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Another well-known method is the metaheuristics, but no theoretical guarantee of conver-
gence exists in this case. As alternatives to these methods, in the last two decades, many
multi-objective descent methods have been proposed. The descent methods generate de-
scent directions by solving easy (i.e., strongly convex and quadratic) subproblems, and that
generalize well-known single-valued optimization methods [25].

For instance, for unconstrained problems, the steepest descent and the Newton methods
were proposed in [22] and [21], respectively. Also, the projected gradient [23, 24, 29], the
subgradient [20], the proximal point [8, 12, 19, 28], the conditional gradient method [2, 3]
and many other methods were proposed in the literature [7,13,32]. For problems like (1.1),
which are often called composite problems, Tanabe, Fukuda, and Yamashita [35] proposed
a proximal gradient method. In that paper, the search direction is computed by solving a
subproblem, that considers the first-order approximation of the objectives, using the gradient
only for the differentiable fi, plus a regularization term that uses the Euclidean distance.
By assuming that fi has Lipschitz continuous gradients, they prove that every accumulation
point of the generated sequence, if it exists, is a Pareto stationary point. Moreover, the rate
of convergence was also proved in [36].

An intuitive extension of the former methods involves substituting the Euclidean dis-
tance with a broader, distance-like metric, thereby enhancing the method’s applicability
and flexibility. The notion of Bregman distance (or Bregman divergence) was first intro-
duced in [14], which proposed an iterative algorithm to solve certain convex optimization
problems involving regularization, known as the Bregman method, and re-emerged in [15].
Unlike traditional metrics such as the Euclidean distance, the Bregman distances may not
be symmetric and do not necessarily satisfy the triangle inequality. However, they do adhere
to a generalization of the Pythagorean theorem, allowing for the application of optimiza-
tion theory techniques in a more general setting. For this reason, the Bregman distances
began to be considered instead of the Euclidean one. They are frequently employed to ad-
dress constrained optimization problems, especially in alleviating ill-conditioned solutions
of subproblems [16,39].

Furthermore, much research has been done, concerning optimization methods based on
Bregman distances for proximal point methods [16] and proximal gradient methods [11,38].
For multi-objective optimization, few methods that consider these distances exist, except
for some proximal point methods [19, 34]. Based on this, we propose the multi-objective
proximal gradient method with Bregman distance, by modifying the search direction used
in [35]. Depending on the chosen Bregman distance, the subproblem can more precisely
approximate the original function, potentially enhancing the accuracy of the solution and
possibly reducing the total number of iterations required. In particular, the Kullback–
Leibler divergence proves advantageous in optimizations over the unit simplex [6]. Moreover,
a proximal gradient method with a proper Bregman distance is suitable for Poisson linear
inverse problems [4], where the usual proximal gradient cannot be applied. Further examples
of applications of Bregman distances can be found in [30,39].

In this paper, we also use the concept of relative smoothness. A similar notion was
proposed in [4] as a new descent lemma without Lipschitz gradient continuity, where the
reference function is required to be a Legendre function. Recently, Lu et al. gave the
definition of relative smoothness and relative strong convexity in [31] showing that it is
less strict than the usual Lipschitz continuity of the gradients assumption. In this case,
differently from [4], the reference function is not required to be strictly convex. Similarly, in
this work, we will assume the less restrictive relative smoothness for the differentiable part
of the objective function, making adaptations to deal with multi-objectives. Furthermore,
we will consider two types of stepsizes, and for both of them, we will show convergence to
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Pareto stationary points as well as convergence rates.
During the writing of this paper, we noted an unpublished paper by Chen et al. [17],

which shares similarities with the current work. It is important to emphasize that our re-
search was independently done, and grounded in the work presented in the first author’s
master thesis [18]. However, our papers still differ in many aspects. While the paper [17]
considered vector optimization, they did not incorporate the possible nondifferentiable func-
tion g into their study. Also, our research offers a more refined global convergence since we
do not require strict convexity and Lipschitz gradient continuity of the reference function.
Similarly, we also found an unpublished paper by Ansary and Dutta [1], which was also done
independently. In this case, they considered composite objective functions, but they require
strong convexity of the reference function, and they did not discuss convergence rates.

The outline of this paper is as follows. In Section 2, we recall the proximal gradient
method for multi-objective problems, the definition of the Bregman function, and some pre-
liminary materials. In Section 3, we propose a proximal gradient method with Bregman
distance for multi-objective optimization, considering both the constant stepsizes and the
backtracking procedure. Section 4 contains the proof of global convergence to Pareto sta-
tionary points. In addition, we prove the convergence rates for convex and strongly convex
problems.

2 Preliminaries

In this section, we will recall the multi-objective proximal gradient method proposed in [35],
as well as the basic notions of Bregman distances and the so-called relative smoothness.
Before that, let us first present some notations used in this paper. We denote the Euclidean
inner product as ⟨·, ·⟩, and the Euclidean norm as ∥ · ∥. The interior, the boundary and the
closure of a set S are written as int(S), bd(S) and cl(S), respectively. We also define the
relation ⪯ (≺) in Rm as u ⪯ v (u ≺ v) if and only if ui ≤ vi (ui < vi) for all i = 1, . . . ,m.

