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By X ⪰ 0 (X ≻ 0), where X ∈ Sn, we mean that X is positive semidefinite (positive
definite). Consider the following convex semidefinite programming (SDP) problem

min
X∈Sn

f(X)

s.t. Ak •X = bk, k = 1, . . . ,m,
X ⪰ 0,

(P)

where f : Sn → R is convex, b ∈ Rm, and Ak ∈ Sn, k = 1, . . . ,m. As a blanket assumption,
we assume that the optimal value for problem (P) is finite and attainable, therefore, we use
min rather than inf in problem (P).

The following notations are used in our later discussions.

Sn
+ = {X ∈ Sn|X ⪰ 0}, Sn

++ = {X ∈ Sn|X ≻ 0},
P+ = {X ∈ Sn|Ak •X = bk, k = 1, . . . ,m, X ⪰ 0},
P++ = {X ∈ Sn|Ak •X = bk, k = 1, . . . ,m, X ≻ 0},

where P++ is called the relative interior of P+. It is conventional to assume that P++ is
nonempty in the analysis of interior point methods. A comprehensive study of semidefinite
programming can be found in [39].

There are many interior point algorithms for solving problem (P), for example, [1, 20,
21, 31, 33, 40] for linear f(X), and [15, 23, 34, 35] for convex and quadratic f(X). There are
also some continuous methods for linear SDP. For example, a recurrent neural network for
real-time SDP was proposed and studied in [14]; in [19], it was shown that the primal-dual
central path converges to the analytic center of the primal-dual optimal solution set under
the strict complementarity assumption. Many of the interior point algorithms for SDP are
primal-dual path-following algorithms that are closely related to the central path [37]. In the
linear case with f(X) = tr(CX) where C ∈ Sn, the central path is the set of the solutions
of the following system with the parameter µ > 0 [39]

Ak •X = bk, k = 1, . . . ,m,∑m
k=1 ykAk + Z = C,

XZ = µI, X ⪰ 0, Z ⪰ 0,

(1.1)

where I is the identity matrix. In [27], Shida and Shindoh studied the existence and conver-
gence of the infeasible central path for the monotone semidefinite complementarity problem
and showed that for the monotone semidefinite linear complementarity problem, the trajec-
tory converges to the analytic center of the solution set provided that there exists a strictly
complementary solution. Under the assumption of primal and dual strict feasibility, Gold-
farb and Scheinberg [6] showed that the primal and dual central paths exist and converge to
the analytic centers of the optimal faces of the primal and the dual problems, respectively.
But later, Halická et al. [10] showed that the result is not correct in the absence of strict
complementarity by a counterexample, where the central path converges to a different op-
timal solution, and they also gave a short proof that the central path always converges in
SDP by using ideas from algebraic geometry. The dynamical system characterization of the
central path and its variants in linear programming (LP) and SDP was also studied in [4].
Furthermore, the study of limiting behavior of some infeasible weighted central paths for
SDP can be found in [11, 18, 24]. There is also some research work on the central path for
nonlinear SDP, for instance, [7, 8, 16]. For problem (P), López and Ramírez [16] showed
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the convergence of the central path where the logarithm barrier function is used under the
analyticity of f(X) by a similar method to [10], and other central paths defined with a large
class of penalty and barrier functions were also studied there.

It should be noted that there have been some studies on other continuous trajectories.
Sim and Zhao [28] studied the underlying paths in interior point methods for the monotone
semidefinite linear complementarity problem. They showed that each off-central path is
a well-defined analytic curve with parameter µ ranging over (0,∞) and any accumulation
point of the off-central path is a solution. Furthermore they also studied the analyticity
of the off-central path through a simple example. Then they investigated the asymptotic
behavior of off-central paths for general semidefinite linear complementarity problems (using
the dual HKM direction) under strict complementarity condition in [29]. The relationship
between the interior point methods and the underlying paths is also discussed in [28].

In this paper we are particularly interested in the interior point continuous trajectories
for problem (P). In order to write down the equations explicitly, we need the following
notations.

• Let svec map Sn to Rn(n+1)/2. If U ∈ Sn, then svec(U) is defined by

svec(U) := (u11,
√
2u21, . . . ,

√
2un1, u22,

√
2u32, . . . ,

√
2un2, . . . , unn)

T .

• The symmetrized Kronecker product ⊗s is defined by

(G⊗s K)svec(H) =
1

2
svec(KHGT +GHKT ),

where G,K ∈ Rn×n and H ∈ Sn. The properties of operator ⊗s can be found in
Appendix of [1] and [29].

• Let matrix A be defined as follows

A =

 svec(A1)
T

...
svec(Am)T

 ∈ Rm×n(n+1)/2.

• For any X ∈ Sn, let ∇2f(X) be the following matrix

∇2f(X) =



svec(
∂( ∂f

∂X )11
∂X )T

√
2svec(

∂( ∂f
∂X )21
∂X )T

...
√
2svec(

∂( ∂f
∂X )n1

∂X )T

svec(
∂( ∂f

∂X )22
∂X )T

√
2svec(

∂( ∂f
∂X )32
∂X )T

...
√
2svec(

∂( ∂f
∂X )n2

∂X )T

...

svec(
∂( ∂f

∂X )nn

∂X )T



∈ Rn(n+1)/2×n(n+1)/2.
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Now we present the following four ordinary differential equation (ODE) systems

svec(Ẋ) = −
(
I − (X ⊗s X)PAX

)
(X ⊗s X)svec

(
∂f

∂X

)
, (1.2)

svec(Ẋ) = −
(
I + t

(
I − (X ⊗s X)PAX

)(
(X ⊗s X)∇2f(X)

))−1

(
I − (X ⊗s X)PAX

)
(X ⊗s X)svec

(
∂f

∂X

)
, (1.3)

svec(Ẋ) = −
(
I − (X ⊗s X

1
2 )P

AX
1
2

)
(X ⊗s X

1
2 )svec

(
∂f

∂X

)
, (1.4)

svec(Ẋ) = −
(
I + t

(
I − (X ⊗s X

1
2 )P

AX
1
2

)(
(X ⊗s X

1
2 )∇2f(X)

))−1

(
I − (X ⊗s X

1
2 )P

AX
1
2

)
(X ⊗s X

1
2 )svec

(
∂f

∂X

)
, (1.5)

which have the same initial condition: X(t0) = X0 ∈ P++ and t0 > 0, where

X ∈ Sn
++, X

1
2 ∈ Sn

++ is the unique square root matrix of X,

PAXγ = AT (A(X ⊗s X
γ)AT )−1A, γ ∈

{
1

2
, 1

}
,

I stands for the
n(n+ 1)

2
× n(n+ 1)

2
identity matrix.

For ODE systems (1.3) and (1.5), we sometimes use the following equivalent implicit
forms

svec(Ẋ) = −
(
I − (X ⊗s X)PAX

)
(X ⊗s X)

(
t∇2f(X)svec(Ẋ) + svec

(
∂f

∂X

))
, (1.6)

svec(Ẋ) = −
(
I − (X ⊗s X

1
2 )P

AX
1
2

)
(X ⊗s X

1
2 )

(
t∇2f(X)svec(Ẋ) + svec

(
∂f

∂X

))
. (1.7)

For ODE systems (1.2) and (1.4), we need f(X) ∈ C2 on Sn
+, and for ODE systems (1.3)

and (1.5), we need f(X) ∈ C3 on Sn
+.

The right-hand side of ODE (1.2) comes from the affine scaling direction for SDP in [22].
The right-hand side of ODE (1.3) comes from the central path. In fact, in the above central
path system (1.1), if we replace the matrix C by ∂f

∂X and take the derivative with respect to
µ, we can get

svec

(
dX

dµ

)
=

1

µ2

(
I +

1

µ
(I − (X ⊗s X)AT (A(X ⊗s X)AT )−1A)((X ⊗s X)∇2f(X))

)−1

(I − (X ⊗s X)AT (A(X ⊗s X)AT )−1A)(X ⊗s X)svec

(
∂f

∂X

)
, (1.8)

then we use the new variable t by setting t = 1
µ , and we have

svec

(
dX

dt

)
= −

(
I + t(I − (X ⊗s X)AT (A(X ⊗s X)AT )−1A)((X ⊗s X)∇2f(X))

)−1
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(I − (X ⊗s X)AT (A(X ⊗s X)AT )−1A)(X ⊗s X)svec

(
∂f

∂X

)
, (1.9)

which is exactly ODE system (1.3) except the initial points, where (1.1) or (1.9) requires the
initial point must be on the central path but (1.3) only requires the initial point X0 ∈ P++.
ODEs (1.4) and (1.5) are some variants of ODEs (1.2) and (1.3), respectively. This kind of
variants also exists in the linearly constrained smooth optimization [36]. For linear program-
ming, ODE systems (1.3) and (1.5) reduce to ODE systems (1.2) and (1.4), respectively, and
actually become the search direction in (6) of [36] with γ = 1 and γ = 3

4 respectively. Later
we will show that the solutions of ODE systems (1.4) and (1.5) have stronger properties
under weaker conditions than the solutions of ODE systems (1.2) and (1.3), and the reason
is that the potential functions of ODE systems (1.4) and (1.5) are bounded below naturally,
while those of ODE systems (1.2) and (1.3) may not. It should be noted that the solutions of
the four ODE systems define four interior point (verified in Section 2) continuous trajectories
for problem (P).

