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are many works [16, 17, 26, 12, 13, 20, 10, 25] devoted to theory and algorithms of minimax
and maxmin problems.

In recent years, many optimality conditions have developed for minimax problems. For
instance, Truong et.al [2] proposed necessary optimality conditions in terms of upper or lower
subdifferentials of both cost and constraint functions for minimax optimization problems. Li-
nan and Yuan-Feng [30] are concerned with the study of optimality conditions for minimax
optimization problems with an infinite number of constraints. Anulekha Dhara, Aparna
Mehra [1] concerned with the second-order optimality conditions for minimax problems.
Yu-Hong Dai, Liwei Zhang [3] provided both necessary optimality conditions and sufficient
optimality conditions for the local minimax points of constrained minimax optimization
problems.

Also, minimax problems find applications in areas such as machine learning, and signal
processing, and it has been extensively studied in recent years in [18, 19, 24]. There are
many generalizations of minimax theorems. Assume that X and Y are nonempty sets
and f : X × Y → R. A minimax theorem is a theorem which asserts that, under certain
conditions,

min
Y

max
X

f = max
X

min
Y

f.

Theorem 1.1 ([20]). Let X and Y be nonempty compact, convex subsets of Euclidean space,
and f be continuous.

Suppose that f is quasiconcave on X, that is to say,

for all y ∈ Y and λ ∈ R, Lf (λ, y) is a nonempty and convex

and f is quasiconvex on Y , that is to say,

for all x ∈ X and λ ∈ R, Lf (x, λ) is a nonempty and convex.

Then
min
Y

max
X

f = max
X

min
Y

f,

where Lf (λ, y) = {x : x ∈ X, f(x, y) ≥ λ} and Lf (x, λ) = {y : y ∈ Y, f(x, y) ≤ λ}

In 1941, Kakutani [15] analyzed von Neumann’s proof from a viewpoint of the fixed point
theorem. In 1952, Fan [9] generalized Theorem 1.1 to the case X and Y are compact, convex
subsets of (infinite dimensional) locally convex spaces and the quasiconcave and quasiconvex
conditions are somewhat relaxed, while Nikaido [22], using Brouwer’s fixed-point theorem
directly, generalized the same result to the case when X and Y are nonempty compact,
convex subsets of (not necessary locally convex) topological vector spaces and f is only
required to be separately continuous. Nikaido also showed in [23] that, if the quasiconcave
and quasiconvex functions are replaced by concave and convex, then a proof of the minimax
theorem can be proven by elementary calculus.

Theorem 1.2 ([29]). Let X be a topological space, Y be a compact separable topological
space, and f : X × Y → R be separately continuous.

Suppose that, for all x0, x1 ∈ X, there exits a continuous map h : [0, 1] → X such that
h(0) = x0, h(1) = x1 and, for all y ∈ Y and λ ∈ R,

{t : t ∈ [0, 1], f(h(t), y) ≥ λ}

is connected in [0,1].
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Suppose also that, for all nonempty finite subsets W of X and λ ∈ R,

Lf (W,λ) = {y : y ∈ Y, f(x, y) < λ}

is connected in Y.
Then

min
Y

sup
X
f = sup

X
min
Y

f.

In 1953, Fan took the theory of minimax theorems out of the context of convex subsets
of vector spaces when he established the following results.

Theorem 1.3 ([8]). Let X be a nonempty set and Y be a nonempty compact topological
space. Let f : X × Y → R be lower semicontinuous on Y.

Suppose that f is concave like on X and convex like on Y, that is to say:

for all x1, x2 ∈ X and α ∈ [0, 1], there exists x3 ∈ X such that
f(x3, ·) ≥ αf(x1, ·) + (1− α)f(x2, ·) on Y,

and

for all y1, y2 ∈ Y and β ∈ [0, 1], there exists y3 ∈ Y such that
f(·, y3) ≥ βf(·, y1) + (1− β)f(·, y2) on X.