For a given scalar-valued function q : Rn → R ∪ {+∞} and a vector-valued function
r : Rn → (R ∪ {+∞})m, we use ∇q(x) ∈ Rn and Jr(y) ∈ Rm×n to denote, respectively,
the gradient of q at x ∈ dom q, and the Jacobian matrix of r at y ∈ dom r. Here, dom q :=
{x ∈ Rn : q(x) < +∞} and dom r := {y ∈ Rn : r(y) ≺ +∞} denote the effective domain of
q and r, respectively. The directional derivative of q at x in the direction d ∈ Rn, if it exits,
is given by

q′(x; d) := lim
t↘0

q(x+ td)− q(x)

t
.

We denote the set of subdifferentiable points of q as dom ∂q := {x ∈ Rn : ∂q(x) ̸= ∅}, where
∂q(x) means the subdifferential of q at x in the sense of convex analysis, i.e.,

∂q(x) :=
{
s ∈ Rn : q(y) ≥ q(x) + ⟨s, y − x⟩ for all y ∈ Rn

}
.

Note that for a proper function q, we have ∂q(x) = ∅ when x /∈ dom q.

2.1 Pareto optimality and related works

Let us first introduce the concept of Pareto optimality, in particular, for the multi-objective
optimization problem (1.1). Recall that x∗ ∈ Rn is a Pareto optimal point for F , if there is
no x ∈ Rn such that F (x) ⪯ F (x∗) and F (x) ̸= F (x∗) . Also, x∗ ∈ Rn is a weakly Pareto
optimal point for F , if there is no x ∈ Rn such that F (x) ≺ F (x∗). The set of all (weakly)
Pareto optimal values is called (weakly) Pareto frontier. It is known that Pareto optimal
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points are always weakly Pareto optimal, but the converse is not always true. We also recall
that x̄ is Pareto stationary (or critical), if and only if,

max
i=1,...,m

F ′
i (x̄; d) ≥ 0 for all d ∈ Rn.

The above definition generalizes the one that was given in [22] for differentiable problems.
Moreover, its relation with (weakly) Pareto optimality can be seen in [35]. For the sake of
completeness, we state below such relations.

Lemma 2.1 ([35, Lemma 2.2]). The following assertions hold:

1. If x is weakly Pareto optimal for F , then x is Pareto stationary.

2. Assume that every component Fi of F is convex. If x is Pareto stationary for F , then
x is weakly Pareto optimal.

3. Assume that every component Fi of F is strictly convex. If x is Pareto stationary
for F , then x is Pareto optimal.

Let us now discuss the multi-objective proximal gradient method, proposed in [35]. As
many multi-objective descent methods, it generates a sequence

{
xk
}

iteratively with the
following procedure:

xk+1 := xk + tkd
k,

where dk is the search direction and tk is the stepsize. At every iteration k, the direction dk
is computed by solving the following unconstrained single-objective problem:

dk := argmin
d∈Rn

(
ψ̃xk(d) +

ℓ

2
∥d∥2

)
, (2.1)

where ℓ > 0 and ψ̃xk : Rn → R ∪{+∞} is defined by

ψ̃xk(d) := max
i=1,...,m

(
∇fi(xk)⊤d+ gi(x

k + d)− gi(x
k)
)
,

assuming gi(x
k) < +∞. In other words, the direction is defined by solving a problem,

with a maximum of the first-order approximations of Fi, using the gradient only for the
differentiable part fi, plus a regularization term. In this case, the traditional Euclidean
norm regularization was used, with some ℓ > 0. We also notice that (2.1) is well-defined
since the objective function of this subproblem is strongly convex.

In [35], a method with and without line searches was considered. In the first case, the
stepsize was fixed as tk = 1 in all iterations, while in the second case, a backtracking proce-
dure with Armijo condition was used. For both cases, it was proved that each accumulation
point of the sequence generated by the method, if it exists, is Pareto stationary [35, Theo-
rems 4.2 and 4.3]. Moreover, the convergence rate was also established in [36]. Here, we will
replace the Euclidean norm regularization used in the above subproblem with a distance-like
function, called Bregman distance.

2.2 Bregman distances and relative smoothness

In this section, we review the basic properties of Bregman distances, as well as the definition
of relative smoothness and relative strong convexity, that will be considered in the paper.
These definitions take a function ω : Rn → R∪{+∞} as a reference, and with the following
properties: it is proper, closed, convex, and differentiable over dom ∂ω. Let us start with
the definition of Bregman distance [14].
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Definition 2.2. The Bregman distance associated with ω is the function Bω : dom ω ×
dom ∂ω → R given by

Bω(x, y) = ω(x)− ω(y)− ⟨∇ω(y), x− y⟩ for all x ∈ domω, y ∈ dom ∂ω.

Note that the convexity of ω implies

Bω(x, y) ≥ 0 for all x ∈ domω, y ∈ dom ∂ω.

Moreover, the definition of Bregman distance give

x = y =⇒ Bω(x, y) = 0. (2.2)

It should be noted that, under the assumption of strict convexity for ω, the converse impli-
cation holds as well.

Example 2.3 (Euclidean distance). If ω(x) = 1
2∥x∥

2, then Bω(x, y) =
1
2∥x − y∥2. In this

case, Bω(x, y) = Bω(y, x), which is not necessarily true in general.

Example 2.4 (Negative entropy (or Kullback–Leibler divergence)). If ω(x) =
∑n

i=1 xi lnxi
when x ⪰ 0, and ω(x) = +∞ otherwise (with the convention 0 ln 0 = 0), then Bω(x, y) =∑n

i=1 xi ln
xi

yi
−
∑n

i=1 (xi − yi).