For simplicity, in what follows, we use ∥ · ∥2 to denote either the vector 2-norm or the
matrix 2-norm. Ck stands for the class of kth order continuously differentiable functions.
Unless otherwise specified, xj denotes the jth component of a vector x, e denotes the column
vector of all ones, and ei denotes the unity column vector whose ith component is 1, the
dimensions of e and ei are clear from the context. For any index subset J ⊆ {1, . . . , n},
we denote by xJ the vector composed of those components of x ∈ Rn indexed by j ∈ J ,
rank (Q) denotes the rank of matrix Q. For any Q ∈ Sn

+, λmax(Q) and λmin(Q) denote the
largest and smallest eigenvalues of Q, respectively.

The rest of this paper is organized as follows. In Section 2, we (i) introduce four potential
functions for the four ODE systems (1.2), (1.3), (1.4), and (1.5), respectively; (ii) verify that
each ODE system has a unique solution in [t0,+∞); and (iii) show the weak convergence
for the solution of ODE system (1.2). In Section 3, we prove that every accumulation point
of the solutions of the four ODE systems is an optimal solution for problem (P), and show
the weak convergence for the solution of ODE system (1.3). In Section 4, we first show the
strong convergence of the solutions of the last two ODE systems under certain conditions,
and verify that each limiting point has the maximal rank among the optimal solution set of
problem (P), then we prove the convergence for the solutions of the first two ODE systems
in the linear case. Finally, some conclusions are drawn in Section 5.

2 Properties of the Continuous Trajectories

The following assumptions are made throughout this paper.

Assumption 1. There exists a point X∗ ∈ P+ such that f(X∗) is the optimal value of
problem (P ).

Assumption 2. The matrix A has full row rank m.

Assumption 3. For ODE systems (1.2) and (1.4), we assume f(X) ∈ C2 on Sn
+, and for

ODE systems (1.3) and (1.5), we assume f(X) ∈ C3 on Sn
+.

Theorem 2.1. PAXγ ∈ C1 on Sn
++, γ ∈ { 1

2 , 1}.

Proof. According to Assumption 2, A has full row rank. If X ∈ Sn
++, X ⊗sX and X ⊗sX

1
2

are both symmetric and positive definite. So A(X ⊗s X)AT and A(X ⊗s X
1
2 )AT are also

symmetric and positive definite, thus invertible.
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Notice that the inverse of a matrix and X ⊗s X are both continuous differentiable, we
get PAX ∈ C1 on Sn

++. Furthermore, according to Chapter 6 in [12] we have

X
1
2 =

2

π
X

∫ ∞

0

(t2I +X)−1dt,

which indicates that the square root of a symmetric positive definite matrix is continuous
differentiable. So P

AX
1
2
∈ C1 on Sn

++. Thus the proof is complete.

Lemma 2.2. If A, B ∈ Rn×n are both symmetric and positive semidefinite, then all eigen-
values of AB are nonnegative.

Proof. We give two proofs.

First proof: From Corollary 4.6.3 on page 99 in [38], the result is evident.

Second proof: From Theorem 1.3.20 in [13], for any matrices X ∈ Rn×n and Y ∈ Rn×n,
we have that XY has the same eigenvalues as Y X. By setting X = A

1
2 and Y = A

1
2B,

we obtain that AB has the same eigenvalues as A
1
2BA

1
2 , which is symmetric and positive

semidefinite. Hence all eigenvalues of AB are nonnegative.

Theorems 2.3 and 2.4 below guarantee the existence, uniqueness, and feasibility for the
solutions of the four ODE systems (1.2), (1.3), (1.4), and (1.5).

Theorem 2.3. For each of the four ODE systems (1.2), (1.3), (1.4), and (1.5), there
exists a unique solution X(t) with a maximal existence interval [t0, α1), [t0, α2), [t0, β1),
and [t0, β2), respectively. In addition, X(t) ≻ 0 on the existence intervals for all four ODE
systems.

Proof. For ODE system (1.3), notice that(
I − (X ⊗s X)PAX

)
(X ⊗s X) = (X

1
2 ⊗s X

1
2 )(I −X

1
2 ⊗s X

1
2PAXX

1
2 ⊗s X

1
2 )(X

1
2 ⊗s X

1
2 ).

Since I − X
1
2 ⊗s X

1
2PAXX

1
2 ⊗s X

1
2 is symmetric and idempotent, we know it is positive

semidefinite. So
(
I− (X⊗sX)PAX

)
(X⊗sX) is symmetric and positive semidefinite. Since

f(X) ∈ C3 on Sn
+ and is convex, we have ∇2f(X) is symmetric and positive semidefinite.

From Lemma 2.2, we know that for any t > 0, I + t
(
I − (X ⊗s X)PAX

)(
(X ⊗s X)∇2f(X)

)
is always invertible.

For ODE system (1.5), since X ⊗s X
1
2 is also symmetric and positive definite, similarly,

we can get that for any t > 0, I + t
(
I − (X ⊗s X

1
2 )P

AX
1
2

)(
(X ⊗s X

1
2 )∇2f(X)

)
is also

invertible.

Now from Assumption 3 and Theorem 2.1, along with the fact that the inverse of a
matrix is continuous differentiable, we know the right-hand sides of the four ODE systems
are all continuous differentiable and thus locally Lipschitz continuous on (0,+∞) × Sn

++.
Since (0,+∞) × Sn

++ is an open set, from the Cauchy-Peano theorem and Picard-Lindelöf
theorem, for each of the four ODE systems (1.2), (1.3), (1.4), and (1.5), there exists a
unique solution X(t) with a maximal existence interval [t0, α1), [t0, α2), [t0, β1), and [t0, β2),
respectively.

Because the right-hand sides of the four ODE systems are all defined on the open set
(0,+∞)×Sn

++ and the initial points are also symmetric and positive definite, the solutions
of the four ODE systems are of course in the open set Sn

++, so they are all symmetric and
positive definite on the existence intervals.
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Later in this section, it will be shown that α1 = +∞, α2 = +∞ (Theorem 2.12) and
β1 = +∞, β2 = +∞ (Theorem 2.13). To simplify presentation in the sequel, in the remaining
of this paper, X(t) will be replaced by X whenever no confusion would occur.

Theorem 2.4. Each of the unique solutions X(t) of the four ODE systems (1.2), (1.3),
(1.4), and (1.5) satisfies Asvec(X(t)) = b on its own maximal existence interval.

Proof. For the four ODE systems (1.2), (1.3), (1.4), and (1.5), we know that for any t
belonging to their own maximal existence interval, the unique solutions X(t) satisfy

X(t) = X0 +

∫ t

t0

(Ẋ|t=τ )dτ.

Notice
A
(
I − (X ⊗s X)PAX

)
(X ⊗s X) = A(X ⊗s X)−A(X ⊗s X) = 0

and
A
(
I − (X ⊗s X

1
2 )P

AX
1
2

)
(X ⊗s X

1
2 ) = A(X ⊗s X

1
2 )−A(X ⊗s X

1
2 ) = 0,

we can get (for ODE systems (1.3) and (1.5), we use the implicit forms (1.6) and (1.7)
instead)

Asvec(Ẋ) = 0,

so

Asvec(X(t)) = AX0 +

∫ t

t0

Asvec(Ẋ|t=τ )dτ = AX0 = b.

Thus the theorem is proved.

Theorem 2.5. Let X(t) be any unique solution of the four ODE systems (1.2), (1.3), (1.4),
and (1.5). Then f(X(t)) is a nonincreasing function of t on its own maximal existence
interval.

Proof. For ODE systems (1.2) and (1.3), we use X to denote X
1
2 ⊗s X

1
2 , and P to denote

I − XPAXX . For ODE systems (1.4) and (1.5), we use X to denote (X ⊗s X
1
2 )

1
2 , and P

to denote I −XP
AX

1
2
X . From Theorem 2.3 it is clear that X and P are all symmetric and

positive semidefinite and P2 = P.

Now we can write ODE systems (1.2) and (1.4) in the same form as

svec(Ẋ) = −XPX svec

(
∂f

∂X

)
, (2.1)

and can write ODE systems (1.3) and (1.5) in the same form as

svec(Ẋ) = −(I + tXPX∇2f(X))−1XPX svec

(
∂f

∂X

)
. (2.2)

So for ODE systems (1.2) and (1.4), we have

df(X(t))

dt
= tr

(
∂f

∂X
Ẋ

)
= svec

(
∂f

∂X

)T

svec(Ẋ)

= −svec

(
∂f

∂X

)T

XPX svec

(
∂f

∂X

)
(2.3)
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= −
∥∥∥∥PX svec

(
∂f

∂X

)∥∥∥∥2
2

≤ 0. (2.4)

Thus f(X(t)) is a nonincreasing function of t on its own maximal existence interval for ODE
systems (1.2) and (1.4).