Then

min
Y

sup
X
f = sup

X
min
Y

f.

In 1972, Terkelsen proved first mixed minimax theorem.

Theorem 1.4 ([27]). Let X be a nonempty set and Y be a nonempty compact topological
space. Let f : X × Y → R be lower semicontinuous on Y.

Suppose that for all x1, x2 ∈ X and α ∈ [0, 1], there exists x3 ∈ X such that

f(x3, ·) ≥ [f(x1, ·) + f(x2, ·)]/2 on Y.

Suppose also that, for all nonempty finite subsets W of X and λ ∈ R, Lf (W,λ) is connected
in Y. Then

min
Y

sup
X
f = sup

X
min
Y

f.

In [4], the following discrete minimax problem has been considered.

min
x∈D

ψ(x) (1.1)

where, ψ(x) = max
1≤i≤m

hi(x) and hi(x) are continuously differentiable functions on a convex

closed set D ⊂ Rn. The optimality conditions for this problem are given by the following
assertion.

Theorem 1.5 ([4]). If x∗ is a solution to problem (1.1), then

inf
x∈D

max
i∈I(x∗)

⟨∂hi(x
∗)

∂x
, x− x∗⟩ = 0 (1.2)
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where, I(x) = {i ∈ {1, 2, · · · ,m} | hi(x) = ψ(x)}.
In [7], the following maxmin problem has been examined from a viewpoint of optimality

conditions.

max
x∈D

ψ̃(x) (1.3)

D = {x ∈ Q | fi(x) ≤ 0, i = 1, 2, ...,m} (1.4)

where, ψ̃(x) = min
y∈A

f(x, y), Q is a convex in Rn, intQ ̸= ∅, fi : Rn → R, i = 1, ...,m are

differentiable functions, f(x, y) and ∂f(x,y)
∂x are continuous on D ×A, A is compact in Rs.

Theorem 1.6 ([7]). If x0 is a solution to problem (1.3)-(1.4), then there exist numbers
α1, α2, ..., αn+1, λ1, λ2, ...λm and points yi ∈ Y (x0), i = 1, 2, ...(n+ 1) such that

λi ≥ 0, λifi(x
0) = 0, i = 1, 2, ...,m

αi ≥ 0, i = 1, 2, ..., n+ 1

⟨
n+1∑
i=1

αi
∂f(x0,yi)

∂x +
m∑
i=1

λi
∂fi(x

0)
∂x , x− x0⟩ ≥ 0, ∀x ∈ Q

(1.5)

where,
Y (x0) = {y ∈ A | f(x0, y) = ψ̃(x0)}.

In 2001, I. Tseveendorj in [26] considered the following type of discrete maxmin problems
called piecewise convex maximization problem.

Definition 1 ([26]). A function φ : Rn → R is called a piecewise convex function if it can
be decomposed into:

φ(x) = min
1≤j≤m

fj(x)

where fj : Rn → R is convex for all j = 1, 2, · · · ,m.

Definition 2 ([26]). A problem

max
x∈D

φ(x) (PCMP )

is called a piecewise convex maximization problem, if φ(x) is a piecewise convex function.

Piecewise convex maximization problem (PCMP) has been studied also in [5] and has
many applications [20].

Proposition 1.7 ([26]). If z ∈ D is global maximizer of (PCMP) then for all k ∈ I(z) =
{i ∈ {1, 2, · · · ,m} | fi(z) = φ(z)}

∂fk(y)
∩
N(Dk(z), y) ̸= 0

∀ y s.t. fk(y) = φ(z),

where
Dk(z) = D ∩ {x | fj(x) > φ(z), ∀j = 1, 2, · · · ,m \ k},

∂f(y) = {y∗ ∈ R | f(x)− f(y) ≥ ⟨y∗, x− y⟩, ∀x ∈ Rn},

and
N(D, c) = {c ∈ Rn | ⟨c, x− c⟩ ≤ 0, ∀x ∈ D}.
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2 Optimality Conditions for Minimax Problem

