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Abstract: Minimax problem has an important role in optimization, global optimization, game theory,
and operations research. In [7], optimality conditions have been formulated for the maxmin problem. In a
general case, since the maxmin and minimax values are not always equal, therefore, the optimality conditions
for both problems might be different. The classical minimax theorem of von Neuman [21] deals with the
equality conditions of maxmin and minimax values. In this paper, we derive new optimality conditions for
the minimax problem based on Duvobizkii-Milyution theory (Duvobizkii and Milyuton in USSR Comput
Math Math Phys 5:1-80, 1965).
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Introduction

Classical minimax theory due to Von Neumann plays an important role in optimization
and game theory. Minimax problems and techniques appear in different fields of research
including game theory, optimization, and control theory. Many engineering and economics
problems such as combinatorial optimization problems of scheduling, location, allocation,
and packing as well as inventory problems are formulated as minimax applications. There
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are many works [16, 17, 26, 12, 13, 20, 10, 25] devoted to theory and algorithms of minimax
and maxmin problems.

In recent years, many optimality conditions have developed for minimax problems. For
instance, Truong et.al [2] proposed necessary optimality conditions in terms of upper or lower
subdifferentials of both cost and constraint functions for minimax optimization problems. Li-
nan and Yuan-Feng [30] are concerned with the study of optimality conditions for minimax
optimization problems with an infinite number of constraints. Anulekha Dhara, Aparna
Mehra [1] concerned with the second-order optimality conditions for minimax problems.
Yu-Hong Dai, Liwei Zhang [3] provided both necessary optimality conditions and sufficient
optimality conditions for the local minimax points of constrained minimax optimization
problems.

Also, minimax problems find applications in areas such as machine learning, and signal
processing, and it has been extensively studied in recent years in [18, 19, 24]. There are
many generalizations of minimax theorems. Assume that X and Y are nonempty sets
and f: X xY — R. A minimazx theorem is a theorem which asserts that, under certain
conditions,

min max f = maxmin f.
Y X X Y

Theorem 1.1 ([20]). Let X and Y be nonempty compact, convex subsets of Euclidean space,
and f be continuous.
Suppose that f is quasiconcave on X, that is to say,

forallyeY and A € R, Lf (), y) is a nonempty and convex
and f is quasiconver on Y, that is to say,
forallz € X and A € R, Ly(x, \) is a nonempty and convex.

Then
min max f = maxmin f,
Yy X X Y

where Ly(\,y) ={x:2 € X, f(z,y) > A} and Lg(z,\) ={y:y €Y, f(z,y) <A}

In 1941, Kakutani [15] analyzed von Neumann’s proof from a viewpoint of the fixed point
theorem. In 1952, Fan [9] generalized Theorem 1.1 to the case X and Y are compact, convex
subsets of (infinite dimensional) locally convex spaces and the quasiconcave and quasiconvex
conditions are somewhat relaxed, while Nikaido [22], using Brouwer’s fixed-point theorem
directly, generalized the same result to the case when X and Y are nonempty compact,
convex subsets of (not necessary locally convex) topological vector spaces and f is only
required to be separately continuous. Nikaido also showed in [23] that, if the quasiconcave
and quasiconvex functions are replaced by concave and convex, then a proof of the minimax
theorem can be proven by elementary calculus.

Theorem 1.2 ([29]). Let X be a topological space, Y be a compact separable topological
space, and f : X XY — R be separately continuous.

Suppose that, for all xg,x1 € X, there exits a continuous map h : [0,1] — X such that
h(0) = xg, h(1) =1 and, for ally €Y and X € R,

{t:t€l0,1], f(h(t),y) = A}

is connected in [0,1].
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Suppose also that, for all nonempty finite subsets W of X and A € R,

LW, A\ ={y:yeY, flz,y) <A}

is connected in Y.
Then

min su = sup min f.
i pr upmi f

In 1953, Fan took the theory of minimax theorems out of the context of convex subsets
of vector spaces when he established the following results.