Similarly, we can prove the same conclusion for ODE systems (1.3) and (1.5) if we can
show that

(
I + tXPX∇2f(X)

)−1XPX is a symmetric and positive semidefinite matrix.
This is actually true because we have(

I + tXPX∇2f(X)
)−1XPX = XP

(
I + tPX∇2f(X)XP

)−1PX , (2.5)

where the proof is similar to Lemma 12 in [26]. Thus the theorem is proved.

The following lemma reveals an essential property for any convex function.

Lemma 2.6 (Section 3.1.3, [3]). Suppose f is differentiable (i.e., its gradient ∇f exists at
each point in domf). Then f is convex if and only if domf is convex and

f(y) ≥ f(x) +∇f(x)T (y − x) (2.6)

holds for all x, y ∈ domf .

Now we will introduce four potential functions for the four ODE systems, respectively. In
1983, Losert and Akin [17] introduced a kind of potential function for both the discrete and
continuous dynamical systems in a classical model of population genetics. Their potential
function can be extended for our purpose. The potential function I1(X,Y ) for ODE system
(1.2) can be defined as

I1(X,Y ) = ln detX + tr(X−1Y ), (2.7)

where X ∈ Sn
++ is the variable and Y ∈ Sn

+ is a parameter.

The potential function I2(t,X, Y ) for ODE system (1.3) can be defined as

I2(t,X, Y ) = I1(X,Y ) + t

[
f(Y )− f(X) + tr

(
(X − Y )

∂f

∂X

)]
. (2.8)

where X ∈ Sn
++ and t > 0 are variables, and Y ∈ Sn

+ is a parameter.

The potential function I3(X,Y ) for ODE system (1.4) can be defined as

I3(X,Y ) = 2tr(X− 1
2Y ) + 2tr(X

1
2 ), (2.9)

where X ∈ Sn
++ is the variable and Y ∈ Sn

+ is a parameter.

The potential function I4(t,X, Y ) for ODE system (1.5) can be defined as

I4(t,X, Y ) = I3(X,Y ) + t

[
f(Y )− f(X) + tr

(
(X − Y )

∂f

∂X

)]
, (2.10)

where X ∈ Sn
++ and t > 0 are variables, and Y ∈ Sn

+ is a parameter.

A direct application of function I3(X,Y ) and I4(t,X, Y ) is the boundedness of the solu-
tions of ODE systems (1.4) and (1.5).
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Theorem 2.7. The unique solution X(t) of ODE system (1.4) is contained in a bounded
set in Sn

+, and the bound only depends on X0 and X∗, where X∗ is a finite optimal solution
for problem (P).

Proof. According Theorem 2.3 and Assumption 1, we can define

V1(t) = I3(X,X∗) = 2tr(X− 1
2X∗) + 2tr(X

1
2 ) ∀t ∈ [t0, β1). (2.11)

Then from Theorem 2.4, ODE system (1.4), and the properties of ⊗s in [29], we have

dV1(t)

dt
= −svec(X∗)T (X− 1

2 ⊗s I)
−1(X ⊗s X)−1svec(Ẋ)

+svec(I)T (X
1
2 ⊗s I)

−1svec(Ẋ)

= −svec(X∗)T (X− 1
2 ⊗s I)

−1(X ⊗s X)−1svec(Ẋ)

+svec(X)T (X− 1
2 ⊗s I)

−1(X ⊗s X)−1svec(Ẋ)

= svec(X −X∗)T (X− 1
2 ⊗s I)

−1(X ⊗s X)−1svec(Ẋ)

= svec(X∗ −X)T
(
I − P

AX
1
2
(X ⊗s X

1
2 )
)
svec(

∂f

∂X
)

= svec(X∗ −X)T svec(
∂f

∂X
), (2.12)

where the second equality comes from that

(X ⊗s X)−1(X− 1
2 ⊗s I)

−1svec(X) = (X
1
2 ⊗s X)−1svec(X)

= (X ⊗s X
1
2 )−1svec(X)

=
(
(X

1
2 ⊗s X

1
2 ) · (X 1

2 ⊗s I)
)−1

svec(X)

= (X
1
2 ⊗s I)

−1(X
1
2 ⊗s X

1
2 )−1svec(X)

= (X
1
2 ⊗s I)

−1(X− 1
2 ⊗s X

− 1
2 )svec(X)

= (X
1
2 ⊗s I)

−1svec(I).

From Lemma 2.6, we know

svec(X∗ −X)T svec

(
∂f

∂X

)
≤ f(X∗)− f(X) ≤ 0,

so we get
dV1(t)

dt
≤ f(X∗)− f(X) ≤ 0. (2.13)

Then for any T ∈ [t0, β1), we have

2tr(X(T )
− 1

2X∗) + 2tr(X(T )
1
2 ) = V1(T ) ≤ V1(t0) = 2tr(X(t0)

− 1
2X∗) + 2tr(X(t0)

1
2 ).

Since ∥X(T )∥2 ≤ tr(X(T )) and tr(X(T )
− 1

2X∗) ≥ 0 (Lemma 2.2), we have

∥X(T )∥2 ≤ ∥X(T )
1
2 ∥22 ≤

(
tr(X(T )

1
2 )
)2 ≤ V1(t0)

2

4
,

where V1(t0)
2

4 only depends on X0 and X∗.
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Theorem 2.8. The unique solution X(t) of ODE system (1.5) is contained in a bounded
set in Sn

+, and the bound only depends on X0 and X∗, where X∗ is a finite optimal solution
for problem (P).

Proof. According Theorem 2.3 and Assumption 1, we can define

V2(t) = I4(t,X,X∗) = I3(X,X∗) + t

[
f(X∗)− f(X) + tr

(
(X −X∗)

∂f

∂X

)]
, (2.14)

where t ∈ [t0, β2).

Then from Theorem 2.4 and similar to the calculation of dV1(t)
dt in (2.12) with the implicit

form (1.7), we have

dV2(t)

dt
= svec(X∗ −X)T svec

(
t∇2f(X)svec(Ẋ

)
+

∂f

∂X
) + tsvec(Ẋ)T∇2f(X)svec(X −X∗)

+

[
f(X∗)− f(X) + tr

(
(X −X∗)

∂f

∂X

)]
= f(X∗)− f(X) ≤ 0, (2.15)

so for any T ∈ [t0, β2), from the definition (2.14), we have

V2(T ) ≤ V2(t0) = I3(X
0, X∗) + t0

[
f(X∗)− f(X0) + tr

(
(X0 −X∗)

∂f

∂X
|X=X0

)]
.

From Lemma 2.6, we know

f(X∗)− f(X(T )) + tr
(
(X(T )−X∗)

∂f

∂X
|X=X(T )

)
≥ 0,

this along with ∥X(T )∥2 ≤ tr(X(T )) and tr(X(T )
− 1

2X∗) ≥ 0 implies

∥X(T )∥2 ≤ ∥X(T )
1
2 ∥22 ≤

(
tr(X(T )

1
2 )
)2 ≤ V2(t0)

2

4
,

where V2(t0)
2

4 only depends on X0 and X∗.

For ODE systems (1.2) and (1.3), we need additional conditions to guarantee the bound-
edness of the solutions for the general convex function f(X).

Theorem 2.9. For ODE systems (1.2) and (1.3), if the level set {X ∈ P+|f(X) ≤ f(X0)}
is bounded, then the unique solutions X(t) of ODE systems (1.2) and (1.3) are contained in
a bounded set in Sn

+.

Proof. From Theorem 2.5, for the unique solutions X(t) of ODE systems (1.2) and (1.3) we
have f(X(t)) ≤ f(X0), then X(t) will be contained in the level set {X ∈ P+|f(X) ≤ f(X0)}
which is bounded according to the assumption.

However for ODE systems (1.2) and (1.3), if f(X) is linear, then we do not need the
boundedness of the level set to guarantee the boundedness of the solutions. First, we state
a lemma which will be used later.
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Lemma 2.10 (Theorem 4.3.26, [13]). Let A be Hermitian. The vector of diagonal entries
of A majorizes the vector of eigenvalues of A.

According to [13], a vector β is said to majorize a vector α if

min


k∑

j=1

βij : 1 ≤ i1 < · · · < ik ≤ n

 ≥ min


k∑

j=1

αij : 1 ≤ i1 < · · · < ik ≤ n

 ,

for any k = 1, 2, . . . , n with equality for k = n.