We consider the following minimax problem:

min
x∈D

max
y∈A

f(x, y) (2.1)

where f(x, y) and ∂f(x,y)
∂x are continuous on D × A, A is compact in Rs, D is convex and

compact in Rn.
According to the minimax Theorem [6] there exists a value v:

v = min
x∈D

max
y∈A

f(x, y). (2.2)

We introduce the function
φ(x) = max

y∈A
f(x, y).

Definition 3. A point x0 ∈ D is called a local minimax solution if it is a local minimizer
of the function φ(x).

Assume that
∂f(x0, y)

∂x
̸= 0 ⊂ Rn, ∀y ∈ A.

Introduce the set
Y (x0) = {y ∈ A | f(x0, y) = φ(x0)}. (2.3)

It is clear that Y (x0) is compact.

Theorem 2.1 ([4]). The function φ(x) is continuous on Rn and differentiable in any di-
rections h ∈ Rn with ∥h∥ = 1 at a point x ∈ Rn and

∂φ(x)

∂x
= min

y∈Y (x)
⟨∂f(x, y)

∂x
, h⟩.

Definition 4. A direction h ∈ Rn is said to be a descent direction of the function φ(x) at a
point x0, if there exist a neighborhood V (h) of the vector h and a number ε0 > 0 such that

φ(x0) > φ(x0 + εh̄), ∀h̄ ∈ V (h), ∀ε ∈ (0, ε0).

Denote by K the set of descent directions of the function φ(x) at a point x0.

Lemma 2.2. The set K of descent directions is an open cone.

Proof. Let h be a descent direction of the function φ(x) at a point x0. Since the function
φ(x) is continuous, then by the definition of descent directions, there exist scalars δ > 0 and
ε0 > 0 such that

φ(x0) > φ(x0 + εh̄) (2.4)

hold for all h̄ and ε satisfying

∥h− h̄∥ < δ, ε ∈ (0, ε0).

Now we show that λh directions for all λ > 0 are also descent. Indeed, if we take δ̄ = λδ
and ε̄ = ε0

λ then (2.4) holds for hold for all h̄ and ε such that

∥λh− λh̄∥ < δ̄, ε ∈ (0, ε̄).
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Lemma 2.3. A set

K0 =

{
h ∈ Rn | max

y∈Y (x0)
⟨∂f(x

0, y)

∂x
, h⟩ < 0

}
(2.5)

is an open convex subcone of the cone of the descent directions of the function φ(x) at a
point x0.

Proof. By construction, it is clear that K0 is an open and convex cone. Indeed, since the
function

g(h) = max
y∈Y (x0)

⟨∂f(x
0, y)

∂x
, h⟩

is convex, then K0 is convex.

Let us show K0 ⊂ K. Assume that h ∈ K0. Due to continuity of g(h), there exists a
neighborhood V (h) of h such that

g(h̄) = max
y∈Y (x0)

⟨∂f(x
0, y)

∂x
, h̄⟩ < 0, ∀h̄ ∈ V (h).

The function φ(x) is differentiable in directions [5], and it follows that

φ(x0 + εh̄)− φ(x0) = ε max
y∈Y (x0)

⟨∂f(x
0, y)

∂x
, h̄⟩+ o(ε).

It is clear that for a sufficiently small ε (0 ≤ ε ≤ ε0), we have

φ(x0 + εh̄) < φ(x0), ∀h̄ ∈ V (h), ∀ε ∈ (0, ε0).

It is means that h ∈ K and K0 ⊂ K.

The proof is complete.

Now we introduce the set

M(x0) =

{
∂f(x0, y)

∂x
| y ∈ Y (x0)

}
. (2.6)

It is clear that M(x0) is compact.