Theorem 1.3 ([8]). Let X be a nonempty set and Y be a nonempty compact topological
space. Let f: X xY — R be lower semicontinuous on Y.
Suppose that fis concave like on X and convex like on Y, that is to say:

for all 1,29 € X and « € [0,1], there exists x3 € X such that
f(:c3a ) > Oéf($1, ) + (1 - O[)f(l'g, ) on Y7

and

for ally1,y2 €Y and B € [0,1], there exists y3 € Y such that
f('vy?)) > /Bf(7y1) + (1 - IB)f(va) on X.

Then

ins =5 in f.
min sup f up min f
In 1972, Terkelsen proved first mixed minimax theorem.

Theorem 1.4 ([27]). Let X be a nonempty set and Y be a nonempty compact topological
space. Let f: X xY — R be lower semicontinuous on Y.
Suppose that for all x1,z2 € X and o € [0, 1], there exists x5 € X such that

flxs, ) > [f(z1,-) + f(z2,-)]/2 on Y.

Suppose also that, for all nonempty finite subsets W of X and A € R, Ly(W, \) is connected
in Y. Then

min 51)1(pf = Sl)l(p min f.
In [4], the following discrete minimax problem has been considered.
i 1.1

min ) (z) (1.1)

where, ¥(x) = max hi(xz) and h;(x) are continuously differentiable functions on a convex
<i<m

closed set D C R™. The optimality conditions for this problem are given by the following
assertion.

Theorem 1.5 ([4]). If x* is a solution to problem (1.1), then

. Oh;(z*) o
2Ty =0 -2
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where, I(z) = {i € {1,2,--- ,m} | hi(z) = ¥(x)}.
In [7], the following maxmin problem has been examined from a viewpoint of optimality
conditions.

1.

max ¢ (x) (1.3)

where, (z) = meiglf(%y), Q is a convex in R”, intQ # 0, f; : R* = R, i = 1,...,m are
y

differentiable functions, f(z,y) and W are continuous on D x A, A is compact in R*.

Theorem 1.6 ([7]). If 2° is a solution to problem (1.3)-(1.4), then there exist numbers
A1y 2y ey Qpi1, A, A2y A and points y* € Y(20), i =1,2,...(n + 1) such that

Ai >0, Nifi(2%) =0, i=1,2,...,m

a; >0,i=1,2,..,n+1
n+1 9 (].5)
<2a2 ”>+2A @) 29 > 0,vz € Q

where, ~
V() ={ye Al f°y) = (")}

In 2001, I. Tseveendorj in [26] considered the following type of discrete maxmin problems
called piecewise convex maximization problem.

Definition 1 ([26]). A function ¢ : R™ — R is called a piecewise convex function if it can

be decomposed into:
plo) = min f;(z)

where f; : R™ — R is convex for all j =1,2,--- ,m.

Definition 2 ([26]). A problem

max o (z) (PCMP)

is called a piecewise convex maximization problem, if ¢(x) is a piecewise convex function.

Piecewise convex maximization problem (PCMP) has been studied also in [5] and has
many applications [20].

Proposition 1.7 ([26]). If z € D is global mazimizer of (PCMP) then for all k € I(z) =
{1e{l,2,---,mj | fi(2) = (2)}
0fx(y) (VN (Dk(2),y) # 0

Vy st fuly) = e(2),
where
Dy(z) =DnA{x | fi(z) > ¢(2), Vj=1,2,--- ,m\ k},
ofly) ={y" eR | f(z) — f(y) = (y",z —y), Vo € R"},

and
N(D,c) ={ceR" | (¢c,x —c) <0, Vx € D}.
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Optimality Conditions for Minimax Problem

We consider the following minimax problem:

i 2.1
min max f(z,y) (2.1)

where f(z,y) and %ﬁ’w are continuous on D x A, A is compact in R*, D is convex and
compact in R™.
According to the minimax Theorem [6] there exists a value v:
¥ = minma z,Yy). 2.2
min max f(z,y) (22)

We introduce the function
p(z) = max f(@,y).

