ̄max

)2)∥∥X l
∥∥2
F
+
β

2

∥∥X l − Y l +
1

β
U l
∥∥2
F

≤ c0 +
α2

β

∥∥A⊤ ⊛Q B
∥∥2
F
:= c1. (3.21)

By (3.21) and the given condition, we have
∥∥X l

∥∥
F
≤
√

2βc1/ρ with ρ := τβ−2 (τ + ασ̄max)
2

and
∥∥Y l

∥∥
∗ ≤ c1 for any l ≥ 0. Hence, we know

∥∥Y l
∥∥
F

≤
∥∥Y l

∥∥
∗ ≤ c1 for any l ≥ 0.

Consequently, by using (3.21) again, it holds that∥∥ 1
β
U l
∥∥
F
≤
∥∥X l − Y l +

1

β
U l
∥∥
F
+
∥∥X l

∥∥
F
+
∥∥Y l

∥∥
F
≤
√
2c1/β +

√
2c1β/ρ+ c1,

which implies
∥∥U l

∥∥
F
≤

√
2c1β+

√
2c1β3/ρ+βc1. We obtain the conclusion (b). The proof

is completed.
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We are now ready to prove our global convergence result for Algorithm 1.

Theorem 3.4. Let
{(

X l,Y l,U l
)}∞

l=0
be a sequence generated by Algorithm 1. If β

(
τ +

β + α λ̄min

)
− 2
(
τ + α σ̄max

)2
> 0 and τβ − 2 (τ + ασ̄max)

2
> 0, then we have the following

conclusions:

(a). lim
l→∞

∥∥X l+1 −X l
∥∥
F
+
∥∥Y l+1 − Y l

∥∥
F
+
∥∥U l+1 −U l

∥∥
F
= 0.

(b). Any cluster point
(
X∗,Y ∗,U∗) of {(X l,Y l,U l

)}∞
l=1

is a stationary point of (3.5).

Proof. With the given conditions, by Proposition 3.3, we immediately obtain the bounded-
ness of the sequence

{(
X l,Y l,U l

)}∞
l=1

, which implies a cluster point exists.

Now, we first prove statement (a). Suppose that
(
X∗,Y ∗,U∗) is a cluster point of

the sequence
{(

X l,Y l,U l
)}∞

l=1
generated by Algorithm 1, and let

{(
X li ,Y li ,U li

)}∞
i=1

be a convergent subsequence such that limi→∞
(
X li ,Y li ,U li

)
=
(
X∗,Y ∗,U∗). By the

statement (a) of Proposition 3.3, it holds that

ξ

li∑
l=1

∥∥X l+1 −X l
∥∥2
F
≤ L

(
X0,Y 0,U0

)
− L

(
X li ,Y li ,U li

)
.

Consequently, by letting li → ∞, we know

ξ

∞∑
l=1

∥∥X l+1 −X l
∥∥2
F
≤ L

(
X0,Y 0,U0

)
− L

(
X∗,Y ∗,U∗) <∞. (3.22)

Hence, lim
l→∞

∥∥X l+1 − X l
∥∥
F

= 0. By (3.19) in the proof of Proposition 3.3, we know

lim
l→∞

∥∥U l+1 −U l
∥∥
F
= 0. Moreover, by the updating formula of U in (3.7), we have

Y l+1 − Y l = X l+1 −X l − 1

β

(
U l+1 −U l

)
+

1

β

(
U l −U l−1

)
,

which implies∥∥Y l+1 − Y l
∥∥
F
≤
∥∥X l+1 −X l

∥∥
F
+

1

β

∥∥U l+1 −U l
∥∥
F
+

1

β

∥∥U l −U l−1
∥∥
F
.

Hence, we have lim
l→∞

∥∥Y l+1 − Y l
∥∥
F
= 0. The conclusion (a) holds.