Theorem 2.11. If f(X) = tr(CX), where C ∈ Rn×n is a symmetric matrix, then the
unique solutions X(t) of ODE systems (1.2) and (1.3) are contained in a bounded set in Sn

+.

Proof. For ODE system (1.2), from Theorem 2.3, for any T ∈ [t0, α1), X(T ) ≻ 0, so we
define

Ṽ (t) = tr
(
X−1(X(T )−X∗)

)
,

where t ∈ [t0, α1). From Theorem 2.4,

dṼ (t)

dt
= −tr

(
X−1(X(T )−X∗)X−1Ẋ

)
= −svec(X(T )−X∗)T (X−1 ⊗s X

−1)svec(Ẋ)

= svec(X(T )−X∗)T (X−1 ⊗s X
−1)

(
I − (X ⊗s X)PAX

)
(X ⊗s X)svec

(
∂f

∂X

)
= svec(X(T )−X∗)T

(
I − PAX(X ⊗s X)

)
svec(C)

= svec(X(T )−X∗)T svec(C) = f(X(T ))− f(X∗) ≥ 0,

then
Ṽ (t0) ≤ Ṽ (T ) = n− tr

(
X(T )−1X∗) ≤ n. (2.16)

From the eigenvalue decomposition, we have X(T ) = Q(T )Λ(T )Q(T )T , then

Ṽ (t0) = tr((X0)−1X(T ))− tr((X0)−1X∗)

= tr
(
Q(T )T (X0)−1Q(T )Λ(T )

)
− tr((X0)−1X∗).

From Lemma 2.10, the diagonal entries of Q(T )T (X0)−1Q(T ) are all greater than

λmin(Q(T )T (X0)−1Q(T )) = λmin

(
(X0)−1

)
,

thus
tr(Q(T )T (X0)−1Q(T )Λ(T )) ≥ λmin

(
(X0)−1

)
tr(Λ(T )).

From the above inequality and (2.16) we have

∥X(T )∥2 ≤ tr(X(T )) = tr(Λ(T ))

≤ 1

λmin ((X0)−1)
tr(Q(T )T (X0)−1Q(T )Λ(T ))

≤ 1

λmin ((X0)−1)

(
n+ tr((X0)−1X∗)

)
.

So X(T ) is bounded, and the bound depends only on X0 and X∗. Notice that if f(X) is
linear, ODE systems (1.2) and (1.3) are the same.
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Theorem 2.12. If the unique solutions X(t) of ODE systems (1.2) and (1.3) are contained
in a bounded set in Sn

+, then the maximal existence interval for X(t) can be extended to
infinity, that is, α1 = α2 = +∞.

Proof. First, we prove this for ODE system (1.2) by contradiction. According to the Exten-
sion Theorem in §2.5, [2], we know that the solution X(t) will go to the boundary of the
open set (0,+∞) × Sn

++. If α1 ̸= +∞, X(t) will go to the boundary of Sn
++, but from the

condition, X(t) is contained in a bounded set in Sn
+. Then λmin(X(t)) → 0 as t → α1. So

ln det(X(t)) → −∞ as t → α1.

Let us define
V3(t) = ln det(X),

where t ∈ [t0, α1) and X (or X(t)) is the unique solution of ODE system (1.2). Then from
(2.1) and using the same notations X and P as in the proof of Theorem 2.5, we have

dV3(t)

dt
= tr(X−1Ẋ) = svec(I)T (X− 1

2 ⊗s X
− 1

2 )svec(Ẋ) = −svec(I)TPX svec

(
∂f

∂X

)
.

Since ∥P∥2 ≤ 1, along with Assumption 3 and the assumption that X(t) is contained in a
bounded set in Sn

+, there exists a bound M1 > 0 such that∣∣∣∣dV3(t)

dt

∣∣∣∣ ≤ M1.

Then for any t ∈ [t0, α1), we have

V3(t) ≥ V3(t0)−M1(α1 − t0),

which is contrary with ln det(X) → −∞ as t → α1. So the hypothesis is not true, thus
α1 = +∞.

For ODE system (1.3), from (2.2) and (2.5),

svec(Ẋ) = −XP(I + tPX∇2f(X)XP)−1PX svec

(
∂f

∂X

)
,

since
∥(I + tPX∇2f(X)XP)−1∥2 = λmax((I + tPX∇2f(X)XP)−1) ≤ 1,

we know

dV3(t)

dt
= tr(X−1Ẋ) = svec(I)T (X− 1

2 ⊗s X
− 1

2 )svec(Ẋ)

= −svec(I)TP(I + tPX∇2f(X)XP)−1PX svec

(
∂f

∂X

)
is also bounded under the Assumption 3 and the assumption that X(t) is contained in a
bounded set in Sn

+.
Then we can prove α2 = +∞ in the same way.

For ODE systems (1.4) and (1.5), if we can prove that the matrix

(A(X ⊗s X
1
2 )AT )−1A(X ⊗s X

1
2 ),
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is bounded for any bounded subset of Sn
++, then their solutions can be extended to infinity

by the same way as in the proof of Theorem 2.12. This is true if X is a diagonal matrix [32],
but is not correct in the general case. We show this by the following example.

Example. m = 1, n = 2, A = (1, 0, 0), h = (0, 0, 1)T . For ϵ ∈ (0, 1), Xϵ = Qϵ

(
ϵ

1− ϵ

)
QT

ϵ ,

where Qϵ =

(√
1− ϵ

√
ϵ

−
√
ϵ

√
1− ϵ

)
is an orthogonal matrix. Then

lim
ϵ→0+

(A(Xϵ ⊗s X
1
2
ϵ )AT )−1A(Xϵ ⊗s X

1
2
ϵ )h

= lim
ϵ→0+

(1− ϵ)ϵ4 − 1
2ϵ

2(1− ϵ)2(
√
ϵ+

√
1− ϵ)2 + ϵ(1− ϵ)4

(1− ϵ)2ϵ3 + 1
2ϵ

2(1− ϵ)2(
√
ϵ+

√
1− ϵ)2 + ϵ2(1− ϵ)3

= +∞.

By this example, we also show that (A(X ⊗s X)AT )−1A(X ⊗s X) can be unbounded on
certain bounded subset of Sn

++. However, by using some potential functions we can still
extend the solutions of ODE systems (1.4) and (1.5) to infinity.

Theorem 2.13. The maximal existence interval for the unique solutions X(t) of ODE
systems (1.4) and (1.5) can be extended to infinity, that is, β1 = β2 = +∞.

Proof. We first prove this for ODE system (1.4) by contradiction. According to the Ex-
tension Theorem in §2.5, [2], we know that the solution X(t) will go to the boundary of
the open set (0,+∞) × Sn

++. If β1 ̸= +∞, X(t) will go to the boundary of Sn
++, but from

Theorem 2.7, X(t) is contained in a bounded set in Sn
+. So λmin(X(t)) → 0 as t → β1.

Let us define
V4(t) = I3(X,X0) = 2tr(X− 1

2X0) + 2tr(X
1
2 ),

where t ∈ [t0, β1) and X (or X(t)) is the unique solution of ODE system (1.4).

Then we have
dV4(t)

dt
= svec(X0 −X)T svec

(
∂f

∂X

)
,

from Theorem 2.7 and Assumption 3, we know there exists a bound M > 0 which depends
only on X0, X∗ and f(X) such that for every t ∈ [t0, β1),∣∣∣∣dV4(t)

dt

∣∣∣∣ = ∣∣∣∣svec(X0 −X)T svec
( ∂f

∂X

)∣∣∣∣ ≤ M.

Hence for any t ∈ [t0, β1),

V4(t) ≤ V4(t0) +M(β1 − t0) < +∞. (2.17)

But λmin(X(t)) → 0 as t → β1. Let X(t) = Q(t)Λ(t)Q(t)T be an eigenvalue decomposition
of X(t), then tr(X(t)−

1
2X0) = tr(Λ(t)−

1
2Q(t)TX0Q(t)). According to Lemma 2.10, the

diagonal entries of Q(t)TX0Q(t) are all greater than

λmin(Q(t)TX0Q(t)) = λmin(X
0) > 0.

So tr(X(t)−
1
2X0) → +∞ as t → β1 which is contrary with (2.17). So the hypothesis is not

true, thus β1 = +∞.

For ODE system (1.5), from Theorem 2.8, Lemmas 2.6 and 2.10, we can prove β2 = +∞
in the similar way.
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From Theorems 2.12 and 2.13, we can define the limit set for the unique solutions X(t)
of the four ODE systems (1.2), (1.3), (1.4), and (1.5). For i = 1, 2, 3, 4, the limit set Ωi(X0)
of {X(t)} of the ODE system (1, i+ 1) can be defined as follows

Ωi(X0) =

{
X ∈ Sn | ∃ {tk}+∞

k=0 with lim
k→+∞

tk = +∞ such that lim
k→+∞

X(tk) = X

}
.

