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line with a popular topic in optimization that is the description of asymptotic behavior of
families of minimization problems. See [10], [14] and [19] and the references therein for more
details and results on the subject. One direction of research is to be able to characterize the
solution (in various acceptances: approximate minima, Geoffrion/Borwein/Benson minima,
weak minima) of an optimization problem as the limit of a sequence of minimizers for a
family of approximating problems of the initial one, with the natural amendment that the
approximating solutions are more easily obtained. On the other hand, proving that the limit
of a sequence of approximating solutions is a critical point for a certain problem is especially
useful in numerical analysis where algorithms search for critical points rather than actual
solutions.

The paper is structured as follows. After a first introductory section where we give the
notations that are used throughout and the reference problem and notions of efficiency, the
two main sections follow the two main purposes of the paper, that is optimality conditions
for constrained and unconstrained set-valued optimization problems. In Section 2, we deal
with the constrained case and we use a fuzzy extremal principle in order to arrive at opti-
mality conditions. The method is pretty straightforward and it starts from the facts that a
minimum point for a constrained optimization problem is an extremal point of a system in
which the constraints and the objective map of the problem are involved and then, that the
Approximate Extremal Principle holds in any Asplund space. Hence, the section consists of
only one main result. In Section 3 we prove that the limit of a sequence of directional Pareto
minima for a perturbation of the objective set-valued map F with directional Lipschitz-like
set-valued maps is a critical point for F , in the Fermat generalized sense using the normal
(Mordukhovich) coderivative. In order to do that, some auxiliary results are needed, that
are also interesting for their own sake. More precisely, we introduce a weaker notion of
directional openness (see [10] and [11]) with respect to two sets of directions in the input
and output space of the objective map and also with respect to the ordering cone in the
output space; with respect to this notion, we prove that the sum between a directionally
open and a directionally Aubin-continuous set-valued map is still directionally open, both
in a local and in a global version.

Throughout this paper X and Y denote real Banach spaces, unless otherwise stated. We
denote by B(x, r) the open ball centered in x ∈ X with radius r > 0, by BX the unit ball
in X and by SX the unit sphere of X. The notations intA, clA and coneA stand for the
topological interior, the topological closure and the conical hull respectively of a nonempty
set A ⊂ X.

If f : X → R∪{∞} is a function with values on the extended real line, then the domain
of f is the set dom f = {x ∈ X | f(x) < ∞}.

For a set-valued map F : X ⇒ Y , the domain and the graph are the sets DomF =
{x ∈ X | F (x) ̸= ∅} and GrF = {(x, y) ∈ X × Y | y ∈ F (x)}, respectively. Given
(x, y) ∈ GrF , we say that F is Lipschitz-like around (x, y) with modulus l > 0 if there
exists a neighborhood U of x such that

F (x) ⊂ F (u) + l∥x− u∥ clBX , ∀x, u ∈ U.

By the symbol X∗ we denote the topological dual of X, while w∗ stands for the weak∗

topology on X∗. If x∗ ∈ X∗ and x ∈ X, then by ⟨x∗, x⟩ we understand the value of the
functional x∗ applied to the element x.

We recall next some of the generalized differential constructions developed by Mor-
dukhovich and his collaborators (see [21]) on the dual spaces that we use throughout this
paper. Let Ω ⊂ X be a nonempty subset of X, ε ≥ 0 and x ∈ Ω. The set of ε−normals to
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Ω at x is

N̂ε(Ω, x) :=

{
x∗ ∈ X∗ | lim sup

x
Ω−→x

⟨x∗, x− x⟩
∥x− x∥

≤ ε

}
,

where the notation x
Ω−→ x means that x ∈ Ω and x → x. If ε = 0, the elements in the

right-hand side of the expression above are called Fréchet (or regular) normals and their

collection is the Fréchet normal cone to Ω at x, denoted by N̂(Ω, x).

The basic (or limiting, or Mordukhovich) normal cone to Ω at x is

N(Ω, x) := {x∗ ∈ X∗ | ∃εn
(0,∞)−−−−→ 0, xn

Ω−→ x, x∗
n

w∗

−−→ x∗, x∗
n ∈ N̂εn(Ω, xn), ∀n ∈ N},

where the notation x∗
n

w∗

−−→ x∗ means convergence in the w∗−topology.

If X is an Asplund space (i.e., every convex continuous function f : U → R defined on an
open convex subset U of X is Fréchet differentiable on a dense subset of U) and Ω is closed
around x (i.e., there is a neighborhood U of x such that Ω ∩ clU is closed), the formula for
the basic normal cone looks as follows:

N(Ω, x) = {x∗ ∈ X∗ | ∃xn
Ω−→ x, x∗

n
w∗

−−→ x∗, x∗
n ∈ N̂(Ω, xn), ∀n ∈ N}.

For a set-valued map F : X ⇒ Y between the Banach spaces X and Y , the Fréchet
coderivative of F at (x, y) ∈ GrF is the set-valued map D̂∗F (x, y) : Y ∗ ⇒ X∗ given by

D̂∗F (x, y)(y∗) := {x∗ ∈ X∗ | (x∗,−y∗) ∈ N̂(GrF, (x, y))},

and the normal coderivative of F at (x, y) ∈ GrF is the set-valued map D∗F (x, y) : Y ∗ ⇒
X∗ given by

D∗F (x, y)(y∗) := {x∗ ∈ X∗ | (x∗,−y∗) ∈ N(GrF, (x, y))}.