We also list some lemmas that will be used in the paper. Lemma 2.6 is essential in
analyzing the convergence of the proximal gradient methods with Bregman distance, which
can be also proved based on Lemma 2.5.

Lemma 2.5 (Three-points identity). [16, Lemma 3.1] Take a, b ∈ dom ∂ω and c ∈ dom ω.
Then the following equality holds:

⟨∇ω(b)−∇ω(a), c− a⟩ = Bω(c, a) +Bω(a, b)−Bω(c, b).

Lemma 2.6 ([16, Lemma 3.2]). For any proper closed convex function θ : Rn → R∪{+∞}
and any z ∈ dom ∂ω, if ω is differentiable at z+ = argmin

x∈domω
(θ(x) +Bω(x, z)), then

θ(x) +Bω(x, z) ≥ θ (z+) +Bω (z+, z) +Bω (x, z+) for all x ∈ dom ω.

Many optimization methods, including the multi-objective proximal gradient method
proposed in [35], assume the gradients of the objectives to be Lipschitz continuous. For a
scalar-valued function q, it means that there exists some L̃q such that

∥∇q(x)−∇q(y)∥ ≤ L̃q∥x− y∥ for all x, y ∈ int(dom q).

However, this is a rather strict condition. We refer to [31] for examples of convex differen-
tiable functions that do not satisfy such a condition. Moreover, even if it is satisfied, the
Lipschitz constant may be too large, making its practical usage difficult. Compared to the
gradient Lipschitz condition, the following notion of relative smoothness, using a function ω
as a reference function, is shown to be less restrictive.

Definition 2.7 ((Relative smoothness) [31, Definition 1.1]). Let ω be convex and differ-
entiable on domω. A function q is called Lq-smooth relative to ω on dom ω if for any
x, y ∈ int(dom ω), there exists a scalar Lq such that

q(x) ≤ q(y) + ⟨∇q(y), x− y⟩+ LqBω(x, y).
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Definition 2.8 ((Relative strongly convexity) [31, Definition 1.2]). Let ω be convex and
differentiable on domω. A function q is called µq-strongly convex relative to ω on dom ω if
for any x, y ∈ int(dom ω), there exists a scalar µq ≥ 0 such that

q(x) ≥ q(y) + ⟨∇q(y), x− y⟩+ µqBω(x, y).

Note that the definition of relative smoothness gives an upper approximation of q that
is similar to the so-called descent lemma. Moreover, in [31, Section 2], many classes of
optimization problems were listed, showing constructions of reference functions ω that make
the objective function smooth relative to an easily determined constant.

3 The Multi-Objective Proximal Gradient Method with Bregman
Distance

In this section, we explain in detail the proposed proximal gradient method with Bregman
distance. From now on, we suppose that the following assumption holds.

Assumption 3.1. Let ω : Rn → R ∪ {+∞} be a reference function that is proper, closed,
convex, and differentiable over dom ∂ω. We assume that fi is Li-smooth relative to ω and
that dom g ⊆ domω. Also, the level set {x ∈ dom g | ω(x) ≤ α} is compact for all α ∈ R.

We recall that in many works, ω is assumed to be a Legendre function, i.e., it is proper,
closed, essentially smooth and strictly convex. Also, essentially smooth means dom ∂ω ̸= ∅
or, equivalently, int(domω) ̸= ∅ with ω differentiable on int(domω) and ∥∇ω(xk)∥ → +∞
when {xk} ⊂ int(domω), xk → x ∈ bd(domω) (see [33, Theorem 26.1]). In this work,
we do not require strict convexity of ω unless it is explicitly specified. Observe also that
compactness of the defined level set is guaranteed, for instance, when dom g is compact, or
ω is level bounded.

Using the relatively smooth constants, we also define

L := max
i=1,...,m

Li. (3.1)

Now, let us notice that when the stepsize tk is equal to 1, then dk = xk+1 − xk. Thus, in
this case, the subproblem (2.1) can be written as

xk+1 = argmin
x∈Rn

(
ψxk(x) +

ℓ

2

∥∥x− xk
∥∥2) , (3.2)

where ℓ > 0 and ψxk : Rn → R ∪ {+∞} is defined by

ψxk(x) := max
i=1,...,m

(
∇fi(xk)⊤

(
x− xk

)
+ gi(x)− gi(x

k)
)
. (3.3)

Based on this, in each iteration k of our proposed method, we consider the following sub-
problem:

xk+1 = pLk
(xk) ∈ argmin

x∈Rn

(
ψxk(x) + LkBω

(
x, xk

))
, (3.4)

where ψxk is defined in (3.3), Lk > 0, and Bω is the Bregman distance associated with ω,
supposing Assumption 3.1. Clearly, this subproblem is equivalent to (3.2) when ω(x) =
∥x∥2/2 (if Lk = ℓ for all k). We further define its optimal value as follows:

θ(xk) := min
x∈Rn

(
ψxk(x) + LkBω

(
x, xk

))
= ψxk(pLk

(xk)) + LkBω

(
pLk

(xk), xk
)
. (3.5)
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Now, we observe that the definition of ψxk gives ψxk(xk) = 0, and Bω

(
xk, xk

)
= 0 holds.

This means that
θ(xk) ≤ 0 for all k.

We now prove that pLk
(xk) is in fact well-defined.