(2.18)

Theorem 2.14. If the unique solutions X(t) of ODE systems (1.2) and (1.3) are contained
in a bounded set in Sn

+, then for each i = 1, 2, 3, 4, the limit set Ωi(X0) is nonempty, compact,
and connected. Furthermore Ωi(X0) is contained in P+, i = 1, 2, 3, 4.

Proof. From Theorems 2.3, 2.4, 2.13, and 2.12, we know that the limit set Ωi(X0) is con-
tained in P+, i = 1, 2, 3, 4. From the proof of Theorem 2.13 and the assumption, we know
that the unique solutions X(t) of the four ODE systems are contained in a bounded closed
set. So similar to the proof of Theorem 1.1 on page 390 in [5] (the proof in [5] is for n = 2,
but it can be easily extended to the general case), it can be verified that for each i = 1, 2, 3, 4,
Ωi(X0) is nonempty, compact, and connected.

At the end of this section, we prove the weak convergence of ODE system (1.2), i.e.,
svec(Ẋ) → 0 as t → +∞. First, we need the following Lemma.

Lemma 2.15 (Barbalat’s Lemma [30]). If the differentiable function f(t) has a finite limit
as t → +∞, and ḟ is uniformly continuous, then ḟ → 0 as t → +∞.

Theorem 2.16. If the unique solution X(t) of ODE system (1.2) is contained in a bounded
set in Sn

+, then

lim
t→+∞

(
I − (X ⊗s X)PAX

)
(X ⊗s X)svec

(
∂f

∂X

)
= 0.

Proof. From (2.3) and using the same notations X and P as in the proof of Theorem 2.5,
we know

df(X(t))

dt
= −svec

(
∂f

∂X

)T

XPX svec

(
∂f

∂X

)
= −svec

(
∂f

∂X

)T

((X ⊗s X)− (X ⊗s X)PAX(X ⊗s X))svec

(
∂f

∂X

)
.

From Assumption 3, f(X) ∈ C2 on Sn
+. Furthermore, svec(Ẋ) is bounded because X(t) is

contained in a bounded set in Sn
+. So if we want to show d2f(X(t))

dt2 is bounded, we only need
to show that d(X⊗sX)

dt and d((X⊗sX)PAX(X⊗sX))
dt are both bounded. Notice

d(X ⊗s X)

dt
= 2X ⊗s Ẋ,

since X(t) and Ẋ are both bounded, thus d(X⊗sX)
dt is bounded. Notice

d((X ⊗s X)PAX(X ⊗s X))

dt

= 2(X ⊗s Ẋ)PAX(X ⊗s X) + 2(X ⊗s X)PAX(X ⊗s Ẋ)
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−2(X ⊗s X)PAX(X ⊗s Ẋ)PAX(X ⊗s X)

= 2(X ⊗s Ẋ)X−1XPAXX 2 + 2X 2PAXXX−1(X ⊗s Ẋ)

−2X 2PAXXX−1(X ⊗s Ẋ)X−1XPAXX 2,

where X 2 = X · X = X ⊗s X. Since XPAXX is symmetric and idempotent, it’s always
bounded. So if we can show X−1(X ⊗s Ẋ)X−1 is bounded, then d((X⊗sX)PAX(X⊗sX))

dt
will be bounded. Let smat be the inverse map of svec. From (2.1), if we denote B(t) =

−smat(PX svec( ∂f
∂X )), then B(t) is also bounded, and Ẋ = X

1
2B(t)X

1
2 . Therefore we get

X−1(X ⊗s Ẋ)X−1 = (I ⊗s B(t)),

which is bounded. Thus d2f(X(t))
dt2 is bounded, and as a consequence, df(X(t))

dt is uniformly
continuous. Furthermore from Theorem 2.5 and Assumption 1, f(X(t)) has a finite limit as
t → +∞. So from Barbalat’s Lemma, we have

lim
t→+∞

df(X(t))

dt
= lim

t→+∞
−
∥∥∥∥PX svec

(
∂f

∂X

)∥∥∥∥2
2

= 0.

3 Optimality of the Cluster Point(s)

In this section, we will show that every accumulation point of the solutions of the four ODE
systems (1.2), (1.3), (1.4), and (1.5) is an optimal solution for problem (P).

Theorem 3.1. If the unique solutions X(t) of ODE systems (1.2) and (1.3) are contained
in a bounded set in Sn

+, then for any X(1) ∈ Ω1(X0) (defined in (2.18)) and X(2) ∈ Ω2(X0),
X(1) and X(2) are both optimal solutions for problem (P).

Proof. We prove this by contradiction. From Theorems 2.5 and 2.12, we know lim
t→+∞

f(X(t))

exists since f(X) is bounded below in P+. Then if X(1) ∈ Ω1(X0) is not an optimal solution
for problem (P), we have

f(X0) ≥ f(X(1)) = lim
k→+∞

f(X(tk)) > f(X∗).

Let us define

Y (1) =
f(X(1))− f(X∗)

2(f(X0)− f(X∗))
X0 +

(
1− f(X(1))− f(X∗)

2(f(X0)− f(X∗))

)
X∗,

then Y (1) ∈ P++. Since f(X) is convex, we have

f(Y (1)) ≤ f(X(1))− f(X∗)

2(f(X0)− f(X∗))
f(X0) +

(
1− f(X(1))− f(X∗)

2(f(X0)− f(X∗))

)
f(X∗)

=
f(X(1)) + f(X∗)

2
.

From (2.7), we can define

V5(t) = I1(X,Y (1)) = ln detX + tr(X−1Y (1)),
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where t ∈ [t0,+∞) and X (or X(t)) is the unique solution of ODE system (1.2). Then from
Theorem 2.4, Lemma 2.6, and the properties of ⊗s [29], we have

dV5(t)

dt
= tr(X−1Ẋ)− tr(X−1Y (1)X−1Ẋ)

= svec(X)T (X−1 ⊗s X
−1)svec(Ẋ)− svec(Y (1))T (X−1 ⊗s X

−1)svec(Ẋ)

= −svec(X − Y (1))T (I − PAX)svec

(
∂f

∂X

)
= svec(Y (1) −X)T svec

(
∂f

∂X

)
≤ f(Y (1))− f(X) ≤ f(Y (1))− f(X(1)) ≤ f(X(1)) + f(X∗)

2
− f(X(1))

=
f(X∗)− f(X(1))

2
< 0,

where the second inequality comes from the fact that f(X(t)) is a nonincreasing function
with respect to t. So V5(t) → −∞ as t → +∞. We next show V5(t) is bounded below.

For any t ∈ [t0,+∞), let X(t) = Q(t)Λ(t)Q(t)T be an eigenvalue decomposition of X(t),
and {λi(t)}ni=1 be the eigenvalues of X(t). Then

V5(t) = ln detX(t) + tr
(
Q(t)Λ(t)

−1
Q(t)TY (1)

)
=

n∑
i=1

lnλi(t) + tr
(
Λ(t)

−1
Q(t)TY (1)Q(t)

)
,

since Y (1) ∈ P++, we have

λmin(Q(t)TY (1)Q(t)) = λmin(Y
(1)) > 0.

Hence by applying Lemma 2.10 to Q(t)TY (1)Q(t), we have

V5(t) =

n∑
i=1

lnλi(t) + tr(Λ(t)
−1

Q(t)TY (1)Q(t))

≥
n∑

i=1

lnλi(t) +

n∑
i=1

λi(t)
−1

λmin(Y
(1)) =

n∑
i=1

(lnλi(t) + λi(t)
−1

λmin(Y
(1)))

≥
n∑

i=1

(lnλmin(Y
(1)) + 1) = n(lnλmin(Y

(1)) + 1) > −∞,

where the second inequality comes from lnλ + λ−1λmin(Y
(1)) ≥ lnλmin(Y

(1)) + 1 for any
λ > 0. It is contrary with V5(t) → −∞ as t → +∞. So the hypothesis is not true, thus X(1)

is an optimal solution for problem (P).

As for X(2) ∈ Ω2(X0), let X (or X(t)) be the unique solution of ODE system (1.3). If
X(2) ∈ Ω2(X0) is not an optimal solution for problem (P), we have

f(X0) ≥ f(X(2)) = lim
k→+∞

f(X(tk)) > f(X∗).

We define

Y (2) =
f(X(2))− f(X∗)

2(f(X0)− f(X∗))
X0 +

(
1− f(X(2))− f(X∗)

2(f(X0)− f(X∗))

)
X∗,
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then Y (2) ∈ P++, and similar to f(Y (1)), we have

f(Y (2)) ≤ f(X(2)) + f(X∗)

2
.

Notice if Y ∈ P+, then

dI2(t,X, Y )

dt
= svec(Y −X)T svec

(
t∇2f(X)svec(Ẋ) +

∂f

∂X

)
+ tsvec(Ẋ)T∇2f(X)svec(X − Y ) +

[
f(Y )− f(X) + tr(X − Y )

∂f

∂X

]
= f(Y )− f(X).