For a function f : X → R∪ {±∞} finite at x ∈ X, the basic (or limiting, or Mordukhovich)
subdifferential of f at x is the set

∂f(x) := {x∗ ∈ X∗ | (x∗,−1) ∈ N(epi f, (x, f(x)))},

where epi f := {(x, y) ∈ X × R | y ≥ f(x)}.
The positive dual cone of a cone Q ⊂ Y is defined by

Q+ := {y∗ ∈ Y ∗ | ⟨y∗, y⟩ ≥ 0, ∀y ∈ Q} .

Throughout this paper K ⊂ Y represents a proper (i.e., K ̸= Y and K ̸= {0}) convex
cone that induces a partial order relation on the space Y ; when additional assumptions on
it will be needed, they will be stated explicitly. We have in view the following set-valued
optimization problem with geometric constraints

(P ) minimize F (x), subject to x ∈ Ω,

where F : X ⇒ Y is a set-valued map and Ω ⊂ X is a nonempty set.

Let L ⊂ SX and M ⊂ SY be two nonempty closed sets; we recall from [6] and [11] the
next directional minimality concepts related to (P ).
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Definition 1.1. (i) One says that (x, y) ∈ GrF ∩ (Ω × Y ) is a local directional Pareto
minimum point for F on Ω with respect to L and M if there exists a neighborhood U
of x such that

[F (U ∩ Ω ∩ (x+ coneL)) ∩ (y − coneM)− y] ∩ −K ⊂ K. (1.1)

(ii) If intK ̸= ∅, one says that (x, y) ∈ GrF ∩ (Ω × Y ) is a local weak directional Pareto
minimum point for F on Ω with respect to L and M if there exists a neighborhood U
of x such that

[F (U ∩ Ω ∩ (x+ coneL)) ∩ (y − coneM)− y] ∩ − intK = ∅.

(iii) One says that (x, y) ∈ GrF ∩ (Ω× Y ) is a local directional Pareto minimum point for
F on Ω with respect to L if there exists a neighborhood U of x such that

[F (U ∩ Ω ∩ (x+ coneL))− y] ∩ −K ⊂ K. (1.2)

Notice that (1.1) is equivalent to

[F (U ∩ Ω ∩ (x+ coneL))− y] ∩ (− coneM) ∩ −K ⊂ K,

and so, if K ⊂ coneM , the relation reduces to (1.2). That is, if K ⊂ coneM , the set of
directions M plays no role in the efficiency notion from (i) and the latter reduces to the
notion in (iii).

Of course, in the unconstrained case, Ω = X in the definition above. The optimality
conditions that we establish next are with respect to this notions of efficiency, (ii) and (iii)
more precisely.

2 Optimality Conditions Based on the Extremal Principle

In this section we obtain some optimality conditions for (P ) using the extremal principle
developed by Kruger and Mordukhovich (see [18] and [20]). Being a variational analog of
the convex separation principle in nonconvex settings, the extremal principle is naturally a
very useful tool in deriving optimality conditions in constrained optimization and has been
thus used in various papers (see [12],[13]). For the reader’s convenience, we state here the
definitions of the extremal system and the fuzzy form of the extremal principle that we use
in our result. Roughly speaking, a common point of sets is locally extremal if these sets can
be locally pushed apart by linear small perturbations in such a way that the resulting sets
have empty intersection.

Definition 2.1. Let Ω1, Ω2 ⊂ X and let x ∈ Ω1 ∩ Ω2.

(i) The system {Ω1,Ω2, x} is called extremal if there are sequences (a1n), (a2n)
n→∞−−−−→ 0

and U a neighborhood of x such that

(Ω1 − a1n) ∩ (Ω2 − a2n) ∩ U = ∅ ∀n.

(ii) It is said that the extremal system {Ω1,Ω2, x} satisfies the Approximate Extremal
Principle if for every ε > 0 there are x1 ∈ Ω1 ∩ (x + εBX), x2 ∈ Ω2 ∩ (x + εBX) and

x∗ ∈ (N̂(Ω1, x1) + εBX∗) ∩ (−N̂(Ω2, x2) + εBX∗) such that ∥x∗∥ = 1
2 .
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Remark 2.2. According to Theorem 2.20 from [21], the Approximate Extremal Principle
holds in any Asplund space; that is, every extremal system in an Asplund space satisfies
the Approximate Extremal Principle. For more details on the extremal principle, its history
and its extensions we refer the reader to [5], [22] and [23].

We recall next the definitions of two commonly used qualification conditions both for
calculus and optimality conditions that we will also use as hypotheses in the main result of
the section.

Definition 2.3. (i) Let Ω1 and Ω2 be two nonempty closed subsets of the space X. One

says that Ω1 and Ω2 are allied at x ∈ Ω1∩Ω2 if for every (xin)
Ωi−→ x, x∗

in ∈ N̂(Ωi, xin),
i = 1, 2, the relation x∗

1n + x∗
2n → 0 implies that x∗

1n → 0 and x∗
2n → 0.

(ii) A subset Ω ⊂ X is called sequentially normally compact (SNC) at x ∈ Ω if for every
sequences (εn, xn, x

∗
n) ⊂ [0,∞)× Ω×X∗ satisfying

εn → 0, xn → x, x∗
n ∈ N̂εn(Ω, xn) andx

∗
n

w∗

−−→ 0,

it follows that ∥x∗
n∥ → 0 for n → ∞.

The result we obtain in the sequel is a direct extension of Theorem 3.7 from [6] for the
case of directional Pareto efficiency with respect to two sets of directions.

Theorem 2.4. Let F : X ⇒ Y be a set-valued map between the Asplund spaces X and Y ,
K ⊂ Y a closed convex cone with nonempty interior, L ⊂ SX and M ⊂ SY two closed sets
with coneM convex and (x, y) ∈ GrF . Suppose that F is Lipschitz-like around (x, y), Ω and
(x + coneL) are allied at x, K ∩ coneM is (SNC) at 0, intK ∩ coneM ̸= ∅ and (x, y) is a
local weak directional Pareto minimum point for F on Ω with respect to the sets of directions
L and M .