Denote by N(x0) the convex hull of M(x0), i.e.,

N(x0) = convM(x0).

By definition of the convex hull and theorem of Caratheodory [14], we have

convM(x0) =

{
n+1∑
i=1

αivi |
n+1∑
i=1

αi = 1, αi ≥ 0, vi ∈M(x0), i = 1, 2, ..., n+ 1

}
(2.7)

It can be checked that N(x0) is compact.

Lemma 2.4.

max
v∈M(x0)

⟨v, h⟩ = max
v∈N(x0)

⟨v, h⟩, ∀h ∈ Rn.
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The proof is obvious.
Now we can present the cone K0 as

K0 =
{
h ∈ Rn | ⟨v, h⟩ < 0, ∀v ∈ N(x0)

}
(2.8)

Consider the cone K̂ generated by the set N(x0):

K̂ = {λv | λ ≥ 0, v ∈ N(x0)} ={
n+1∑
i=1

αivi | αi ≥ 0, vi ∈M(x0), i = 1, 2, ..., n+ 1

}
(2.9)

Introduce the conjugate cone K∗
0 to K0:

K∗
0 = {v ∈ Rn | ⟨v, x⟩ ≤ 0, ∀x ∈ K0} . (2.10)

Lemma 2.5.
K∗

0 = K̂.

Proof. It is obvious that K̂ ⊆ K∗
0 . Now let us show the inverse inclusion K∗

0 ⊆ K̂. On the
contrary, assume that v̄ ∈ K∗

0 but v̄ /∈ K̂. Clearly, K̂ is a convex and closed cone. Then
due to the separation theorem, there exists a linear functional c ∈ Rn and a scalar γ strictly
separating K̂ from v̄:

⟨c, v̄⟩ > γ ≥ ⟨c, v⟩, ∀x ∈ K̂.

Since the set K̂ is convex cone , it can be shown that the above inequality holds only for
γ = 0. Hence, we have

⟨c, v̄⟩ > 0 ≥ ⟨c, v⟩, ∀x ∈ K̂.

Since ⟨c, v̄⟩ > 0 then there exists a neighborhood V (c) of c such that

⟨c, h⟩ > 0, ∀h ∈ V (c).

Taking into account that convM(x0) ⊆ K̂, we have

c ∈ closure(K0) = {h ∈ R | ⟨v, h⟩ ≤ 0, ∀v ∈ convM(x0)}. (2.11)

By (2.11), we have that there exists h̃ ∈ V (c) ∩K0 such that ⟨h̃, v̄⟩ > 0. Consequently, we
have v̄ /∈ K∗

0 which contradicts v̄ ∈ K∗
0 . This is proves the lemma.

Now we consider the following minimax problem and formulate optimality conditions.
Problem (2.1) can be written as:

min
x∈D

φ(x), (2.12)

D = {x ∈ Q | gi(x) ≤ 0, i = 1, 2, ...,m} (2.13)

where, φ(x) = max
y∈A

f(x, y), Q is a convex set in Rn, intQ ̸= ∅, gi : Rn → R, i = 1, 2 . . . ,m

are differentiable functions.
The optimality conditions of the problem (2.12)-(2.13) is given by the following theorem.

Theorem 2.6. If x0 is a minimax solution to problem (2.12)-(2.13), then there exist

numbers α1, α2 . . . , αn+1, λ1, λ2, ...λm with
n+1∑
i=1

α2
i +

m∑
i=1

λ2i ̸= 0 and points yi ∈ Y (x0),

i = 1, 2, ...n+ 1 such that
⟨
n+1∑
i=1

αi
∂f(x0,yi)

∂x +
m∑
i=1

λi
∂gi(x

0)
∂x , x− x0⟩ ≤ 0, ∀x ∈ Q

λi ≥ 0, λigi(x
0) = 0, i = 1, 2 . . . ,m

αi ≥ 0, i = 1, 2 . . . , n+ 1.