Definition 3. A point 2° € D is called a local minimax solution if it is a local minimizer
of the function ¢(x).

Assume that

0
M#OCR", Yy € A.
ox
Introduce the set
V() ={ye A f(a°y) = p(a")}. (2.3)

It is clear that Y (2°) is compact.

Theorem 2.1 ([4]). The function o(x) is continuous on R™ and differentiable in any di-
rections h € R™ with ||h|| =1 at a point x € R"™ and

oo(x) . 0f(x,y)
or —,min (= R

Definition 4. A direction h € R™ is said to be a descent direction of the function ¢(z) at a
point 20, if there exist a neighborhood V (h) of the vector A and a number gy > 0 such that

o(x°) > o(2° 4+ eh), Yh € V(h), Ve € (0,¢0).
Denote by K the set of descent directions of the function o(x) at a point x°.
Lemma 2.2. The set K of descent directions is an open cone.

Proof. Let h be a descent direction of the function () at a point 2°. Since the function
©(x) is continuous, then by the definition of descent directions, there exist scalars § > 0 and
€0 > 0 such that

o(x%) > p(z° + eh) (2.4)

hold for all h and ¢ satisfying
|h—h|| <4, €€ (0,&).

Now we show that Ah directions for all A > 0 are also descent. Indeed, if we take d=M\
and &€ = ¢ then (2.4) holds for hold for all  and € such that

AL — AR| < 8, € (0,2).
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Lemma 2.3. A set

0f (=%, y)
Ky=qheR" 72 h) <0 2.5
o= {remn | max G 29
is an open conver subcone of the cone of the descent directions of the function o(x) at a
point x0.

Proof. By construction, it is clear that Ky is an open and convex cone. Indeed, since the
function

_ 9f(2°,y)
g(h)—yg%§0)< il

is convex, then K is convex.
Let us show Ky C K. Assume that h € Ky. Due to continuity of g(h), there exists a
neighborhood V'(h) of h such that

) — 8f($07y) 7 7
g(h) = max (==5==.h) <0, Vh e V(h).

The function ¢(z) is differentiable in directions [5], and it follows that

7 _ (9f(5170, y) 7
pla® + o) = p(a) = & max (BB + ofc).

It is clear that for a sufficiently small ¢ (0 < e < g¢), we have
o(x° + eh) < p(z%), Yh € V(h), Ve € (0,&0).

It is means that h € K and Ky C K.
The proof is complete. O

Now we introduce the set

IO
M(2°) = {w |y € Y(:co)} . (2.6)

It is clear that M (2°) is compact.
Denote by N(z°) the convex hull of M (z?), i.e.,

N(z%) = convM (z°).
By definition of the convex hull and theorem of Caratheodory [14], we have
convM (z9) = {THII ;| nlel a; =1, ; >0, v; € M(2°), i =1,2,....,n+ 1} (2.7)
It can be checked that N(z) is compact.
Lemma 2.4.

max (v,h) = max (v, h), Vh € R".
vEM (z0) vEN (z0)
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The proof is obvious.
Now we can present the cone Ky as

Ko={heR" | (v,h) <0, Vv e N(°)} (2.8)
Consider the cone K generated by the set N(29):
K={Ww|A>0, ve Nz} =

n+1 0 ) (29)
S |a; >0, v, € M(2Y), i=1,2,...,n+1
i=1
Introduce the conjugate cone K§ to Ko:
Kj={veR"| (v,z) <0, Vz € Ky}. (2.10)
Lemma 2.5. R
Ky =K.

Proof. 1t is obvious that K C K. Now let us show the inverse inclusion Kj C K. On the
contrary, assume that o € K§ but o ¢ K. Clearly, K is a convex and closed cone. Then
due to the separation theorem, there exists a linear functional ¢ € R™ and a scalar v strictly
separating K from o:

(¢,0) >~ > (¢,0), Vz e K.
Since the set K is convex cone , it can be shown that the above inequality holds only for
v = 0. Hence, we have

(¢,0) > 0> (¢,v), V& € K.