Then there exists y∗ ∈ (K ∩ coneM)+ \ {0} such that

0 ∈ D∗F (x, y)(y∗) +N(Ω, x) +N(coneL, 0).

Proof. Let us define

Ω1 := [Ω ∩ (x+ coneL)]× [(y −K) ∩ (y − coneM)] and Ω2 := GrF.

Choose U = Ux × Y , where Ux is the neighborhood from the definition of the minimality of
(x, y), and k ∈ intK ∩ coneM . We claim that

Ω1 ∩
[
Ω2 +

(
0,

k

n

)]
∩ U = ∅,

for all n. If we suppose otherwise, we get (x, y) such that

x ∈ Ω ∩ (x+ coneL) ∩ Ux, (2.1)

y ∈ (y −K) ∩ (y − coneM),

y ∈ F (x) +
k

n
,

which yields that y− k
n ∈ F (x) and also that y− k

n ∈ y−coneM− k
n ⊂ y−coneM−coneM ⊂

y − coneM . Moreover, y − k
n − y ∈ −intK −K ⊂ −intK and thus we obtain

y − k

n
− y ∈ [F (Ω ∩ (x+ coneL) ∩ Ux) ∩ (y − coneM)− y] ∩ (−intK),
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which is a contradiction to the minimality of (x, y).
Therefore, the system {Ω1,Ω2, (x, y)} is extremal and we can apply the Approximate

Extremal Principle in order to get, for all n ∈ N, some sequences (x1n, y1n) ∈ Ω1 ∩
[
(x, y)+

1
nBX×Y

]
, (x2n, y2n) ∈ Ω2∩

(
x, y)+ 1

nBX×Y

]
and (x∗

n, y
∗
n) ∈

[
N̂(Ω1, (x1n, y1n))+

1
nBX∗×Y ∗

]
∩[

− N̂(Ω2, (x2n, y2n)) +
1
nBX∗×Y ∗

]
such that ∥(x∗

n, y
∗
n)∥ = 1

2 . Further, we deduce the exis-

tence of other sequences (u∗
1n, v

∗
1n) ∈ N̂(Ω1, (x1n, y1n)), (u

∗
2n, v

∗
2n) ∈ N̂(Ω2, (x2n, y2n)) and

(a∗in, b
∗
in) ∈ BX∗×Y ∗ , i = 1, 2 such that

(x∗
n, y

∗
n) = (u∗

1n, v
∗
1n) +

1

n
(a∗1n, b

∗
1n) (2.2)

(x∗
n, y

∗
n) = −(u∗

2n, v
∗
2n) +

1

n
(a∗2n, b

∗
2n).

It is easy to see that the sequences (x∗
n) and (y∗n) are bounded and thus w∗−convergent on

some subsequences to some elements x∗ and y∗ respectively. Hence, by passing to the limit
in (−x∗

n,−y∗n) ∈ N̂(Ω2, (x2n, y2n)) − 1
nBX∗×Y ∗ , we get that (−x∗,−y∗) ∈ N(GrF, (x, y)),

which is equivalent to −x∗ ∈ D∗F (x, y)(y∗) and then to 0 ∈ x∗ +D∗F (x, y)(y∗).
Let us now justify that y∗ is nonzero. Suppose, on the contrary, that y∗ = 0. There

is a sequence z∗n ∈ BY ∗ such that y∗n − 1
nz

∗
n ∈ N̂((y − K) ∩ (y − coneM), y1n). Since

y∗n − 1
nz

∗
n

w∗

−−→ 0 and y1n → y, from the SNC property of K ∩ coneM at 0 follows that
y∗n − 1

nz
∗
n → 0. Also, there are some sequences (r∗n, s

∗
n) ∈ 1

nBX∗×Y ∗ such that (−x∗
n +

r∗n,−y∗n + s∗n) ∈ N̂(GrF, (x2n, y2n)), or, using the definition of the coderivative, −x∗
n + r∗n ∈

D̂∗F (x2n, y2n)(y
∗
n − s∗n). Now, using the Lipschitz property of F around (x, y) and the fact

that y∗n − s∗n → 0, Theorem 1.43 from [21] ensures that we also have −x∗
n + r∗n → 0. From

that we immediately see that x∗
n → 0 and this yields a contradiction since ∥(x∗

n, y
∗
n)∥ = 1

2 .
Therefore, y∗ ̸= 0.

From the property of alliedness of Ω and (x+coneL) at x, it follows that there are some
elements an ∈ Ω ∩B

(
x1n,

1
n

)
, ln ∈ (x+ coneL) ∩B

(
x1n,

1
n

)
such that

x∗
n ∈ N̂(Ω ∩ (x+ coneL), x1n) +

1

n
BX∗ ⊂ N̂(Ω, an) + N̂(x+ coneL, ln) +

2

n
BX∗ .

Hence, there are a∗n ∈ N̂(Ω, an) and l∗n ∈ N̂(x+ coneL, ln) such that

a∗n + l∗n − x∗
n → 0.