Hereafter, we prove (b). From the first optimality condition of Y subproblem (3.8) at
the li-th iteration, we know

0 ∈ ∂
∥∥Y li

∥∥
∗ + β

(
Y li −X li−1 − 1

β
U li−1

)
= ∂

∥∥Y li
∥∥
∗ −U li + β

(
X li −X li−1

)
, (3.23)

where the equality is due to the third expression in (3.7).
On the other hand, by the optimality condition of (3.10) at the li-th iteration, it is easy

to see that for k = 1, 2, . . . , p,

αĀ⊤
(k)

(
Ā(k)X̄

li
(k) − B̄(k)

)
+ τX̄ li

(k) + β

(
X̄ li

(k) − Ȳ li
(k) +

1

β
Ū li−1
(k)

)
= 0,
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which, together with the update formula of U (i.e., Ū li
(k) = Ū li−1

(k) + β
(
X̄ li

(k) − Ȳ li
(k)

)
for

k = 1, 2, . . . , p), implies

αĀ⊤
(k)

(
Ā(k)X̄

li
(k) − B̄(k)

)
+ τX̄ li

(k) + Ū li
(k) = 0. (3.24)

By (3.24), we know

αA⊤ ⊛Q

(
A⊛Q X li −B

)
+ τX li +U li = 0. (3.25)

Consequently, by letting li → ∞ in (3.23) and (3.25), it holds that{
∂
∥∥Y ∗

∥∥
∗ −U∗ ∋ 0,

αA⊤ ⊛Q

(
A⊛Q X∗ −B

)
+ τX∗ +U∗ = 0,

(3.26)

since
∥∥X li −X li−1∥F → 0 as li → ∞.

Finally, since U li − U li−1 = β
(
X li − Y li

)
and lim

li→∞

∥∥U li − U li−1
∥∥
F

= 0, we know

X∗ − Y ∗ = 0, which, together with (3.26), implies that
(
X∗,Y ∗,U∗) is a stationary point

of (3.5).

Remark 3.5. In Proposition 3.3 and Theorem 3.4, there are two assumptions β
(
τ + β +

αλ̄min

)
−2
(
τ+ασ̄max

)2
> 0 and τβ−2 (τ + ασ̄max)

2
> 0, where the first condition is used to

ensure that the Lagrange function (3.6) is nonincreasing, and the second one guarantees the
boundedness of the sequence {X l}. In practice, these two assumptions can be easily satisfied.
Note that the tensor A is known, we can directly compute λ̄min and σ̄max. Moreover, τ and
α are regularization parameters in optimization problem (3.4), we could simply choose the
penalty parameter β as large as possible to satisfy the assumptions.

4 Numerical Experiments

In this section, we apply the proposed method to color face classification and traffic flow data
regression. All codes were written by Matlab 2021b and all experiments were conducted
on a laptop computer with Intel (R) core (TM) i7-7500 CPU @ 2.70GHz and 8GB memory.

4.1 Face classification

In this part, we apply our method to color face classification. Here, we refer the reader to
[3, 19] for more details on face recognition and classification. For given a set of training
sample images A1, . . . ,Aq ∈ Km×n

p , we could divide them into N classes and the i-th class
has qi (i ∈ [N ]) samples, i.e.,

{A1, . . . ,Aq} =

(A1)1, . . . , (A1)q1︸ ︷︷ ︸
the 1st class

, . . . , (AN )1, . . . , (AN )qN︸ ︷︷ ︸
the Nth class

 .

Then, for a given new face image B ∈ Km×n
p , it could be linearly represented by all train-

ing sample images under the transformed T-product, which corresponds to model (3.1).
Therefore, we can obtain the coefficient matrix X via solving the optimization problem
(3.5) by Algorithm 1. Here, we define a function ψi : Kq

p → Kq
p (q =

∑N
i=1 qi) being the
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characteristic function that selects the coefficients associated with the i-th class, i.e., for
X = [(x1)1; . . . ; (x1)q1 ; . . . ; (xi)1; . . . ; (xi)qi ; . . . ; (xN )1; . . . ; (xN )qN ] ∈ Kq

p, we define

ψi(X) = [0, . . . ,0, (xi)1, . . . , (xi)qi ,0, . . . ,0] ∈ Kq
p.

Using the coefficients associated with the i-th class, we can get the reconstruction of test
sample B in the i-th class as B̄i = A ⊛Q ψi(X), where A = [Vec((A1)1),Vec((A1)q1), . . . ,
Vec((AN )1), . . . ,Vec((AN )qN )]. The i-th class’s reconstruction error is defined by

δi(B) =
∥∥B − B̄i

∥∥2
F
. (4.1)

Accordingly, when δj = min1≤i≤N δi(B), then B is assigned to class j.
Below, we conduct the numerical performance of our method on two real human faces

databases, i.e., the Multiple faces datasets and the AR database. In this part, we compare
our method with three efficient benchmark solvers introduced in the literature, including
low-tubal-rank tensor linear regression method (TLRFR [7]), low-matrix-rank regularized
regression method (LR3 [19]) and Fast-NMR ([27]). Besides, our method is denoted by Ours.
Since there are some parameters in model (3.4) and algorithm 1. We set τ = 1/2, α = 1 and
β = 1 for all experiments. All parameters of the other compared algorithms were taken as
the default values used in the paper. Moreover, for the fair comparison, we take (3.15) as
the stopping criterion with ϵ = 10−8 and set the max iterations as 500 for all methods. To
simulate the real situation, each experiment consists of four scenarios:

(i). train samples and test samples are all clean;

(ii). train samples are contaminated and test samples are clean;

(iii). train samples are clean and test samples are contaminated;

(iv). train samples and test samples are all contaminated.