Proposition 3.1. The term pLk
(xk) given in (3.4) is well-defined for all k and pLk

(xk) ∈
dom ∂ω. If in addition ω is strongly convex, the minimizer pLk

(xk) is unique.

Proof. The optimization problem given in (3.5) can be written as

min
x∈Rn

max
i=1,...,m

(
∇fi(xk)⊤(x− xk) + gi(x)− gi(x

k) + LkBω(x, x
k)
)

= min
x∈Rn

max
i=1,...,m

(〈
∇fi(xk)− Lk∇ω(xk), x− xk

〉
+ gi(x)− gi(x

k)

+Lkω(x)− Lkω(x
k)
)
,

where the equality follows from the definition of Bω(x, x
k). Dividing the objective function

of the above problem by Lk, we obtain the equivalent problem:

min
x∈Rn

max
i=1,...,m

(〈
1

Lk
∇fi(xk)−∇ω(xk), x

〉
+

1

Lk
gi(x)−

1

Lk
gi(x

k) + ω(x)

)
.

For some k, defining

φ(x) := max
i=1,...,m

(〈
1

Lk
∇fi(xk)−∇ω(xk), x

〉
+

1

Lk
gi(x)−

1

Lk
gi(x

k)

)
,

the problem can be written as

min
x∈Rn

Ψ(x) :=
(
φ(x) + ω(x)

)
.

The function Ψ is closed since g, ω, and the maximum of closed functions are closed. It is also
proper because dom g ∩ domω ̸= ∅. Moreover, Ψ is convex because it takes the maximum
of convex functions (and gi is convex). From Assumption 3.1, {x ∈ dom g | ω(x) ≤ α}
is compact for all α ∈ R, so this problem is solvable. This means that pLk

(xk) is well
defined. Since domΨ is nonempty and convex, it follows that there exists x0 in the relative
interior of domΨ [5, Theorem 3.17], and consequently, by [5, Theorem 3.18], ∂Ψ(x0) ̸= ∅.
Furthermore, if ω is strongly convex, we conclude that φ is a proper closed and strongly
convex function, and hence, from [5, Lemma 9.7], the subproblem has a unique optimal
solution in dom g ∩ dom ∂ω.

From Assumption 3.1 (in particular, the relative smoothness of fi) and the definition
of L in (3.1), if Lk ≥ L, for all i we have

Fi(x
k+1)− Fi(x

k) ≤ ∇fi(xk)⊤(xk+1 − xk) + gi(x
k+1)− gi(x

k) + LkBω(x
k+1, xk). (3.6)

Since xk+1 is the optimal solution of (3.4), the maximum in i of the right-hand side of (3.6)
is less than or equal to zero. Thus, for all i

Fi(x
k+1) ≤ Fi(x

k) for all k, (3.7)

that is, the objective functions decrease monotonically. In the following subsections, we
consider two stepsize rules for our method.
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3.1 Constant stepsize

Now consider the constant stepsize, which we set as Lk = L̄ for all k, with L̄ > L and L is
given in (3.1). Then the proximal gradient method with Bregman distance is given below.

Algorithm 1 Multi-objective proximal gradient method with Bregman distance and con-
stant stepsize
Step 1 Choose Lk := L̄ with L̄ > L, ε > 0, x0 ∈ dom g ∩ dom ∂ω, and set k := 0.
Step 2 Compute pLk

(xk) by solving subproblem (3.4).
Step 3 If

∥∥pLk
(xk)− xk

∥∥ < ε, then stop.
Step 4 Set xk+1 := pLk

(xk), k := k + 1, and go to Step 2 .

3.2 Backtracking procedure

Now we consider the backtracking procedure. In the beginning, let L−1 = s with s > 0. At
iteration k ≥ 0, let Lk = Lk−1. Then, while existing i such that

fi
(
pLk

(xk)
)
> fi(x

k) +
〈
∇fi(xk), pLk

(xk)− xk
〉
+ LkBω(pLk

(xk), xk),

we set Lk := ηLk where η > 1. In other words, Lk = Lk−1η
jk , where jk is the smallest

nonnegative integer given as follows:

jk := argmin
j∈{0,1,2,... }

(
F
(
pLk−1η

jk (x
k)
)
⪯ F (xk) + JF (xk)⊤

(
pLk−1ηj (xk)− xk

)
(3.8)

+Lk−1η
j(pLk−1ηj (xk), xk)

)
.

The rule above ensures that (3.6) is still satisfied at each iteration. In addition, the Lk

that the backtracking procedure produces satisfies the following bounds for all k:

s ≤ Lk ≤ max {ηL, s} .

The inequality s ≤ Lk is trivial. To prove the inequality Lk ≤ max {ηL, s}, we note that
either Lk = s or Lk > s. In the latter case there exists an index 0 ≤ k′ ≤ k and some i for
which the inequality (3.6) is not satisfied with k = k′ and replacing Lk with Lk/η. From
the relative smoothness of fi, this implies in particular that Lk/η < Li ≤ L. Thus, we have
shown that Lk ≤ max {ηL, s}. Namely, Lk ≤ αL, where α = max {η, s/L}. We also note
that the bounds on Lk can be rewritten as

βL ≤ Lk ≤ αL,

where

α =

{
L̄
L , constant,
max

{
η, s

L

}
, backtracking,

β =

{
L̄
L , constant
s
L , backtracking.

