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and αk > 0 is a steplength generally determined by the well-known Wolfe conditions with
constants 0 < ρ < σ < 1, that is,

f(xk + αkdk)− f(xk) ≤ ραkg
T
k dk, (1.4)

g (xk + αkdk)
T
dk ≥ σgTk dk. (1.5)

In (1.3), βk is a judiciously constructed CG parameter, which brought diversity of algo-
rithms, and with it quite diverse computational behavior and convergence results. Among
the CG methods, the Hestenes and Stiefel [17] (HS) scheme has been the focus of recent work,
not only for its essential history importance and impressive computational performance, but
also its theoretical property of satisfying conjugacy condition, namely,

dTk yk−1 = 0, (1.6)

where yk−1 = gk − gk−1. On the other hand, in [14], Gilbert and Nocedal established the
convergence of the HS+ method for the general objective functions, in which

βHS+
k+1 =

(gTk+1yk)
+

dTk yk
. (1.7)

Here, b+ = max{b, 0}, where b is a constant.
Recently, various variations and great improvements of the HS method have been made

by designing sophisticated techniques for guaranteeing the Dai and Liao (DL) conjugacy
condition and the sufficient descent condition:

• As an extension of (1.6), Dai and Liao [10] proposed the following conjugacy condition:

dTk yk−1 = −tgTk sk−1, (1.8)

where t > 0 is a constant. Based on condition number analysis of iteration matrix of
search direction, Andrei [3] and Babaie–Kafaki [4, 5] gave several choices of optimal
parameter t, which fuels the boom in the open problem posed by Andrei [2], i.e., what
is the best conjugacy condition? For more details, we refer to the excellent survey [6].

• In some convergence analyses, the sufficient descent condition is required, namely,

dTk gk ≤ −c∥gk∥2, ∀k ∈ N, for some c > 0. (1.9)

It is worth mentioning that Hager and Zhang (HZ), and Dai and Kou (DK) pioneered
new technique to force the presented search direction to satisfy automatically (1.9).
Here, we call the involved methods the HZ and DK methods for short. Meanwhile, the
resulting CG DESCENT [15] and CGOPT [11] are public domain software packages.

Our attention will be on the three–term conjugate gradient (TTCG) method. As a
natural extension of the standard CG method, it has received much study (see [1, 8, 19, 21]
and references therein), which not only enhances the freedom and flexibility of the selection of
parameters but also substantially embeds some favorable properties in the search direction.

Following a modified DL (MDL) method [7], we construct another search direction by
combining the advantages of the CGOPT method and quasi-Newton method to compensate
the loss of second-order curvature information of f(x) being caused by slightly improper
truncation in the MDL method. This can be viewed as the inheritance and development of
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properties of the MDL method in the sense that the twin search directions are computation-
ally comparable, while the alternatively generated search direction makes the corresponding
optimization behavior close to that of sequential the current one as much as possible.

We structure the remainder of the paper as follows. In Sect.2, we present formally
the modified MDL method and investigate the sufficient descent condition. In Sect.3, we
establish the convergence analysis of the above method. In Sect.4, a variant of the proposed
method is given. In Sect.5, numerical results are report to demonstrate the efficiency of the
proposed methods. The paper is concluded in the last section.

2 A New CG Algorithm

Recently, Babaie–Kafaki and Ghanbari [8] proposed the MDL method, in which the main
contribution is to combine the DL method and the TTCG algorithm framework in such a
way that the search direction can automatically satisfy the standard Newton equation. How-
ever, theoretically, the above method lacks significant descent property. To circumvent this
difficult, a constant ξ > 0 was introduced and an improved search direction was proposed:

dk+1 = −gk+1 +

(
gTk+1yk

dTk yk
−ϖMDL

k

gTk+1sk

dTk yk

)
dk − θk+1yk, (2.1)

where

ϖMDL
k+1 = max

{
ξ, 1− ∥yk∥2

sTk yk

}
, (2.2)

θk+1 =
gTk+1dk

dTk yk
. (2.3)

It can be seen that the above method converges for uniformly convex objective functions,
under the Wolfe conditions, with a promising computational behavior. Meanwhile, the
truncation scheme (2.2) is slightly inefficient in that an excessive use of the value of ξ may
cause the information being close to the Newton direction to be regretfully neglected.