Thus we can show that dI2(t,X,Y (2))
dt = f(Y (2)) − f(X) ≤ f(X∗)−f(X(1))

2 < 0. Then
noticing that I2(t,X, Y (2)) is bounded below, we can prove that X(2) is also an optimal
solution for problem (P) in the same way as X(1).

Now we are ready to prove the weak convergence of ODE system (1.3).

Theorem 3.2. For ODE system (1.3), if the level set {X ∈ P+|f(X) ≤ f(X0)} is bounded,
then the unique solution X(t) of ODE system (1.3) satisfies

lim
t→+∞

Ẋ = 0.

Proof. From (2.5) and using the same notations X and P as in the proof of Theorem 2.5,
we know that if we can prove

lim
t→+∞

−
∥∥∥∥PX svec

(
∂f

∂X

)∥∥∥∥
2

= 0, (3.1)

then the theorem holds.

We prove this by contradiction. If (3.1) is not true, there must exist a constant c0 > 0
such that for any T > t0, there always exists a t > T such that ∥PX svec( ∂f

∂X )∥2 > c0.

Let us consider the following cluster of trajectories: each trajectory is defined by the
solution of ODE system (1.2) with initial point X(t) at initial time t0, where X(t) denotes
the solution of ODE system (1.3) at time t. We use X̃(τ, t) to denote this trajectory. From
Theorem 2.5, each trajectory X̃(τ, t) is contained in the bounded level set. Then with the
same analysis as in the proof of Theorem 2.16, we know there exists a constant L0 > 0 which
is independent of t such that∣∣∣∣∣d2f(X̃(τ, t))

dτ2

∣∣∣∣∣ (2.4)
=

d∥PX svec( ∂f
∂X )∥22|X=X̃(τ,T1)

dτ
≤ L0. (3.2)

From the hypothesis and Theorem 3.1, there exists a T1 > t0, such that

f(X̃(t0, T1)) = f(X(T1)) < f(X∗) +
c40
4L0

, (3.3)

and ∥∥∥∥PX svec

(
∂f

∂X

)∥∥∥∥
2

|X=X̃(t0,T1)
=

∥∥∥∥PX svec

(
∂f

∂X

)∥∥∥∥
2

|X=X(T1) > c0. (3.4)
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From (3.2) and (3.4), we have∥∥∥∥PX svec

(
∂f

∂X

)∥∥∥∥2
2

|X=X̃(τ,T1)
≥ max(c20 − L0(τ − t0), 0),

then from (2.4), we can obtain∫ +∞

t0

−df(X̃(τ, T1))

dτ
dτ =

∫ +∞

t0

∥∥∥∥PX svec

(
∂f

∂X

)∥∥∥∥2
2

|X=X̃(τ,T1)
dτ

≥
∫ +∞

t0

max(c20 − L0(τ − t0), 0)dτ =
c40
2L0

,

however, from Theorem 3.1 and (3.3), we have∫ +∞

t0

−df(X̃(τ, T1))

dτ
dτ = f(X(T1))− f(X∗) <

c40
4L0

,

which contradicts with the previous inequality. Thus the theorem is proved.

Theorem 3.3. For any X(3) ∈ Ω3(X0) and X(4) ∈ Ω4(X0), X(3) and X(4) are both optimal
solutions for problem (P).

Proof. We prove this by contradiction. Similar to the proof of Theorem 3.1, if X(3) ∈ Ω3(X0)
is not an optimal solution for problem (P), then

f(X(3)) = lim
k→+∞

f(X(tk)) > f(X∗).

From (2.13), we can see V1(t) defined by (2.11) will go to −∞ as t → +∞. However,

V1(t) = I3(X,X∗) = 2tr(X− 1
2X∗) + 2tr(X

1
2 ) ≥ 0 ∀t ∈ [t0,+∞),

where X (or X(t)) is the unique solution for ODE system (1.4). So the hypothesis is not
true, thus X(3) must be an optimal solution for problem (P).

As for X(4) ∈ Ω4(X0), by using V2(t) defined in (2.14), the property in (2.15), and the
fact that V2(t) is also bounded below by zero, we can prove that X(4) is also an optimal
solution for problem (P) by contradiction in the same way as X(3).

4 Convergence of the Continuous Trajectories

Now, it comes to the key results of the paper. Theorem 4.1 below shows that if the maximal
rank among the optimal solution set of problem (P) is equal to one, then the solution of
ODE system (1.4) converges as t → +∞. Theorem 4.2 shows that the solution of ODE
system (1.5) always converges as t → +∞. Theorem 4.6 shows that in the linear case of
f(X), the solutions of ODE systems (1.2) and (1.3) also converge as t → +∞.

Theorem 4.1. Every point in the limit set Ω3(X0) has the maximal rank among the optimal
solution set of problem (P). Furthermore, if the maximal rank among the optimal solution
set of problem (P) is equal to one, then the limit set Ω3(X0) only contains a single point.
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Proof. From Theorem 2.14, we know that Ω3(X0) is not empty. So we can choose a point
X̄ ∈ Ω3(X0), and evidently X̄ ∈ P+. Without loss of generality, we assume the optimal
solution X∗ has the maximal rank among the optimal solution set of problem (P), and
rank(X∗) = r. Let X∗ = QΛQT be an eigenvalue decomposition of X∗ and

Λ =

(
Λ1

0

)
,

where Λ1 is a r × r diagonal matrix and Λ1 is invertible. Since X∗ has the maximal rank
among the optimal solution set and X̄ is an optimal solution (Theorem 3.1), rank(X̄) ≤
rank(X∗). Following the same claim as Lemma 4.1 in [6], there exists an eigenvalue decom-
position X̄ = Q̄Λ̄Q̄T with

Λ̄ =

(
Λ̄1

0

)
,

where Λ̄1 is a r × r diagonal matrix, and a sequence {t̄k}+∞
k=1 with lim

k→+∞
t̄k = +∞ such

that X(t̄k) → X̄, Q(t̄k) → Q̄, and Λ(t̄k) → Λ̄, where Q(t̄k)Λ(t̄k)Q(t̄k)
T is an eigenvalue

decomposition of X(t̄k) with Λ(t̄k) =

(
Λ1(t̄k)

Λ2(t̄k)

)
, Λ1(t̄k) ∈ Rr×r. Notice V1(t)

defined by (2.11) is a nonincreasing function in [t0,+∞) and bounded below, we know V1(t)
has a finite limit as t → +∞. Therefore,

lim
t→+∞

V1(t) = lim
k→+∞

V1(t̄k) = lim
k→+∞

[
2tr(X(t̄k)

− 1
2X∗) + 2tr(X(t̄k)

1
2 )
]

= lim
k→+∞

[
2tr(Q(t̄k)Λ(t̄k)

− 1
2Q(t̄k)

TQΛQT ) + 2tr(Q(t̄k)Λ(t̄k)
1
2Q(t̄k)

T )
]

= lim
k→+∞

[
2tr(Λ(t̄k)

− 1
2Q(t̄k)

TQΛQTQ(t̄k)) + 2tr(Λ(t̄k)
1
2 )
]
.

Let Q(t̄k)
TQ =

(
(Q(t̄k)

TQ)11 (Q(t̄k)
TQ)12

(Q(t̄k)
TQ)21 (Q(t̄k)

TQ)22

)
, where (Q(t̄k)

TQ)11 ∈ Rr×r, then

lim
t→+∞

V1(t) = lim
k→+∞

[
2tr(Λ1(t̄k)

− 1
2 (Q(t̄k)

TQ)11Λ1(Q(t̄k)
TQ)T11)

+ 2tr(Λ2(t̄k)
− 1

2 (Q(t̄k)
TQ)21Λ1(Q(t̄k)

TQ)T21) + 2tr(Λ(t̄k)
1
2 )
]
.