So the algorithm with backtracking stepsize is given below.
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Algorithm 2 Multi-objective proximal gradient method with Bregman distance and back-
tracking procedure
Step 1 Choose s > 0, η > 1, ε > 0, x0 ∈ dom g ∩ dom ∂ω, and set L−1 = s, k := 0.
Step 2 Compute Lk by solving (3.8).
Step 3 Compute pLk

(xk) by solving subproblem (3.4).
Step 4 If

∥∥pLk
(xk)− xk

∥∥ < ε, then stop.
Step 5 Set xk+1 := pLk

(xk), k := k + 1, and go to Step 2 .

4 Convergence Analysis

In this section, we prove that the sequences generated by Algorithms 3.1 and 3.2 converge to
Pareto stationary points and discuss their rate of convergence. From now on, let us assume
that an infinite sequence is generated.

4.1 Convergence to Pareto stationary points

Now we analyze the convergence of the proximal gradient method with Bregman distance.

Lemma 4.1. Let {xk} be generated by Algorithms 3.1 or 3.2 and suppose that {Fi(x
k)} is

bounded from below for all i = 1, . . . ,m. Then we have

lim
k→∞

Bω(x
k, xk+1) = 0. (4.1)

Proof. At the kth iteration,

fi(x
k+1) + gi(x

k+1)

= fi(x
k) + gi(x

k) + fi(x
k+1)− fi(x

k) + gi(x
k+1)− gi(x

k)

≤ fi(x
k) + gi(x

k) +∇fi(xk)(xk+1 − xk) + LkBω(x
k+1, xk) + gi(x

k+1)− gi(x
k)

≤ fi(x
k) + gi(x

k) + ψxk(xk+1) + LkBω(x
k+1, xk)

≤ fi(x
k) + gi(x

k) + ψxk(x) + Lk(Bω(x, x
k)−Bω(x, x

k+1))

for all x. Here, the first inequality follows from (3.7). The second inequality follows from the
definition of ψxk(xk+1). And the third inequality follows from Lemma 2.6 with θ = ψxk/Lk.
Letting x = xk, and recalling (2.2) and (3.3), we obtain

fi(x
k+1) + gi(x

k+1) ≤ fi(x
k) + gi(x

k)− LkBω(x
k, xk+1)

≤ fi(x
k) + gi(x

k)− βLBω(x
k, xk+1).

Since
{
Fi(x

k)
}

is bounded from below from the assumption, there exists F̃i ≤ Fi(x
k) =

fi(x
k) + gi(x

k) for all i and k. Adding up the above inequality from k = 0 to k = k̂, we
obtain

fi(x
k̂+1) + gi(x

k̂+1) ≤ fi(x
0) + gi(x

0)− βL

k̂∑
k=0

Bω(x
k, xk+1).

Because βL > 0, we have

k̂∑
k=0

Bω(x
k, xk+1) ≤ (βL)−1

(
fi(x

0) + gi(x
0)− fi(x

k̂+1)− gi(x
k̂+1)

)
,



818 K. Chen, E. H. Fukuda and N. Yamashita

and thus
k̂∑

k=0

Bω(x
k, xk+1) <∞.

It then follows from the nonnegativity of Bω(x
k, xk+1) for all k that

lim
k→∞

Bω(x
k, xk+1) = 0,

which completes the proof.

In order to give the convergence analysis, we consider the following assumption. In
Remark 4.3 and Section 4.1.1 we will see that this assumption is actually not so strict.

Assumption 4.1. Let {xk} be a sequence generated by Algorithms 3.1 or 3.2. If

lim
k→∞

Bω(x
k, xk+1) = 0,

then
z∗ := lim

k→∞
{∇ω(xk+1)−∇ω(xk)} ∈ Ncl(dom ∂ω)(x

∗),

where x∗ is an accumulation point of {xk}.

Theorem 4.2. If Assumption 4.1 holds, then every accumulation point of the sequence
{
xk
}

generated by Algorithms 3.1 or 3.2, if it exists, is a Pareto stationary point.

Proof. From the optimality condition of the subproblem (3.4), we have

m∑
i=1

λki (∇fi(xk) + ηi(x
k+1)) + Lk(∇ω(xk+1)−∇ω(xk)) = 0,

where ηi(xk+1) ∈ ∂gi(x
k+1),

∑m
i=1 λ

k
i = 1, λki ≥ 0 for all i = 1, . . . ,m, and λki = 0 when

i /∈ Ixk(xk+1) and

Ixk(xk+1)

:=
{
i ∈ {1, . . . ,m} | ψxk(xk+1) = ∇fi(xk)⊤(xk+1 − xk) + gi(x

k+1)− gi(x
k)
}
.

Because {λki } and {Lk} are bounded, we assume without loss of generality that there exist
λ∗i with

∑m
i=1 λ

∗
i = 1, λ∗i ≥ 0 for all i = 1, . . . ,m, and L∗ > 0 such that

lim
k→∞

m∑
i=1

λki (∇fi(xk) + ηi(x
k+1)) + Lk(∇ω(xk+1)−∇ω(xk))

=

m∑
i=1

λ∗i (∇fi(x∗) + ηi(x
∗)) + L∗z∗

=0,

where ηi(x∗) ∈ ∂gi(x
∗) and z∗ is given in Assumption 4.1. Then, from this assumption and

Lemma 4.1, we have

−
m∑
i=1

λ∗i (∇fi(x∗) + ηi(x
∗)) = L∗z∗ ∈ Ncl(dom ∂ω)(x

∗),
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where we use the fact that L∗ > 0 and Ncl(dom ∂ω)(x
∗) is a cone. Therefore,

m∑
i=1

⟨λ∗i (∇fi(x∗) + ηi(x
∗)), y − x∗⟩ ≥ 0 for all y ∈ cl(dom ∂ω).