However, what one loses on the swings, he gets back on the roundabouts. General
iterative schemes, which are usually based on a quadratic model have been successfully
in solving (1.1). Consequently, to adequately utilize curvature information of f(x) plays
a significant role in accelerating the iterations. To compensate the loss of second-order
curvature information, another search direction that most closely approximates that of the
quasi-Newton method is promptly supplemented in a proper way that acceleration of the
whole of iteration would be anticipated.

Formally, we obtain the leading search directions as follows

dmain
k+1 =

 dmain1
k+1 , if

sTk yk
∥yk∥2

≥ ||gk+1||2

ε2
,

dmain2
k+1 , otherwise,

(2.4)

in which ε > 0 is an acceptable tolerance of the norm of the unconstrained stationary point.
In (2.4), the search direction dmain

k+1 consists of twin sub-directions, given by,

dmain1
k+1 = −gk+1 + βDK+

k+1 dk + τ+k+1yk, (2.5)

dmain2
k+1 = −gk+1 + βMDL+

k+1 dk − θ+k+1yk, (2.6)
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where involved parameters are given as follows:

βDK+
k+1 = βHS+

k+1 − ∥yk∥2

(dTk yk)
2
(gTk+1dk)

+, (2.7)

τ+k+1 =

(
1− sTk yk

||yk||2

)
(gTk+1dk)

+

dTk yk
, (2.8)

βMDL+
k+1 = βHS+

k+1 −
(
1− ∥yk∥2

sTk yk

)
(gTk+1sk)

+

dTk yk
, (2.9)

θMDL+
k+1 =

(gTk+1dk)
+

dTk yk
. (2.10)

Remark 2.1. The search direction of the TTCG method dk+1 is ususlly generated by a
linear combination of −gk+1, dk and yk. Based on the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) update in the sense that the updated matrix Hk = I , a search direction is derived,
which can be viewed as that of a class of four–term extension of the DK method, given by

dk+1 = −gk+1 + βDK
k+1dk︸ ︷︷ ︸

dDK
k+1

+Λk+1yk − Λk+1sk. (2.11)

In (2.11), βDK
k+1 =

gTk+1yk

dTk yk
−

gTk+1dk||yk||2

(dTk yk)
2

and Λk+1 =
gTk+1sk

sTk yk
.

The simple deletion of the last term in (2.11) leads to another TTCG search direction,
say, d̃k+1. As a remedy, d̃k+1 satisfies the quasi–Newton equation Hk+1yk = sk, provided
that Λk+1 is replaced by

τk+1 =

(
1− sTk yk

||yk||2

)
gTk+1dk

dTk yk
. (2.12)

The fact above partially accounts for the motivation of the search direction dmain1
k+1 .

Remark 2.2. Notice that dmain1
k+1 and dmain2

k+1 are essentially designed based on an adap-
tive switch from quasi-Newton equation Hk+1yk = sk to “pure” conjugacy condition (1.6)
when gTk+1dk ≤ 0. Furthermore, we combine the most recently observed information about
the objective function with the existing knowledge of second-order curvature information
embedded in the alternative Hessian approximation as much as possible. Specifically, if the
current Hessian matrix “incorrectly” abandons the curvature in the objective function, and
if this bad estimate may slow down the iteration, then the alternative Hessian approximation
will tend to correct itself within a few steps. Perhaps, it would be more appropriate to call
it “adaptively alternative two-sided approximating strategy”.

Then, the AMDL method can be described, where A stands for “approximating”.