(2.14)
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Proof. By Lemmas 2.3 and 2.5, we construct cone K0 of descent directions for the function
φ(x) = min

y∈A
f(x, y) at the point x0 and corresponding conjugate cone K∗

0 .

Let Ki be cones of feasible directions at a point x0 for the following sets:

Qi = {x ∈ Rn| gi(x) ≤ 0}, i = 1, 2 . . . ,m.

Also, K∗
i are the corresponding conjugate cones to Ki, i = 1, 2 . . . ,m. According to [6], Ki

and K∗
i are constructed as follows:

Ki = {h ∈ Rn | ⟨g′i(x0), h⟩ < 0},
K∗

i = {λi ∂gi(x
0)

∂x | λi ≥ 0}, i = 1, 2, . . . ,m.
(2.15)

Let KQ be cone of feasible directions at the point x0 for the set Q.
KQ and K∗

Q can be constructed in the following way:

KQ = {h ∈ Rn| h = α(x− x0), x ∈ intQ, α > 0},
K∗

Q = {v ∈ Rn| ⟨v, x− x0⟩ ≤ 0, ∀x ∈ Q}.

According to the Duvobizkii-Milyution theorem [6], if a point x0 is a minimax solution to
problem (2.12)-(2.13), then (

m∩
i=0

Ki

)∩
KQ = ∅. (2.16)

Since all cones of descent and feasible directions are convex, then due to the separation

theorem [6], there exists v∗i ∈ K∗
i , i = 0, . . . ,m; v∗Q ∈ K∗

Q such that
m∑
i=1

(v∗i )
2 + (v∗Q)

2 ̸= 0

and
v∗0 + v∗1 + · · ·+ v∗m + v∗Q = 0. (2.17)

Consequently, the last equality implies that there exist numbers α1, α2 . . . , αn+1, λ1, λ2, ...λm

with
n+1∑
i=1

α2
i +

m∑
i=1

λ2i ̸= 0 and points yi ∈ Y (x0), i = 1, 2, ...n+ 1 such that


⟨
n+1∑
i=1

αi
∂f(x0,yi)

∂x +
m∑
i=1

λi
∂gi(x

0)
∂x , x− x0⟩ ≤ 0, ∀x ∈ intQ

λi ≥ 0, λigi(x
0) = 0, i = 1, 2 . . . ,m

αi ≥ 0, i = 1, 2 . . . , n+ 1.

(2.18)

Due to continuity of scalar product function in (2.18), we have

⟨
n+1∑
i=1

αi
∂f(x0, yi)

∂x
+

m∑
i=1

λi
∂gi(x

0)

∂x
, x− x0⟩ ≤ 0, ∀x ∈ cl(intQ).

Since intQ ̸= ∅, then by the theorem in [14], it implies that

cl(intQ) = cl(Q).

Thus,

⟨
n+1∑
i=1

αi
∂f(x0, yi)

∂x
+

m∑
i=1

λi
∂gi(x

0)

∂x
, x− x0⟩ ≤ 0, ∀x ∈ cl(Q). (2.19)
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Now taking into account (2.19), we obtain

⟨
n+1∑
i=1

αi
∂f(x0, yi)

∂x
+

m∑
i=1

λi
∂gi(x

0)

∂x
, x− x0⟩ ≤ 0, ∀x ∈ Q,

which completes the proof.
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234 (1952) 2418–2420.

[18] T. Lin, C. Jin and M. Jordan, On gradient descent ascent for nonconvex-concave min-
imax problems, in: International Conference on Machine Learning, PMLR, 2020, pp.
6083–6093.

[19] S. Lu, I. Tsaknakis, M. Hong and Y. Chen, Hybrid block successive approximation for
one- sided non-convex min-max problems: algorithms and applications, IEEE Transac-
tions on Signal Processing 68 (2020) 3676–3691.
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