Since Λ1(t̄k) → Λ̄1, Λ2(t̄k) → 0, and Q(t̄k) → Q̄, we know the diagonal entries of
(Q̄TQ)21Λ1(Q̄

TQ)T21 are all zero which leads to (Q̄TQ)21 = 0. Since Q̄TQ is an orthog-
onal matrix, (Q̄TQ)21(Q̄

TQ)T21 + (Q̄TQ)22(Q̄
TQ)T22 = I. But (Q̄TQ)21 = 0, we have

(Q̄TQ)22(Q̄
TQ)T22 = I, so (Q̄TQ)22 is an orthogonal matrix. Then from (Q̄TQ)11(Q̄

TQ)T21+
(Q̄TQ)12(Q̄

TQ)T22 = 0 and (Q̄TQ)21 = 0, we have (Q̄TQ)12 = 0. From (Q̄TQ)11(Q̄
TQ)T11 +

(Q̄TQ)12(Q̄
TQ)T12 = I, we know (Q̄TQ)11(Q̄

TQ)T11 = I and so (Q̄TQ)11 is also an orthogo-
nal matrix. From Lemma 2.10, we know the diagonal entries of (Q̄TQ)11Λ1(Q̄

TQ)T11 are all
positive. So Λ̄1 must be invertible which indicates that X̄ has the maximal rank among the
optimal solution set of problem (P), and

lim
t→+∞

V1(t) = 2tr(Λ̄
− 1

2
1 (Q̄TQ)11Λ1(Q̄

TQ)T11) + 2tr(Λ̄
1
2
1 )

+ lim
k→+∞

2tr((Q(t̄k)
TQ)T21Λ2(t̄k)

− 1
2 (Q(t̄k)

TQ)21Λ1).
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If the maximal rank among the optimal solution set of problem (P) is equal to one, then
the optimal solutions have the form λq1q

T
1 , where λ ≥ 0 and ∥q∥ = 1. Hence in this case,

the orthogonal matrix in the eigenvalue decomposition of every optimal solution can have
the same Q as X∗. If X̄ is not the only point of Ω3(X0), there must exist another point
X̃ ∈ Ω3(X0). Let us define

V6(t) = I3(X, X̄) = 2tr(X− 1
2 X̄) + 2tr(X

1
2 ),

where t ∈ [t0,+∞) and X (or X(t)) is the unique solution of ODE system (1.4). Since
X̃ ∈ Ω3(X0), for the same reason, X̃ has the maximal rank among the optimal solution set

of problem (P) and there exists an eigenvalue decomposition X̃ = QΛ̃QT = Q

(
Λ̃1

0

)
QT ,

where Λ̃1 ∈ R is positive (for simiplicity, when r = 1, we view the 1 × 1 matrix as a
scalar), and a sequence {t̃k}+∞

k=1 with lim
k→+∞

t̃k = +∞ such that X(t̃k) → X̃, Q(t̃k) → Q,

and Λ(t̃k) → Λ̃, where Q(t̃k)Λ(t̃k)Q(t̃k)
T is an eigenvalue decomposition of X(t̃k) with

Λ(t̃k) =

(
Λ1(t̃k)

Λ2(t̃k)

)
, Λ1(t̃k) ∈ R, such that

lim
t→+∞

V6(t) = 2Λ̃
− 1

2
1 Λ̄1 + 2Λ̃

1
2
1 + lim

k→+∞
2(Q(t̃k)

TQ)T21Λ2(t̃k)
− 1

2 (Q(t̃k)
TQ)21Λ̄1. (4.1)

Hence, limk→+∞ 2(Q(t̃k)
TQ)T21Λ2(t̃k)

− 1
2 (Q(t̃k)

TQ)21 exists and we denote it by ϵ̃. However,
X̄ is also an accumulation point, therefore

lim
t→+∞

V6(t) = 4Λ̄
1
2
1 + ϵ̄Λ̄1, (4.2)

where ϵ̄ = limk→+∞ 2tr((Q(t̄k)
TQ)T21Λ2(t̄k)

− 1
2 (Q(t̄k)

TQ)21.

Combining (4.1) and (4.2), we get

(ϵ̄− ϵ̃)Λ̄1 = 2Λ̃
− 1

2
1 Λ̄1 + 2Λ̃

1
2
1 − 4Λ̄

1
2
1 = 2Λ̄

1
2
1 (Λ̃

− 1
2

1 Λ̄
1
2
1 + Λ̃

1
2
1 Λ̄

− 1
2

1 − 2) ≥ 0,

which implies ϵ̄ ≥ ϵ̃. If we replace X̄ in V6(t) by X̃, from the similar claim, we can get

(ϵ̃− ϵ̄)Λ̃1 ≥ 0,

which indicates ϵ̃ ≥ ϵ̄. Therefore ϵ̃ = ϵ̄, and then Λ̃1 = Λ̄1, hence X̄ = X̃ and the limit set
Ω3(X0) is a singleton.

Theorem 4.2. The limit set Ω4(X0) only contains a single point, and the limit point has
the maximal rank among the optimal solution set of problem (P).

Proof. From Theorem 2.14, we know that Ω4(X0) is not empty. So we can choose a point
X̄ ∈ Ω4(X0), and evidently X̄ ∈ P+. Similar to the proof of Theorem 4.1, by using V2(t)
defined by (2.14), we can show every accumulation point in Ω4(X0) has the maximal rank
among the optimal solution set of problem (P). From (2.10), we can define V7(t) as follows

V7(t) = I4(t,X, X̄)− 4tr(X̄
1
2 ),

where t ∈ [t0,+∞) and X (or X(t)) is the unique solution of ODE system (1.5). Since
dV7(t)

dt = f(X̄)−f(X(t)) ≤ 0, V7(t) is a nonincreasing function, furthermore V7(t) is bounded
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below, so lim
t→+∞

V7(t) exists. Similar to the claim in the proof of Theorem 4.1, if X̃ =

Q̃Λ̃Q̃T ∈ Ω4(X0) is another point, we can have (Q̃T Q̄)12 = 0, (Q̃T Q̄)21 = 0, (Q̃T Q̄)11 and
(Q̃T Q̄)22 are both orthogonal matrices, and

lim
t→+∞

V7(t) = 2tr
(
Λ̃
− 1

2
1 (Q̃T Q̄)11Λ̄1(Q̃

T Q̄)T11

)
+ 2tr

(
Λ̃

1
2
1

)
− 4tr

(
Λ̄

1
2
1

)
+ lim

k→+∞

{
2tr

((
Q(t̃k)

T Q̄
)T
21

Λ2

(
t̃k
)− 1

2
(
Q(t̃k)

T Q̄
)
21

Λ̄1

)
+ t̃k

[
f(X̄)− f(X(t̃k)) + tr

(
(X(t̃k)− X̄)

∂f

∂X
|X=X(t̃k)

)]}
,

where Λ̃1, t̃k, (Q̃T Q̄)11, Λ̄1, Q(t̃k), (Q(t̃k)
T Q̄)21, and Λ2(t̃k) have the same meanings as that

in the proof of Theorem 4.1. From Lemma 2.6, we know for any k,

2tr
((

Q
(
t̃k)

T Q̄
)T
21
Λ2

(
t̃k
)− 1

2
(
Q(t̃k)

T Q̄
)
21
Λ̄1

)
+t̃k

[
f(X̄)− f(X(t̃k)) + tr

(
(X(t̃k)− X̄)

∂f

∂X
|X=X(t̃k)

)]
≥ 0,

hence its limit must be nonnegative. First we assume lim
t→+∞

V7(t) = 0, then we can get

0 ≥ tr
(
Λ̃
− 1

2
1 (Q̃T Q̄)11Λ̄1(Q̃

T Q̄)T11

)
+ tr

(
Λ̃

1
2
1

)
− 2tr

(
Λ̄

1
2
1

)
= tr

(
Λ̄

1
2
1 (Q̃

T Q̄)T11Λ̃
− 1

2
1 (Q̃T Q̄)11Λ̄

1
2
1

)
+ tr

(
(Q̃T Q̄)T11Λ̃

1
2
1 (Q̃

T Q̄)11

)
− 2tr

(
Λ̄

1
2
1

)
= tr

(
Λ̄

1
4
1

[
Λ̄

1
4
1 (Q̃

T Q̄)T11Λ̃
− 1

2
1 (Q̃T Q̄)11Λ̄

1
4
1 + Λ̄

− 1
4

1 (Q̃T Q̄)T11Λ̃
1
2
1 (Q̃

T Q̄)11Λ̄
− 1

4
1 − 2I

]
Λ̄

1
4
1

)
,

but for any symmetric positive definite matrix A, A + A−1 − 2I ⪰ 0 and A + A−1 = 2I

if and only if A = I. Therefore Λ̄
1
4
1 (Q̃

T Q̄)T11Λ̃
− 1

2
1 (Q̃T Q̄)11Λ̄

1
4
1 = I which leads to

(Q̃T Q̄)T11Λ̃1(Q̃
T Q̄)11 = Λ̄1. Notice (Q̃T Q̄)12 = 0, (Q̃T Q̄)21 = 0, (Q̃T Q̄)11 and (Q̃T Q̄)22

are both orthogonal matrices, we have (Q̃T Q̄)T11Λ̃1(Q̃
T Q̄)11 = Λ̄1 ⇐⇒ X̄ = X̃.

Now let us prove that lim
t→+∞

V7(t) = 0. For any T > t0 and X(T ) ≻ 0 (guaranteed by

Theorems 2.3), we can define

V8(t) = I4(t,X(t), X(T ))− 4tr(X(T )
1
2 ),

where t ∈ [t0,+∞). Then we have

V8(t)

dt
= f(X(T ))− f(X(t)),

and
d(V7(t)− V8(t))

dt
= f(X̄)− f(X(T )) ≤ 0.

But V8(T ) = I4(T,X(T ), X(T ))− 4tr(X(T )
1
2 ) = 0, so we have

V7(T )− V8(T ) = V7(T ) ≤ V7(t0)− V8(t0).