This implies that for all y ∈ cl(dom ∂ω), there exists at least one i with λ∗i > 0 such that

⟨∇fi(x∗) + ηi(x
∗), y − x∗⟩ ≥ 0. (4.2)

Moreover, since gi is convex, we have g′i(x∗; y − x∗) = supv∈∂gi(x∗)⟨v, y − x∗⟩ and thus

g′i(x
∗; y − x∗) ≥ ⟨ηi(x∗), y − x∗⟩.

Therefore, from (4.2), for all y ∈ cl(dom ∂ω) we obtain

F ′
i (x

∗; y − x∗) = ⟨∇fi(x∗), y − x∗⟩+ g′i(x
∗; y − x∗) ≥ 0

for some i, which implies that maxF ′
i (x

∗; y− x∗) ≥ 0, and thus x∗ is Pareto stationary.

Remark 4.3. We observe that if x∗ ∈ int(dom ∂ω) or if ∇ω is Hölder continuous, then
z∗ = 0. This ensures the fulfillment of Assumption 4.1, implying that the accumulation
point x∗ is Pareto stationary. This aligns with the result presented in [17, Theorem 2(iii)],
where ∇ω is assumed to be Lipschitz continuous.

4.1.1 Special case

We now show that Assumption 4.1 is not so strict, by showing an example with Kullback-
Leibler divergence. For all i = 1, . . . ,m, define gi(x) as the indicator function of ∆n := {x ∈
Rn |

∑n
i=1 xi = 1, x ≥ 0}. Let ω(x) =

∑n
i=1 xi lnxi with constraint condition x ⪰ 0 for the

problem (1.1). Note that cl(dom ∂ω) = {x | x ⪰ 0}. Also, we recall that in this case, ∇ω is
not Hölder or Lipschitz continuous.

Suppose that the algorithm generates a sequence {xk}. It is well-known that ω is 1-
strongly convex over ∆n, and in this case the following inequality holds:

Bω(x
k+1, xk) ≥ 1

2
∥xk+1 − xk∥1,

where ∥ · ∥1 denotes the 1-norm. Then, combined with Lemma 4.1, we can conclude that
limk→∞ ∥xk+1 − xk∥1 = 0, which means, for all i, that

lim
k→∞

|xk+1
i − xki | = 0. (4.3)

Now, recall that the optimality condition of the subproblem (3.4) is given by

m∑
i=1

λki
(
∇fi(xk) + ηi(x

k+1)
)
+ Lk(∇ω(xk+1)−∇ω(xk)) = 0,

where
∑m

i=1 λ
k
i = 1, λki ≥ 0 for all i = 1, . . . ,m, and ηi(x

k+1) ∈ ∂gi(x
k+1). Note also that

for any index j,

(∇ω(xk+1)−∇ω(xk))j = ln

(
xk+1
j

xkj

)
.
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Let us now consider an accumulation point x∗ of {xk}. For any index j such that
x∗j = 0, if

∑m
i=1 λ

k
i (∇fi(xk) + ηi(x

k+1))j < 0, it follows that ln(xk+1
j /xkj ) > 0 because

Lk > 0. This shows that xk+1
j > xkj , which contradicts the fact that x∗j = 0. Conse-

quently, it must be the case that limk→∞
∑m

i=1 λ
k
i (∇fi(xk) + ηi(x

k+1))j ≥ 0, resulting in
limk→∞ ln(xk+1

j /xkj ) ≤ 0. On the other hand, for an index j such that x∗j > 0, the condi-
tion (4.3) implies limk→∞ ln(xk+1

j /xkj ) = 0.
Furthermore, assuming that {∇fi(xk)} and {ηi(xk+1)} are bounded for all i, then

{∇ω(xk+1) − ∇ω(xk)} is also bounded. If z∗ is its accumulation point, then z∗j ≤ 0 for
all x∗j = 0 and z∗j = 0 for all x∗j > 0, which means z∗ ∈ N{x|x≥0}(x

∗), and thus the
Assumption 4.1 is satisfied in this case.

Remark 4.4. We observe that the merit function vℓ(x) as defined in [17] is not well defined
on bd(dom ∂ω), especially when ω(x) =

∑n
i=1 xi lnxi. Similarly, due to this reason, the

discourse on the nonconvex case in [18] is questionable.

4.2 Convergence rate analysis

Let us now recall a merit function for the multi-objective optimization problem, and use it
to estimate the convergence rate. Here, we will discuss only the convex and the strongly
convex cases. The merit function is the simple function u0 : R

n → R ∪ {+∞} defined as
follows [37]:

u0(x) := sup
y∈Rn

min
i∈{1,...,m}

{Fi(x)− Fi(y)} . (4.4)

4.2.1 The convex case

Here we use the function u0(·) to analyze the convergence rate. First, we give the following
lemma. Note that we state it with fi and gi having general convexity parameters, which
turn out to be zero in this subsection. It will not make a difference here, but it will be
important in the discussion of the next subsection.