Since (¢, v) > 0 then there exists a neighborhood V'(¢) of ¢ such that

(e,h) >0, Yh € V(c).

Taking into account that convM (z°) C K, we have

c € closure(Kg) = {h € R | (v,h) <0,Vv € conuM(z°)}. (2.11)
By (2.11), we have that there exists h € V(¢) N Kq such that (h,5) > 0. Consequently, we
have v ¢ K which contradicts © € K. This is proves the lemma. O

Now we consider the following minimax problem and formulate optimality conditions.
Problem (2.1) can be written as:
i 2.12
min (z), (2.12)
D={zreQ]g(z)<0,i=12,..,m} (2.13)
where, ¢(z) = majl{f(x,y), Q is a convex set in R" intQ # 0, g; :R" >R, i =1,2....,m
ye

are differentiable functions.
The optimality conditions of the problem (2.12)-(2.13) is given by the following theorem.

Theorem 2.6. If 2° is a minimaz solution to problem (2.12)-(2.13), then there eist
n+1 m .
numbers i, Qg...,Qni1, Ay A2, Ay with Y a2 + 52 A2 # 0 and points y* € Y (2),

=1 =1
i=1,2,..m+ 1 such that

n+1 i m
(3 o 9f(gi,y ) 4 )9 /\iagg(;o)’x %) <0V eQ
i=1 i=1

)\i_Z O7 )\igi(mo) :_0, 1= 1,2...,m
a; >0, i=1,2...,n+1.

(2.14)
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Proof. By Lemmas 2.3 and 2.5, we construct cone K of descent directions for the function
p(z) = mig f(z,y) at the point 2% and corresponding conjugate cone K.
ye

Let K; be cones of feasible directions at a point 2 for the following sets:
Qi={reR"| gi(z) <0}, i=1,2...,m

Also, K are the corresponding conjugate cones to K;, i = 1,2...,m. According to [6], K;
and K are constructed as follows:

K;={heR" | (gi(z"),h) <0},

2.15
K*:{/\agl D) N >0), i=1,2,...,m (2.15)

Let K¢ be cone of feasible directions at the point 2 for the set Q.
Kq and K, can be constructed in the following way:

Ko ={heR"| h=a(x—12°, z €intQ, a> 0},
K ={veR" (v,o — 2% <0, Vz € Q}.

According to the Duvobizkii-Milyution theorem [6], if a point z° is a minimax solution to

problem (2.12)-(2.13), then
<ﬂ K) (Ko =0. (2.16)
i=0

Since all cones of descent and feasible directions are convex, then due to the separation
theorem [6], there exists v} € K, i =0,...,m; v, € Kf, such that E( 5?4 (s #0
=
and
* * * *
vy + v+ F v, g =0. (2.17)

Consequently, the last equality implies that there exist numbers oy, ag ..., Qni1, A1, A2, o A
n+1 m .
with > a? + 3> A\? £ 0 and points y* € Y (2°), i = 1,2,...n + 1 such that
i=1 i=1
n+1 9
(Zal zy)%—Zx\ 91 x—m)SO,VzeintQ

)\ >0 Aigi(x )—0 i=1,2.
a;>0,7=12...,n+1.

(2.18)

Due to continuity of scalar product function in (2.18), we have

n+1
O a af ZA agl Jz— 2% < 0,Vz € d(intQ).

i=1
Since int@ # (), then by the theorem in [14], it implies that
cd(int@) = (Q).

Thus,

n+1
Z ozz Z Ai agf — 2% <0,Vz € c(Q). (2.19)
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Now taking into account (2.19), we obtain

ntl 0 i m (70
» aiMx’y) + ZAiag’(; ) v—a% <0 vreq,
=1

p 0 0
which completes the proof. O
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