Next we prove that these two sequences cannot be both unbounded. Suppose, on the
contrary, that they are. Then, for every n, there is kn sufficiently large such that

n < min{∥a∗kn
∥, ∥l∗kn

∥}. (2.3)

For simplicity, we denote the subsequences (a∗kn
) and (l∗kn

) by (a∗n) and (l∗n) respectively. We

have that 1
na

∗
n ∈ N̂(Ω, an) and

1
n l

∗
n ∈ N̂(x+ coneL, ln), and from

1

n
∥a∗n + l∗n∥ ≤ 1

n
∥a∗n + l∗n − x∗

n∥+
1

n
∥x∗

n∥

we obtain that 1
n (a

∗
n+l∗n) → 0. Using again the alliedness of Ω and (x+coneL) at x, it follows

that 1
na

∗
n → 0 and 1

n l
∗
n → 0, but this is a contradiction to the relation (2.3). Therefore,
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the sequences (a∗n) and (l∗n) are bounded and thus w∗−convergent on some subsequences
to some elements a∗ and l∗ respectively. Finally, we get by passing to the limit that x∗ =
a∗ + l∗ ∈ N(Ω, x) +N(x+ coneL, x) = N(Ω, x) +N(coneL, 0).

Moreover, passing to the limit in y∗n ∈ N̂((y − K) ∩ (y − coneM), y1n), we get that
y∗ ∈ N(y − K ∩ coneM, y) = N(−K ∩ coneM, 0) = (K ∩ coneM)+, and the proof is
completed.

A simple example to prove the validity of this result is given next.

Example 2.5. Let F : [0,∞) ⇒ [0,∞), F (x) = [x, x + 1], L = M = {1}, K = [0,∞),
Ω = [0, 1] and (x, y) = (0, 0). It is easy to check that all hypotheses are fulfilled for
these choices and in the end, the verification of the conclusion comes to finding an element
y∗ ∈ (K ∩ coneM)+ = (0,∞) such that

(0,−y∗) ∈ N(GrF, (0, 0)).

Or, due to the fact that GrF is a convex set, this further reduces to finding a y∗ ∈ (0,∞)
such that

y∗ · y ≥ 0

for all x ∈ [0,∞) and all y ∈ [x, x+ 1], which is obviously true.

Remark 2.6. (i) Notice that in the case when M = SY , the result above is similar to
Theorem 3.7 from [6], in the cited paper the case of strong minimality being dealt. Moreover,
if F is a single-valued map and both L and M are the whole unit spheres in X and Y
respectively, that is, (x, y) is a classical Pareto minimum point for f := F , then one recovers
the usual optimality condition that 0 ∈ ∂(v∗ ◦ f)(x) + N(Ω, x) for some nonzero positive
multiplier v∗ ∈ K+ \ {0}.

(ii) In [13] the author obtains optimality conditions associated with the classical weak
Pareto minimum concept for a constrained set-valued optimization problem with geometric
constraints using directly the extremal principle. The main idea is that a minimum point
for a map generates an extremal system formed by the graph of the map and the constraints
set; then the conditions in the extremal principle are turned into optimality conditions for
a real-valued map written using the support function of the objective map. Our result
is a Fermat-type necessary condition written for the objective map where the hypotheses
of generalized compactness properties and alliedness of some of the sets involved in the
structure of the problem and the regularity of the objective map were essential.

3 Optimality Conditions Based on Openness

We recall from [9] a notion of directional linear openness of a set-valued map with respect
to two sets of directions. Let F : X ⇒ Y be a set-valued map, L ⊂ SX , M ⊂ SY , α > 0
and (x, y) ∈ GrF .

Definition 3.1. We call F α−directionally linearly open at (x, y) with respect to L and M
if there exists ε > 0 such that for all ρ ∈ (0, ε) it holds that

B(y, αρ) ∩ (y − coneM) ⊂ F (B(x, ρ) ∩ (x+ coneL)).

As it happens in the classical, non-directional case, this notion is equivalent to two other
properties: F being α−directionally metrically regular at (x, y) with respect to L and M
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and F−1 being α−1−directionally Aubin continuous at (y, x) with respect to M and L (see
[9, Proposition 2.4] and [26, Theorem 1.5]).

We introduce next a weaker notion of directional openness of F with respect to the sets
of directions L and M and, additionally, to the ordering cone K of the output space Y .
Besides α, we consider another strictly positive constant β > 0.

Definition 3.2. We call F (α, β)−directionally open at (x, y) with respect to the sets of
directions (L,M) and the cone K if there exists ε > 0 such that for all ρ ∈ (0, ε) the following
relation holds:

B(y, αρ) ∩ (y − coneM) ⊂ F (B(x, ρ) ∩ (x+ coneL)) +K ∩B(0, βρ).

The aim of this section is twofold. First we prove a stability result that shows that the
sum between two set-valued maps having each one of the properties of directional openness
with respect to (L,M) and K and the directional Aubin continuity with respect to SX and
M at every point of their graphs, respectively, is still a directional open set-valued map with
respect to (L,M) and K at every point of its graph as well. This stability we prove in the
global case and in a local version also. Our second aim is to derive optimality conditions for
the problem (P ) in the unconstrained case when Ω = X.

The main technical tools we use in the next result are a directional minimal time function
and a form of the well-known Ekeland variational principle. We recall from [8] the definition
and the main properties we need for the minimal time function: if Ω ⊂ X and M ⊂ SX

are two nonempty sets, then the directional minimal time function with respect to M ,
TM (·,Ω) : X → [0,∞], is given by

TM (x,Ω) := inf{t ≥ 0 | ∃u ∈ M : x+ tu ∈ Ω} for all x ∈ X.

In the particular case when the target set Ω is a singleton, we write TM (x, {u}) =: TM (x, u).
It is easy to check that TM (x, u) is +∞ if u − x ̸∈ coneM and ∥u − x∥ if u − x ∈ coneM .
If one of the sets M and Ω is closed, and the other one is compact, then TM (·,Ω) is lower
semicontinuous (see [8, Proposition 2.4]).

The first result in this section concerns the preservation of directional openness with
respect to the directions (L,M) and K at directional pseudo-Lipschitz perturbation in the
global case. For similar results see [7], [10], [28] and [29]. In fact, our result represents a
directional version of [10, Theorem 4.1].