The search direction of the BFGS quasi–Newton method is given by dk+1 = −Hk+1gk+1, updated
by the following iterative formula from the previous approximation Hk of ∇2f(xk+1)

−1: Hk+1 = Hk +(
1 +

yTk Hkyk

sTk yk

)
sks

T
k

sTk yk
−

sky
T
k Hk +Hkyks

T
k

sTk yk
.
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Algorithm 2.3. (A modified DL-type TTCG algorithm with adaptively alternative two-
side approximating strategy)
Step 1. Given positive constants ε, ε1, and ρ < σ < 1. Choose an initial point x1 ∈ Rn

and set d1 = −g1 and k = 1.
Step 2. Determine a steplength αk satisfying the Wolfe conditions (1.4) and (1.5).
Step 3. Let xk+1 = xk + αkdk and calculate gk+1. If ∥gk+1∥ < ε, then stop.
Step 4. If gTk+1yk ≤ ε1, then set dk+1 = −gk+1 and k = k + 1, and goto Step 2.

Step 5. If gTk+1yk > ε1, then compute scalars βDK+
k+1 , τ+k+1, β

MDL+
k+1 and θMDL+

k+1 by (2.7),
(2.8), (2.9) and (2.10). Finally, compute the search direction dk+1 as follows:

dk+1 =

 −gk+1 + βHS
k+1, if k ∈ K1,

−gk+1 + ηk+1dk, if k ∈ K2,
dmain
k+1 , if k ∈ K3,

(2.13)

where dmain
k+1 is defined by (2.4) and

ηk+1 =
−1

||dk||min{η, ||gk+1||}
. (2.14)

Also, the index sets K1, K2 and K3 in (2.13) are individually presented by

K1 = {k|k ∈ N|gTk+1yk > ε1, g
T
k+1dk ≤ 0}. (2.15)

K2 = {k|k ∈ N|gTk+1yk > ε1, g
T
k+1dk > 0, βDK+

k+1 ≤ ηk+1 or βMDL+
k+1 ≤ ηk+1}, (2.16)

K3 = {k|k ∈ N|gTk+1yk > ε1, g
T
k+1dk > 0, βDK+

k+1 > ηk+1 and βMDL+
k+1 > ηk+1}. (2.17)

Set k = k + 1 and goto Step 2.

Remark 2.4. As commented by Dai and Kou [11] and Kou et al. [18], the method with
nonnegative βk, firstly proposed by Powell [20], processes attractive properties of establishing
global convergence for the general objective functions and preventing effectively jamming
phenomenon from occurring. We employ the search direction of the HS+ method to invoke
the restarting strategy. Also, we cautiously replace the restarting condition gTk+1yk ≤ 0 by

a variant, i.e., gTk+1yk ≤ ε1 to avoid possible “divide by zero” occurs in the scalar τ+k+1.

Remark 2.5. If ||gk+1|| < ε, then we get from Step 3 of the Algorithm 2.3 that the iterations

stop, and so, the condition
||gk+1||2

ε2
> 1 always hold provided that dmain

k+1 is used. The above

basic fact will fascinate the proof of the following lemma.

Lemma 2.6. Suppose that the steplength αk satisfies the Wolfe conditions. Then the search
directions {dk} of Algorithm 2.3 satisfy (1.9) with c = 1.

Proof. We provide a proof by induction. The basis of induction is verified by k = 1. Suppose
that (1.9) holds for k, that is, dTk gk ≤ −∥gk∥2. What remains to do is to show the conclusion
holds for k + 1, which concerned with the following cases.

Case (i) If gTk+1yk ≤ ε1, then the conclusion holds clearly.
Case (ii) If k ∈ K1, then the method reduces to the HS method. We get from (1.5) that

0 < −(1− σ)gTk dk < dTk yk. (2.18)

It is obviously seen that the conclusion follows immediately since ηk+1 < 0 < βHS
k+1.