Notice I4(t0, X
0, Y )− 4tr(Y

1
2 ) is continuous with respect to Y at X̄, and X̄ ∈ Ω4(X0) is an

accumulation point, so for any ϵ > 0, we can choose T > t0 such that V7(t0) − V8(t0) < ϵ.
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Then we get V7(T ) < ϵ, furthermore V7(t) is an nonincreasing function in [t0,+∞), therefore
we have

lim
t→+∞

V7(t) = 0.

Thus the proof is completed.

For ODE systems (1.2) and (1.3), we cannot prove the convergence for the general convex
f(X), however we can prove the convergence in the linear case where f(X) = tr(CX) and
C ∈ Sn. For linear SDP, ODE systems (1.2) and (1.3) are actually the same, hence we
only discuss ODE system (1.2) below. In [6], Goldfarb and Scheinberg used some auxiliary
optimization problems and the auxiliary continuous trajectories y(µ) and Z(µ) to study the
limiting behavior of the infeasible central paths for linear SDP. Here we adopt the same
strategy. In order to propose the auxiliary optimization problems, we choose a y0 ∈ Rm,
and let Z0 = C −

∑m
k=1 y

0
kAk, P = t0Z

0 −X(t0)
−1. Then we get the following lemma.

Lemma 4.3. For any t ≥ t0, the following optimization problem

min
X∈Sn

C •X − 1
t (P •X + ln detX)

s.t. Ak •X = bk, k = 1, . . . ,m,
X ≻ 0,

(Pt)

has a unique optimal solution.

Proof. For t = t0, this is evident since (X0, y0, Z0) satisfies the following KKT system
∑m

k=1 y
0
kAk + Z0 = C,

Ak •X0 = bk, k = 1, . . . ,m, X0 ≻ 0,
t0Z

0 = X(t0)
−1 + P.

(4.3)

Since for t = t0, the objective function is strictly convex, we know the optimal solution set
is a single point which must be bounded. Hence from Theorem 24 on page 93 in [9], the
level set is bounded as well. For any t > t0, α > 0, and X ∈ P++, if

C •X − 1

t
(P •X + ln detX) ≤ α,

then for any optimal solution X∗ to problem (P),

C •X − 1

t0
(P •X + ln detX) ≤ t

t0
α−

(
t

t0
− 1

)
C •X

≤ t

t0
α−

(
t

t0
− 1

)
C •X∗

≤ t

t0
(α+ |C •X∗|),

which implies X is bounded, hence the level set for problem (Pt) for any given t > t0 is
bounded. Since the objective function in problem (Pt) is strictly convex for any t ≥ t0, it
has a unique optimal solution.

From the above lemma, we can obtain the auxiliary continuous trajectories y(t) and
Z(t), and have the following results.
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Theorem 4.4. There exists two auxiliary continuous trajectories y(t) and Z(t) for t ≥ t0
such that (X(t), y(t), Z(t)) satisfies the following system

∑m
k=1 y(t)kAk + Z(t) = C,

Ak •X(t) = bk, k = 1, . . . ,m, X(t) ≻ 0,
tZ(t) = X(t)−1 + P,

(4.4)

where X(t) is the unique solution of ODE system (1.2).

Proof. From Lemma 4.3, for any t ≥ t0, there exists a unique solution for system (4.4).
Then we can take derivative with respect to t and get the svec(dXdt ) which is actually the
right-hand side of ODE system (1.2). Hence the unique solution X(t) of system (4.4) is
actually the unique solution of ODE system (1.2).

From Theorem 2.11, we know X(t) is bounded. Next we show that y(t) and Z(t) are
also bounded.

Theorem 4.5. The auxiliary continuous trajectories y(t) and Z(t) are bounded.

Proof. From system (4.4), we have

tr(X(t)Z(t)) =
1

t
[n+ tr(X(t)P )] , (4.5)

from Theorem 2.11, X(t) is bounded, we know tr(X(t)Z(t)) → 0 as t → +∞. From system
(4.4) and Theorem 2.4, we can have

tr(X(t)−X0)(Z(t)− Z0) = 0,

hence
tr(X0Z(t)) = tr(X(t)Z(t)) + tr(X0Z0)− tr(X(t)Z0),

which implies that tr(X0Z(t)) is bounded for t ≥ t0. Let X0 = Q0Λ0Q
T
0 be the eigenvalue

decomposition of X0, then

tr(X0Z(t)) = tr(Λ0Q
T
0 Z(t)Q0).

From Z(t) = 1
tX(t)−1 + 1

tP in system (4.4) and the Weyl theorem, we have

λmin(Q
T
0 Z(t)Q0) = λmin(Z(t)) ≥ 1

t
λmin(P ),

then from Lemma 2.10, the diagonal entries of QT
0 Z(t)Q0 must be bounded below by

1
tλmin(P ). If ∥Z(t)∥2 is unbounded, consider λmin(Z(t)) ≥ 1

tλmin(P ), λmax(Z(t)) will go to
+∞ as t → +∞, then

tr(QT
0 Z(t)Q0) = tr(Z(t)) ≥ λmax(Z(t)) +

n− 1

t
λmin(P ) → +∞,

as t → +∞, which indicates at least one diagonal entry of QT
0 Z(t)Q0 will go to +∞ as

t → +∞. But Λ0 ≻ 0, hence tr(X0Z(t)) = tr(Λ0Q
T
0 Z(t)Q0) is unbounded. This is a

contradiction, so Z(t) is bounded. From
∑m

k=1 y(t)kAk + Z(t) = C in system (4.4) and
Assumption 2, y(t) can be determined by Z(t), so y(t) is also bounded.
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Now we prove the convergence for ODE systems (1.2) and (1.3) in the linear case. In the
proof, we use the similar method as Theorem A.3 in [10] where the curve selection lemma
will be used.

Theorem 4.6. If f(X) = tr(CX) is linear, where C ∈ Sn, then each of Ω1(X0) and Ω2(X0)
contains a single point, and the two limit points are on the optimal face of problem (P).

Proof. Since in the linear SDP, ODE systems (1.2) and (1.3) are the same, we only need
to prove ODE system (1.2). From Theorem 2.11 and Theorem 4.5, let (X̃, ỹ, Z̃) be an
accumulation point of the continuous trajectory (X(t), y(t), Z(t)). Let µ = 1

t for t ≥ t0, and
X(µ) = X( 1t ), y(µ) = y( 1t ), Z(µ) = Z( 1t ). Let the real algebraic set V be defined via

V =

(X̄, Z̄, ȳ, µ)

∣∣∣∣∣∣
Ak • X̄ = 0 (k = 1, . . . ,m),∑m

k=1 ȳkAk + Z̄ = 0,

(X̄ + X̃)(Z̄ + Z̃)− µI − µ(X̄ + X̃)P = 0,


and let the open set U be defined as the set of all (X̄, Z̄, ȳ, µ) such that all principal minors
of (X̄ + X̃) are positive and µ > 0.

Now from Lemma 4.3 and Theorem 4.4, we can see that V ∩ U corresponds to the
continuous trajectory (X(µ), y(µ), Z(µ)) excluding its limit points, in the sense that if
(X̄, Z̄, ȳ, µ) ∈ V ∩ U then X(µ) = X̄ + X̃ and Z(µ) = Z̄ + Z̃. Moreover, the zero ele-
ment is in the closure of V ∩ U , by construction. Then similar to the proof of Theorem
A.3 in [10], we can prove that (X̃, ỹ, Z̃) is the only limit point of the continuous trajectory
(X(t), y(t), Z(t)).

Without loss of generality, we assume the optimal solution X∗ is on the optimal face of
problem (P), from system (4.4) and Theorem 2.4, we can get

tr(X(t)−1X∗) = n+ tr [(X(t)−X∗)P ]− t · tr [C(X(t)−X∗)]

≤ n+ tr [(X(t)−X∗)P ] ,

which is bounded above, hence similar to the claim in the proof of Theorem 4.1, we can
show that the limit point X̃ is on the optimal face of problem (P).

5 Concluding Remarks

In this paper, four interior point continuous trajectories for convex semidefinite programming
are studied. The ODE systems (1.4) and (1.5) are the variants of ODE systems (1.2) and
(1.3). Compared to ODE systems (1.2) and (1.3), the solutions of ODE systems (1.4) and
(1.5) can converge to the optimal solution(s) of problem (P) under a weaker condition. In
this sense, ODE systems (1.4) and (1.5) seem to be more attractive. For the affine scaling
direction in ODE system (1.2), Muramatsu [22] showed that the affine scaling algorithm
for semidefinite programming may fail, but in his counterexample, the stepsize will go to
infinity. Our results here indicate that if the stepsize of affine scaling algorithm is small
enough, the accumulation point may be an optimal solution, and a strategy of stepsize in
affine scaling method for problem (P) in [25] had actually been proposed to guarantee the
optimality.
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