Theorem 3.3. Let F,G : X ⇒ Y be two set-valued maps with GrF and GrG locally closed.
Let K ⊂ Y be a closed and convex cone and L ⊂ SX , M ⊂ SY be two closed sets of directions
with coneM convex. Suppose that Dom(F+G) is nonempty and let α, β, γ be strictly positive
constants with β < α. If F is (α, γ)−directionally open with respect to (L,M) and K at
every point of its graph and G is β−directionally Aubin continuous at every point of its
graph with respect to SX and M , then F + G is

(
2−1(α− β), γ

)
−directionally open with

respect to (L,M) and K at every point of its graph.

Proof. Let (x0, w0) ∈ Gr(F +G) be arbitrary, so there are y0 ∈ F (x0) and z0 ∈ G(x0) such
that w0 = y0 + z0.

Let us define the set A := {(x, y, z, k) | y ∈ F (x), z ∈ G(x), k ∈ K}. Since GrF and GrG
are locally closed and K is closed, it follows that A is locally closed, so there exists ρ > 0
such that A ∩ clW is closed, where

W := B(x0, ρ)×B(y0, (α+ γ)ρ)×B(z0, βρ)×B(0, γρ).
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Let u0 ∈ B(w0, 2
−1(α−β)ρ)∩(w0−coneM). Our aim is to prove that u0 ∈ (F+G)(B(x0, ρ)∩

(x0 + coneL)) +K ∩B(0, γρ).
Suppose τ is in (0, 1) such that ∥u0 − w0∥ < 2−1τ(α − β)ρ. Let us define the function

f : A ∩ clW ⊂ X × (Y × Y × Y ) → R ∪ {∞}, by

f(x, y, z, k) := T−M (y + z + k; {u0}) := T−M (y + z + k;u0),

where on the product space Y × Y × Y we consider the norm

∥(y, z, k)∥0 := max{(α+ γ)−1∥y∥, β−1∥z∥, γ−1∥k∥}.

It is easy to see that f is positive, and since M is closed and {u0} is compact, f is also lower
semicontinuous. Also, since u0 − (y0 + z0) = u0 − w0 ∈ −coneM , the point (x0, y0, z0, 0) ∈
domf , and so we can apply the modified variational principle of Ekeland from [11] to get,
for all ε > 0, (xε, yε, zε, kε) ∈ A ∩ clW such that

f(xε, yε, zε, kε) ≤ f(x0, y0, z0, 0)− ε(T−L(xε;x0) + ∥(yε, zε, kε)− (y0, z0, 0)∥0) (3.1)

and, for all (x, y, z, k) ∈ A ∩ clW ,

f(xε, yε, zε, kε) ≤ f(x, y, z, k) + ε(T−L(x;xε) + ∥(yε, zε, kε)− (y, z, k)∥0). (3.2)

From (3.1) we get that

T−M (yε + zε + kε;u0) ≤ ∥u0 − w0∥ − ε(T−L(xε;x0) + ∥(yε − y0, zε − z0, kε)∥0),

which further implies, because the left-hand side is positive, that T−L(xε;x0) < ∞ and
T−M (yε + zε + kε;u0) < ∞, which are equivalent to

xε ∈ x0 + coneL and u0 − (yε + zε + kε) ∈ −coneM. (3.3)

Hence, relation (3.1) becomes

∥u0 − (yε + zε + kε)∥ ≤ ∥u0 − w0∥ − ε(∥xε − x0∥+ ∥(yε − y0, zε − z0, kε)∥0),

which implies that

ε∥xε − x0∥ ≤ ∥u0 − w0∥ (3.4)

ε(α+ γ)−1∥yε − y0∥ ≤ ∥u0 − w0∥
εβ−1∥zε − z0∥ ≤ ∥u0 − w0∥
εγ−1∥kε∥ ≤ ∥u0 − w0∥.

By choosing ε = 2−1τ(α− β), the previous relations yield that (xε, yε, zε, kε) ∈ W .
Now, if u0 = yε + zε + kε, then it would be true that u0 ∈ (F + G)(B(x0, ρ) ∩ (x0 +

coneL)) +K ∩B(0, γρ), and the proof it would be done.
We will now prove that in fact, it is not possible that u0 ̸= yε + zε + kε. Suppose, by

means of contradiction, that u0 ̸= yε + zε + kε. Then we can correctly define

v :=
C

∥u0 − yε + zε + kε∥
(u0 − (yε + zε + kε)) ∈ −coneM,
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where C is an arbitrary constant strictly smaller than α.
Let t > 0 be small enough such that

yε + tv ∈ B(yε, αt) ∩ (yε − coneM) ⊂ F (B(xε, t) ∩ (xε + coneL)) +K ∩B(0, γt),

by the (α, γ)−directional openness of F at (xε, yε) with respect to (L,M) and K. We add
kε to the previous inclusion to get that

yε + tv + kε ∈ F (B(xε, t) ∩ (xε + coneL)) +K ∩B(0, γt)

+kε ⊂ F (B(xε, t) ∩ (xε + coneL)) +K ∩B(kε, γt).

Hence there exist a ∈ B(xε, t) ∩ (xε + coneL) and k ∈ K ∩B(kε, γt) such that

yε + tv + kε − k ∈ F (a). (3.5)

Furthermore, we can choose p ∈ coneL and q ∈ Y with ∥p∥ < 1 and ∥q∥ < 1 such that

a = xε + tp and k = kε + γtq. (3.6)

It follows from (3.5) that yε + tv − γtq ∈ F (xε + tp).
We make use now of the fact that G is β−directionally Aubin continuous at (xε, zε) with

respect to SX and M , or, equivalently, G−1 is β−1−directionally linearly open at (zε, xε)
with respect to M and SX . That is, for t > 0 sufficiently small, it holds that

B(xε, t) ∩ (xε − coneSX) ⊂ G−1(B(zε, βt) ∩ (zε + coneM)).