Some examples are collected in Figure 1.
We first consider the Multipie database. The Multipie database has a total of 1515

images, each one size is 240× 280× 3. In order to simplify the experiment, it is reduced to
60× 70× 3. Here, we selected 792 images as experimental data and divided them into four
groups (198 for each group). There are 18 subjects in each group, and each subject has 11
pictures. Here we selected 8 of them as training set and the remaining three as testing set.
The face classification rate (Acc for short), computing time in seconds (Time for short) and
number of iterations (Iter for short) results are summarized in Table 1. It is not difficult
to see that our method takes less computing time and iterations to achieve higher accuracy
than the other three methods in many cases.

Secondly, we consider the AR Database, which consists of 4000 images of 126 subjects.
Each image is of size 165× 120× 3 and there are 13 images for each subject. We randomly
chose 50 subjects and divided them into two groups (25 for each group). Here, for each
subject, seven images are chosen as training samples and three samples as test set. We list
the numerical results in Table 2. Similar to MultiPie Database, our method is competitive
to achieve ideal accuracy by taking less computing time and iterations than the other three
methods. Therefore, the above experiment on face classification support the reliability of
our approach.

MultiPIE faces data sets: http://www.flintbox.com/public/project/4742/
http://www2.ece.ohio-state.edu/ aleix/ARdatabase.html
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Figure 1: Some images of Multipie dataset and AR dataset under experiments. The first and
third rows are the clean data without noise, the second and fourth rows are the corrupted
samples images with noise.

Table 1: Computational results on four groups of MultiPie database.

4.2 Traffic data prediction

In this subsection, we apply the proposed method to traffic data prediction. Given a traffic
flow data Atrue ∈ Ko1×o2×d

t , where o1, o2, d and t represent origin, destination sites, days and
time intervals to record the data of each day, respectively. We simply denote Ai = Atrue(:
, :, i, :), i ∈ [d] in Matlab language. We firstly choose N (N < d) days (A1, . . . ,AN ) from
Atrue and divide them into two groups, the first q days (A1, . . . ,Aq ∈ Ko1×o2

t ) and the left
N−q days (Aq+1, . . . ,AN ∈ Ko1×o2

t ). We assume that Aq+1, . . . ,AN could be approximated
linearly by the last q days with under the transformed T-product, i.e.,

Aq+i ≈ x1 ⊙Q Ai + · · ·+ xq ⊙Q Aq+i−1, 1 ≤ i ≤ N − q.
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Table 2: Computational results on two groups of AR Database

Then, we establish the following minimization model:

min
X∈Kq

t

∥X∥∗ +
α

2

N−q∑
i=1

∥Aq+i − Ãq+i ⊛Q X∥2F +
τ

2
∥X∥2F , (4.2)

where Aq+i = Vec(Aq+i) ∈ Ko1o2
t ,X = [x1;x2; . . . ;xq] ∈ Kq

t and Ãq+i = [Vec(Ai), . . . ,
Vec(Aq+i−1)] ∈ Ko1o2×q

t . It is not difficult to see that model (4.2) falls into the form of (3.4)
by setting

B = [Aq+1;Aq+2; . . . ;AN ] ∈ K(N−q)o1o2
t and A = [Ãq+1; · · · ; ÃN ] ∈ K(N−q)o1o2×q

t .

Thus, we can obtain the coefficient matrix X by solving optimization problem (3.4) via
Algorithm 1. Accordingly, we can approximately predict the next two days’ data Apre

N+1 and
Apre

N+2 by
Apre

N+1 = x1 ⊙Q AN+1−q + · · ·+ xq ⊙Q AN ,

and
Apre

N+2 = x1 ⊙Q AN+2−q + · · ·+ xq−1 ⊙Q AN + xq ⊙Q Apre
N+1,

respectively. Certainly, we could predict the next jth day’s data Apre
N+j , j > 2 in the similar

way. Here, we use the normalized mean absolute error (NMAE) to measure the quality of
the predicted data by models and algorithms, where the NMAE is defined as follows

NMAE :=

∑
i

∑
(j,k,l) |(Ai −Apre

i )jkl|∑
i

∑
(j,k,l) |(Ai)jkl|

.