Lemma 4.5. Assume that fi is µi-strongly convex relative to ω and gi is νi-strongly convex
relative to ω, and write µ := mini∈{1,...,m} µi and ν := mini∈{1,...,m} νi. Then, for all x ∈
dom g it follows that

m∑
i=1

βk
i (Fi(x

k+1)− Fi(x)) ≤Lk(Bω(x, x
k)−Bω(x, x

k+1))

− µBω(x, x
k)− νBω(x, x

k+1),

where βk
i satisfies the following conditions:

(i) There exists ηi(xk+1) ∈ ∂gi(x
k+1) such that

m∑
i=1

βk
i (∇fi(xk) + ηi(x

k+1)) + Lk(∇ω(xk+1)−∇ω(xk)) = 0,

(ii)
∑m

i=1 β
k
i = 1, βk

i ≥ 0 (i ∈ Ixk(xk+1)) and βk
i = 0 (i /∈ Ixk(xk+1)), where Ixk(xk+1) :={

i | ψxk(xk+1) = ∇fi(xk)⊤(xk+1 − xk) + gi(x
k+1)− gi(x

k)
}
.
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Proof. For all i, (3.6) holds for both Algorithms 3.1 and 3.2, that is

Fi(x
k+1)− Fi(x

k) ≤ ∇fi(xk)⊤(xk+1 − xk) + gi(x
k+1)− gi(x

k) + LkBω(x
k+1, xk). (4.5)

The above inequality and relative strong convexity of fi with modulus µi give

Fi(x
k+1)− Fi(x)

= (Fi(x
k)− Fi(x)) + (Fi(x

k+1)− Fi(x
k))

≤ (∇fi(xk)⊤(xk − x)− µiBω(x, x
k) + gi(x

k)− gi(x))

+ (∇fi(xk)⊤(xk+1 − xk) + gi(x
k+1)− gi(x

k) + LkBω(x
k+1, xk))

≤∇fi(xk)⊤(xk+1 − x) + gi(x
k+1)− gi(x)− µBω(x, x

k) + LkBω(x
k+1, xk)

≤ (∇fi(xk) + ηi(x
k+1))⊤(xk+1 − x)− µBω(x, x

k)− νBω(x, x
k+1) + LkBω(x

k+1, xk)

for all x ∈ dom g, where the second inequality follows from the definition of µ and the last
one comes from the relative strong convexity of gi. Multiplying the above inequality by βk

i

and summing for all i ∈ {1, . . . ,m}, the conditions (i) and (ii) give
m∑
i=1

βk
i (Fi(x

k+1)− Fi(x))

≤ −Lk(∇ω(xk+1)−∇ω(xk))⊤(xk+1 − x) + LkBω(x
k+1, xk)

− µBω(x, x
k)− νBω(x, x

k+1)

= Lk

(
∇ω(xk)⊤xk+1 −∇ω(xk)⊤x+∇ω(xk+1)⊤(x− xk+1) + ω(xk+1)− ω(xk)

−∇ω(xk)⊤(xk+1 − xk)
)
− µBω(x, x

k)− νBω(x, x
k+1)

= Lk

(
ω(x)− ω(xk)−∇ω(xk)⊤(x− xk)− ω(x) + ω(xk+1) +∇ω(xk+1)⊤(x− xk+1)

)
− µBω(x, x

k)− νBω(x, x
k+1)

= Lk(Bω(x− xk)−Bω(x− xk+1))− µBω(x, x
k)− νBω(x, x

k+1),

where the second and last equalities follow from the definition of Bregman distance.

We now prove the convergence rate assuming convexity of the objective functions. The
following assumption is considered, which is equivalent to the existence of at least one optimal
point in the single-objective case. As suggested in [36, Remark 5.2], it is not particularly
strong even in the multi-objective case.

Assumption 4.2. Let X∗ be the set of weakly Pareto optimal points for the multi-objective
problem, and define the level set of F for α ∈ Rm by ΩF (α) := {x ∈ Rn | F (x) ⪯ α}. Then,
for all x ∈ ΩF (F (x

0)) there exists x∗ ∈ X∗ such that F (x∗) ⪯ F (x) and

R := sup
F∗∈F (X∗∩ΩF (F (x0)))

inf
x∈F−1({F∗})

Bω(x, x
0) <∞.

Theorem 4.6. Assume that Fi is convex for all i ∈ {1, . . . ,m}. Under Assumption 4.2,
Algorithm 3.1 (or Algorithm 3.2) generates a sequence

{
xk
}

such that

u0(x
k) ≤ αLR

k
for all k ≥ 1,

where α = L̄
L in the constant stepsize setting and α = max

{
η, s

L

}
if the backtracking rule is

employed.



822 K. Chen, E. H. Fukuda and N. Yamashita

Proof. From Lemma 4.5 and the convexity of fi and gi, for all x ∈ Rn we have

m∑
i=1

βk
i (Fi(x

k+1)− Fi(x)) ≤ Lk(Bω(x− xk)−Bω(x− xk+1)).

Adding up the above inequality from k = 0 to k = k̂, we obtain

k̂∑
k=0

m∑
i=1

βk
i (Fi(x

k+1)− Fi(x)) ≤ Lk(Bω(x, x
0)−Bω(x, x

k̂+1))

≤ LkBω(x, x
0).

The rest of the proof follows similarly to the proof of [36, Theorem 5.2 ].