Thus, there is f ∈ B(zε, βt) such that f ∈ G(a) for which we can write f = zε + βtr by
choosing r ∈ coneM with ∥r∥ < 1.

The use of these expressions of the constants a, f and k is that we obtained the points

(xε + tp, yε + tv − γtq, zε + βtr, kε + γtq)

to be both in A and in W since they represent small perturbations of (xε, yε, zε, kε) ∈ W
and W was defined as an open set. Hence we can use (3.2) for these points and write:

f(xε, yε, zε, kε) ≤ f(xε + tp, yε + tv − γtq, zε + βtr, kε + γtq)

+ ε(T−L(xε + tp;xε) + ∥(tv − γtq, βtr, γtq)∥0).
(3.7)

We have f(xε, yε, zε, kε) = T−M (yε+ zε+ kε;u0) = ∥u0− (yε+ zε+ kε)∥, T−L(xε+ tp;xε) =
t∥p∥ because xε − (xε + tp) = −tp ∈ −coneL, and

f(xε + tp, yε + tv − γtq, zε + βtr, kε + γtq) = T−M (yε + zε + kε + tv + βtr;u0) (3.8)

= ∥u0 − (yε + zε + kε + tv + βtr)∥

since −βtr ∈ −coneM , u0− (yε+ zε+kε+ tv) =
(
1− tC

∥u0−(yε+zε+kε)∥

)
(u0−yε− zε−kε) ∈

− coneM for t small enough and thus u0 − (yε + zε + kε + tv+βtr) ∈ − coneM − coneM ⊂
− coneM because coneM is convex.

Thus,

f(xε + tp, yε + tv − γtq, zε + βtr, kε + γtq) ≤ βt∥r∥+ ∥u0 − (yε + zε + kε + tv)∥
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and (3.7) becomes

∥u0 − (yε + zε + kε)∥ ≤ βt∥r∥+ ∥u0 − (yε + zε + kε)− tv∥+ ε(t∥p∥+ t∥(v − γq, βr, γq)∥0).

By the definition of v, we have

∥u0 − (yε + zε + kε)− tv∥ = |∥u0 − (yε + zε + kε)∥ − tC|.

By choosing, as before, t small enough such that ∥u0 − (yε + zε + kε)∥ ≥ tC, we get that

0 ≤ βt∥r∥ − tC + ε(t∥p∥+ t∥(v − γq, βr, γq)∥0),

and so

0 ≤ β − C + 2−1τ(α− β)(1 + max{(α+ γ)−1∥v − γq∥, β−1β∥r∥, γ−1γ∥q∥}).

That is, since ∥v − γq∥ ≤ C + γ < α+ γ,

C − β ≤ 2−1τ(α− β)(1 + 1).

By passing to the limit with C → α, we get that

α− β ≤ τ(α− β),

which yields the contradiction that τ ≥ 1.
Therefore the only possibility for u0 is to be the sum yε + zε + kε, and this completes

the proof.

We are trying in the sequel to obtain a local version of this stability result. Note that by
the (α, β)−directional openness of F with respect to (L,M) and K around (x, y) ∈ GrF we
understand that there exist ε > 0 and some neighbours U and V for x and y respectively
such that for all (x, y) ∈ (U × V ) ∩GrF and ρ ∈ (0, ε) one has

B(y, αρ) ∩ (y − coneM) ⊂ F (B(x, ρ) ∩ (x+ coneL)) +K ∩B(0, βρ).

Similarly for the directional Aubin continuity of G with respect to SX and M around (x, z).
We prove the following intermediate result.

Theorem 3.4. Let F,G : X ⇒ Y be two set-valued maps with GrF and GrG locally closed.
Let K ⊂ Y be a closed and convex cone and L ⊂ SX , M ⊂ SY be two closed sets of directions
with coneM convex. Suppose that Dom(F +G) is nonempty and α, β, γ are strictly positive
constants with β < α. If F is (α, γ)−directionally open with respect to (L,M) and K around
(x, y) ∈ GrF and G is β−directionally Aubin continuous around (x, z) ∈ GrG with respect
to SX and M , then there exists ε > 0 such that for all (x, y, z) ∈ B(x, ε)×B(y, ε)×B(z, ε)
with y ∈ F (x) and z ∈ G(x), and for all ρ ∈ (0, ε), one has

B(y + z, 2−1(α− β)ρ) ∩ (y + z − coneM) ⊂ (F +G)(B(x, ρ) ∩ (x+ coneL)) +K ∩B(0, γρ).

Proof. Due to the assumptions made, there is δ > 0 such that the following assertions hold:
GrF ∩ [cl(B(x, δ)) × cl(B(y, δ))] and GrG ∩ [cl(B(x, δ)) × cl(B(z), δ))] are closed, for any
(x, y) ∈ GrF ∩ [B(x, δ)×B(y, δ)] and any t ∈ (0, δ),

B(y, αt) ∩ (y − coneM) ⊂ F (B(x, t) ∩ (x+ coneL)) +K ∩B(0, γt),
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and finally, for every (x, z) ∈ GrG ∩ [B(x, δ)×B(z, δ)] and all t ∈ (0, δ), one has

B(x, t) ∩ (x− coneSX) ⊂ G−1(B(z, βt) ∩ (z + coneM)).