Considering that both LR3 ([19]) and Fast-NMR ([27]) are matrix-based methods, in our
experiments, we only compare our approach with the aforementioned low-tubal-rank tensor
linear regression model (i.e., TLRFR in [7]) to highlight the superiority of our approach
over the tensor-based method. Moreover, we consider three synthetic datasets and three
real-world traffic datasets.

Now, we first consider some structured synthetic datasets to investigate the feasibility
and reliability of our approach. Here, we randomly generate three datasets, each one is of
size 50 × 50 × 100. Specifically, for i, j ∈ [50] and v ∈ [100], the first dataset is generated
by Atrue(i, j, :) = sqrt(v)+ rand in Matlab script; the second one is generated by Atrue(i, j, :
) = log(v) + rand + rand ∗ v2, v ∈ [100]/100; the third one is generated by Atrue(i, j, :) =
cos(v ∗ 100) + rand/5 + rand ∗ v/10. In the experiments, we simply set q = 2 and N = 3.
Here, we only show some predicted results in Figure 2. It can be seen that the visual results
obtained by our approach is reliable, at least in the sense of data trend, to approximate the
true data.
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Figure 2: The visualization of the predicted results on synthetic datasets by our approach.

Hereafter, we are concerned with the numerical performance of our approach on real-
world datasets. In our experiments, we consider three widely used traffic datasets including
GÊANT dataset [25], Hangzhou Metro Passengers Flow, and Guangzhou urban traffic speed
dataset.

• In GÊANT dataset, there are 23 routers and 529 origin and destination (OD) pairs.
For each OD pair, a count of network traffic flow is recorded for every 15 minutes in a
day. We also organize the data as a tensor of 23 × 23× 96× 119.

• Hangzhou dataset collected incoming passenger flow from 80 metro stations over 25
days (from January 1 to January 25, 2019) with a 10-minute resolution in Hangzhou,
China. We discard the interval 0:00 a.m.–6:00 a.m. with no services (i.e., only consider
the remaining 108 time intervals) and re-organize the raw data set into a tensor of
80× 25× 108.

• Guangzhou dataset is collected from 214 road segments in Guangzhou, China within
two months (i.e., 61 days from August 1, 2016 to September 30, 2016) at 10-min interval
(144 time intervals per day). The speed data can be organized as a third-order tensor
(road segment×day×time interval, with a size of 214 × 61 × 144). There are about
1.29% missing values in the raw data set.

In the experiments, we performance two cases: q = 2, N = 3 and q = 6, N = 7, and we
predict only one day and seven consecutive days for two cases. The numerical results are

https://tianchi.aliyun.com/competition/entrance/231 708/information
https://doi.org/10.5281/zenodo.1205229

For a third-order tensor W ∈ Km×d
t , it could be regarded as of size m× 1× d× t.
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Table 3: Computational results for one day when p = 2 and p = 6

Table 4: Computational results for seven days when p = 2 and p = 6

Figure 3: Prediction results of Guangzhou and Hangzhou datasets for seven consecutive
days by our approach and TLRFR when q = 2.

reported in Tables 3 and 4. It is promising that our method works better than the TLRFR
approach in terms of NMAE, computing time and iterations. Moreover, we visually show
some predicted results (seven consecutive days in some sites) on Guangzhou and Hangzhou
datasets in Figures 3 and 4. We can easily see that our approach can better approximate
the true data than the TLRFR approach. In particular, TLRFR does not work in this
application as it represents the testing data with a vector, which further verifies the power
of our method.
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Figure 4: Prediction results of Guangzhou and Hangzhou datasets for seven consecutive
days by our approach and TLRFR when q = 6.

5 Conclusion

In this paper, we introduced a low-rank prior tensor linear regression approach for high-
dimentional data analysis, where the given test tensor data is represented as a linear com-
bination of all training tensor samples under the transformed T-product. Due to the non-
smooth nuclear norm, we accordingly introduced an auxiliary variable to make the related
minimization model separable so that our proposed ADMM enjoys an easily implementable
iterative scheme. A series of computational experiments on color face classification and
traffic data demonstrate that out approach performs better than some existing methods.
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