4.2.2 The strongly convex case

Here, we show that {xk} generated by Algorithms 3.1 and 3.2 converge linearly to a Pareto
optimal point if Fi is strongly convex relative to ω.

Theorem 4.7. Let
{
xk
}

be generated by Algorithm 3.1 or 3.2 and suppose that Assump-
tion 4.1 holds. Let fi and gi have convexity parameters µi ∈ R and νi ∈ R, respectively,
and write µ := mini∈{1,...,m} µi and ν := mini∈{1,...,m} νi. Then there exists a Pareto optimal
point x∗ ∈ Rn such that for each iteration k,

(Lk + ν)Bω(x
∗, xk+1) ≤ (Lk − µ)Bω(x

∗, xk). (4.6)

Furthermore, assume that ω is σ-strongly convex with σ > 0, and ∇ω is q-Hölder continuous
with parameter c and 0 < q ≤ 1. Then, there exists a Pareto optimal point x∗ ∈ Rn such
that for each iteration k,

∥∥xk+1 − x∗
∥∥ ≤

√
c(αL− µ)

σ(βL+ ν)

∥∥xk − x∗
∥∥ q+1

2 ,

where

α =

{
L̄
L , constant,
max

{
η, s

L

}
, backtracking,

β =

{
L̄
L , constant
s
L , backtracking.

Thus, we have

∥∥xk − x∗
∥∥ ≤

(√
c(αL− µ)

σ(βL+ ν)

)∑k−1
i=0 ( q+1

2 )i ∥∥x0 − x∗
∥∥( q+1

2 )k

,

and if 0 < c ≤ σ(βL+ν)
αL−µ then 0 <

√
c(αL−µ)
σ(βL+ν) ≤ 1. In particular, if ∇ω is Lipschitz continuous,

we obtain ∥∥xk − x∗
∥∥ ≤

(√
c(αL− µ)

σ(βL+ ν)

)k ∥∥x0 − x∗
∥∥ .

Proof. Since each Fi is strongly convex relative to ω, the level set of every Fi is bounded.
Thus,

{
xk
}

has an accumulation point x∗ ∈ Rn. Note that x∗ is Pareto stationary from
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Theorem 4.2, and thus Pareto optimal because of the strong convexity assumption. From
Lemma 4.5, we have

m∑
i=1

βk
i (Fi(x

k+1)− Fi(x
∗)) ≤Lk(Bω(x

∗, xk)−Bω(x
∗, xk+1))

− µBω(x
∗, xk)− νBω(x

∗, xk+1),

where βk
i satisfies the conditions (i) and (ii) of Lemma 4.5. Since the left-hand side of the

above inequality is nonnegative because of (3.7), we obtain

0 ≤ Lk(Bω(x
∗, xk)−Bω(x

∗, xk+1))− µBω(x
∗, xk)− νBω(x

∗, xk+1).

Namely,
(Lk + ν)Bω(x

∗, xk+1) ≤ (Lk − µ)Bω(x
∗, xk). (4.7)

Similiar to the so-called descent lemma [9, Proposition A.24], using the Hölder continuity
of ∇ω, i.e., ∥∇ω (y)−∇ω (x) ∥ ≤ c∥y − x∥q, we obtain for all x, y,

ω (x) ≤ ω (y) +∇ω (y)
⊤
(x− y) +

c

2
∥y − x∥q+1

.

Combined with the σ-strong convexity of ω as well as the definition of Bregman distance,
we have

σ

2
∥x− y∥2 ≤ Bω(x, y) ≤

c

2
∥x− y∥q+1.

The above inequality and (4.7) give

σ(Lk + ν)

2

∥∥x∗ − xk+1
∥∥2 ≤ c (Lk − µ)

2

∥∥x∗ − xk
∥∥q+1

, (4.8)

which is equivalent to

∥∥xk+1 − x∗
∥∥ ≤

√
c (Lk − µ)

σ(Lk + ν)

∥∥xk − x∗
∥∥ q+1

2 .

Using the bounds for Lk, we obtain

∥∥xk+1 − x∗
∥∥ ≤

√
c (αL− µ)

σ(βL+ ν)

∥∥xk − x∗
∥∥ q+1

2 ,

where α = L̄
L in the constant stepsize setting and α = max

{
η, s

L

}
if the backtracking rule

is employed. The result then follows by applying this inequality k times.

Note that under strong convexity assumption, from (4.6) we have

Bω(x
∗, xk) ≤

(
αL− µ

βL+ ν

)k

Bω(x
∗, x0).

Moreover, we also have linear convergence (as usual, defined with Euclidean norm) when
Lipschitz continuity of ∇ω is satisfied. One future work will be to see if this condition can
be removed to establish the same rate of convergence in the strongly convex case.
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5 Conclusion

We proposed a proximal gradient method with Bregman distance for multi-objective op-
timization problems. We also used two-step size strategies: the constant stepsize and the
backtracking strategy. We prove that the sequence generated by the algorithms can con-
verge to a Pareto stationary point and further analyze its convergence rate through a merit
function. Finally, we proved the convergence rates for convex (O(1/k)), and strongly convex
(O(rk)) for some r ∈ (0, 1)) problems. We point out that our proof is based on Assump-
tion 4.1, which is less strict than assuming Hölder continuity of the gradient of the reference
function. For future research, it would be pertinent to investigate under which conditions
Assumption 4.1 holds true.
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