Let us now choose ε = δ
2 and fix some (x, y, z) ∈ B(x, ε)× B(y, ε)× B(z, ε) with y ∈ F (x)

and z ∈ G(x), and also ρ ∈ (0, ε). The proof of the fact that the inclusion

B(y + z, 2−1(α− β)ρ) ∩ (y + z − coneM) ⊂ (F +G)(B(x, ρ) ∩ (x+ coneL)) +K ∩B(0, γρ)

holds is basically the proof of the previous theorem, so we skip the technical details. It is
sufficient to notice that, in our present context with the notation from the cited theorem,
it is still true that F is (α, γ)−directionally open with respect to (L,M) and K at (xε, yε)
and G−1 is β−1−directionally linearly open at (zε, xε) with respect to M and SX since

(xε, yε) ∈ GrF ∩ [B(x, ρ)×B(y, ρ)] ⊂ GrF ∩ [B(x, δ)×B(y, δ)]

and
(xε, zε) ∈ GrG ∩ [B(x, ρ)×B(z, ρ)] ⊂ GrG ∩ [B(x, δ)×B(z, δ)].

Thus the proof is completed.

Further, to get from this result to the local stability of the sum of F and G we use the
following notion of sum-stability of the pair (F,G).

Definition 3.5. Let F,G : X ⇒ Y be two set-valued maps and (x, y, z) ∈ X × Y × Y .
The pair (F,G) is called locally sum-stable around (x, y, z) if for every ε > 0 there exists
δ > 0 such that for every x ∈ B(x, δ) and every w ∈ (F + G)(x) ∩ B(y + z, δ) there exist
y ∈ F (x) ∩B(y, ε) and z ∈ G(x) ∩B(z, ε) such that w = y + z.

Corollary 3.6. Let F,G : X ⇒ Y be two set-valued maps with GrF and GrG locally closed.
Let K ⊂ Y be a closed and convex cone and L ⊂ SX , M ⊂ SY two closed sets of directions
with coneM convex. Suppose that Dom(F +G) is nonempty and α, β, γ are strictly positive
constants with β < α. If F is (α, γ)−directionally open with respect to (L,M) and K
around (x, y) ∈ GrF and G is β−directionally Aubin continuous around (x, z) ∈ GrG with
respect to SX and M and the pair (F,G) is locally sum-stable around (x, y, z), then F +G
is (2−1(α− β), γ)−directionally open with respect to (L,M) and K around (x, y + z).

Proof. From the previous result we know that there exists ε > 0 such that for all (x, y, z) ∈
B(x, ε)×B(y, ε)×B(z, ε) with y ∈ F (x), z ∈ G(x) and for all ρ ∈ (0, ε), one has

B(y+z, 2−1(α−β)ρ)∩(y+z−coneM) ⊂ (F+G)(B(x, ρ)∩(x+coneL))+K∩B(0, γρ). (3.9)

Let ε be the one from above and δ > 0 the one handed by the locally sum-stability property
of (F,G). We can assume, without loss of generality, that δ < ε. We want to prove that for
all (x,w) ∈ Gr(F +G) ∩ (B(x, δ)×B(y + z, δ)) and for all ρ ∈ (0, ε), one has

B(w, 2−1(α− β)ρ) ∩ (w − coneM) ⊂ (F +G)(B(x, ρ) ∩ (x+ coneL)) +K ∩B(0, γρ).

This is true from (3.9) because, again from the sum-stability of (F,G), we can write w = y+z
with y ∈ F (x) ∩B(y, ε) and z ∈ G(x) ∩B(z, ε). The proof is complete.

For the second aim of this section, that is, obtaining optimality conditions for the uncon-
strained (P ), we recall some sufficient conditions for the directional openness of a set-valued
map that one can find in the proof of Theorem 3.10 from [11]. We formulate this result here,
for the coherence of our presentation.
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Theorem 3.7. Let X and Y be finite dimensional spaces, ∅ ̸= L ⊂ SX and ∅ ̸= M ⊂ SY be
closed sets such that coneL and coneM are convex, K be a closed convex cone in Y and let
F : X ⇒ Y be a set-valued map with (x, y) ∈ GrF . Suppose that the following are satisfied:

(i) GrF is closed;

(ii) there exist c > 0, r > 0 such that for all y∗ ∈ K+ and u ∈ M with ⟨y∗, u⟩ = 1 and for

every z∗ ∈ B(0Y , 2c), (x, y) ∈ GrF ∩ (B(x, r)×B(y, r)) and x∗ ∈ D̂∗F (x, y)(y∗+ z∗),
there is w ∈ L such that

−⟨x∗, w⟩ ≥ c∥y∗ + z∗∥.

Then there exists ε > 0 such that for all a ∈ (0, c), for all ρ ∈ (0, ε) and for all
(x, y) ∈ GrF ∩

(
B(x, 2−1r)×B(y, 2−1r)

)
,

B(y, ρa) ∩ (y − coneM) ⊂ F (B(x, ρ) ∩ (x+ coneL)) +K. (3.10)

Remark 3.8. Making a slight modification in the proof mentioned above, namely, with
the therein notation, applying the Ekeland variational principle on the domain Gr F × (K ∩
clB(0, aρ)), one can obtain the next form of the openness of F : there exists ε > 0 such that
for all a ∈ (0, c), for all ρ ∈ (0, ε) and for all (x, y) ∈ GrF ∩

(
B(x, 2−1r)×B(y, 2−1r)

)
,

B(y, ρa) ∩ (y − coneM) ⊂ F (B(x, ρ) ∩ (x+ coneL)) +K ∩B(0, (a+ 1)ρ). (3.11)

The optimality conditions we give next are based on the opposition between openness
and minimality, but the hypotheses do not concern a minimal point for the objective set-
valued map F , but a sequence of minimal points for some perturbations of F . As such, we
prove that the limit of such a sequence is a critical point for F .

Theorem 3.9. Let X and Y be finite dimensional spaces and F : X ⇒ Y be a set-valued
map with a sequence of perturbating maps Gn : X ⇒ Y , n ∈ N. Let L ⊂ SX be a closed set
with coneL convex; let (x, y) ∈ GrF be the limit of a sequence of Pareto directional minima
(xn, yn) ∈ Gr(F +Gn) for F +Gn with respect to the set of directions L. Assume that

(i) K ⊂ Y is a closed convex cone and let u ∈ SY ∩ (K \ −K);

(ii) GrF is closed and GrGn is locally closed at every point close to (x, 0);

(iii) F is Lipschitz-like around (x, y) and for all n there is βn > 0 such that Gn is
βn−directionally Aubin continuous with respect to SX and {u} around every point
from its graph close to (x, 0); βn → 0;

(iv) for all n, the pair (F,Gn) is locally sum-stable around (x, y, 0).

Then, there are x∗ ∈ X∗, y∗ ∈ K+ with ⟨x∗, l⟩ ≥ 0 for all l ∈ L and ⟨y∗, u⟩ = 1 such that

x∗ ∈ D∗F (x, y)(y∗). (3.12)

Proof. The idea of the proof is to show that the openness condition from (3.11) can not
hold and from that to deduce that condition (ii) of Theorem 3.7 is not satisfied and then, by
negation, to obtain the optimality conditions. For that, suppose by means of contradiction
that there is α > 0 such that F is (α, α+1)−directionally open with respect to (L, {u}) and
K around (x, y). The sum-stability hypothesis ensures that for all n there are un ∈ F (xn)
and vn ∈ Gn(xn) such that yn = un + vn, un → x and vn → 0.



14 DIANA-ELENA MAXIM

Thus, since (xn, un, vn) → (x, y, 0) and βn → 0, we get the following facts valid for all n
large enough: βn < α, GrGn is locally closed at (xn, vn), F is (α, α+1)−directionally open
with respect to (L, {u}) and K around (xn, un), Gn is βn−directionally Aubin continuous
around (xn, vn) with respect to SX and {u} and finally, the pair (F,Gn) is locally sum-
stable around (xn, un, vn). These facts ensure, according to Corollary 3.6, that F + Gn is
(2−1(α−βn), α+1)−directionally open with respect to (L, {u}) and K around (xn, un, vn).
That is, there is ε1 > 0 such that for all ρ ∈ (0, ε1), one has in particular that

B(yn, 2
−1(α−βn)ρ)∩(yn−cone{u}) ⊂ (F+Gn)(B(xn, ρ)∩(xn+coneL))+K∩B(0, (α+1)ρ).

(3.13)
By Proposition 3.7 from [6], in the assumption of the minimality of the points (xn, yn), one
gets that there is ε2 > 0 such that for all r > 0 it holds that

B(yn, r) ∩ (yn − cone{u}) ̸⊂ (F +Gn)(B(xn, ε2) ∩ (xn + coneL)) +K.

But this is clearly a contradiction to relation (3.13) since, if ε1 > ε2 we can choose r =
2−1(α− βn)ε2, and if ε1 < ε2 we can choose r = 2−1(α− βn)ρ for arbitrary ρ ∈ (0, ε1) and
write that

B(yn, 2
−1(α− βn)ρ) ∩ (yn − cone{u}) ⊂ (F +Gn)(B(xn, ρ) ∩ (xn + coneL)) +K

⊂ (F +Gn)(B(xn, ε2) ∩ (xn + coneL)) +K.

Therefore, condition (ii) from Theorem 3.7 does not hold for L and M := {u} and this

means that for all n there are sequences (xn, yn)
GrF−−−→ (x, y), y∗n ∈ K+ with ⟨y∗n, u⟩ = 1,

z∗n ∈ B(0, 2n−1) ⊂ Y ∗ and x∗
n ∈ X∗ such that

x∗
n ∈ D̂∗F (xn, yn)(y

∗
n + z∗n) (3.14)

−⟨x∗
n, l⟩ <

1

n
∥y∗n + z∗n∥, ∀l ∈ L.

The sequence (y∗n) is bounded according to [16, Lemma 2.2.17], having that u ∈ intK. From
the Lipschitz property of F around (x, y) together with [21, Theorem 1.43] and the fact that
z∗n is also clearly bounded, we can conclude that (x∗

n) is also bounded. Therefore, on some
subsequences, we have that x∗

n → x∗ ∈ X∗, y∗n → y∗ ∈ K+ and z∗n → 0Y ∗ . Passing now to
the limit in (3.14) we get that

x∗ ∈ D∗F (x, y)(y∗), with ⟨y∗, u⟩ = 1,

⟨x∗, l⟩ ≥ 0, ∀l ∈ L,

which is exactly the conclusion.

Remark 3.10. This result can be seen as a generalization of Proposition 3.7 from [6],
in the sense that we prove that not only a set-valued map can not be directionally open
at a directional minimum point, but that it can not be open at the limit of a sequence
of directional minimum points for some Lipschitz perturbations of it. Using the sufficient
openness conditions from Remark 3.11, we arrive at the optimality conditions.

References

[1] S. Alzorba, C. Günther, C. Tammer and N. Popovici, A new algorithm for solving
planar multiobjective location problems involving the Manhattan norm, Eur. J. Oper.
Res. 258 (2017) 35–46.



OPTIMALITY CONDITIONS FOR DIRECTIONAL EFFICIENCY 15
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[24] N.M. Nam and C. Zălinescu, Variational analysis of directional minimal time functions
and applications to location problems, Set-Valued Var. Anal., 21 (2013), 405–430.
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