112 X. DONG AND D. HAN

Case (iii) Consider the truncation form of the search direction, i.e., k ∈ K2. By direct
computations, we have gTk+1dk+1 ≤ −||gk+1||2.

Case (iv) Last but not least, if k ∈ K3, then the rest of the proof falls naturally within
two cases:

First, if
sTk yk
∥yk∥2

≥ ||gk+1||2

ε2
, then

τ+k+1 =

(
1− sTk yk

||yk||2

)
(gTk+1dk)

+

dTk yk
≤
(
1− ||gk+1||2

ε2

)
(gTk+1dk)

+

dTk yk
≤ 0, (2.19)

which together with (2.5) and gTk+1yk > ε1 gives

gTk+1d
main1
k+1 = −||gk+1||2 + βDK+

k+1 gTk+1dk + τ+k+1g
T
k+1yk

≤ −||gk+1||2 + βDK
k+1g

T
k+1dk

≤ −3

4
||gk+1||2.

(2.20)

The last inequality is seen from Lemma 2.6, please see [11].
Second, taking inner product on both sides of (2.6) with gTk+1, we obtain that

gTk+1d
main2
k+1 = −||gk+1||2 + βMDL+

k+1 gTk+1dk − θMDL+
k+1 gTk+1yk

= −||gk+1||2 −
(
1− ∥yk∥2

sTk yk

)
(gTk+1sk)

+

dTk yk
gTk+1dk

≤ −||gk+1||2 − (1− ε2

||gk+1||2
) · αk

dTk yk
(gTk+1dk)

2

≤ −||gk+1||2.

(2.21)

Based on the discussion above, we set c = 1 to finish the proof.

3 Convergence Analysis

In this section, we study the convergence analysis of the presented algorithm for the general
functions in the sense that lim inf

k→∞
||gk|| = 0. We assume that gk ̸= 0, otherwise, a stationary

point has been obtained. Thus, we assume that there exists a positive constant ε such that

||gk|| ≥ ε, ∀k ∈ N. (3.1)

Meanwhile, the following regular assumptions are commonly used to analyze the global
convergence of the CG methods.

Assumption 3.1. (A1): The level set Ω = {x ∈ Rn|f(x) ≤ f(x1)} is bounded; (A2): In
some neighborhood Ω0 of Ω, the objective function f is continuously differentiable and
its gradient g is Lipschitz continuous, namely, there exists a constant L > 0 such that
||g(x)− g(y)|| ≤ L||x− y||, ∀x, y ∈ Ω0.

The assumptions imply there exist positive constants B and γ, such that ||x|| ≤ B, ∀x ∈
L, and ||g(x)|| ≤ γ, for all x ∈ Ω0.

Lemma 3.1. Suppose that Assumptions 3.1 hold. Let {xk} be generated by Algorithm 2.3.
If (3.1) holds, then there exist positive constants C1 and M such that

|βk| ≤ C1||sk−1||, ||pk|| ≤ M, (3.2)
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where

pk =


−gk, if k ∈ K1 or gTk yk−1 ≤ ε1,
−gk + ηkdk−1, if k ∈ K2,

−gk +
(
βMDL+
k

)−
dk−1 − θMDL+

k yk−1, if k ∈ K3

(
βk = βMDL+

k

)
,

−gk +
(
βDK+
k

)−
dk−1 + τ+k yk−1, if k ∈ K3

(
βk = βDK+

k

)
.

(3.3)

Proof. We estimate a bound for βk. First, we should state the following fact. Both CG
parameters βMDL+

k and βDK+
k reduce to βHS+

k provided that gTk+1yk > ε1 and gTk+1dk ≤ 0
are satisfied simultaneously. So, for future use, we readily get the following relationships

θMDL+
k =

(
gTk dk−1

)+
dTk−1(gk − gk−1)

∈ [0, 1). (3.4)

Before we give the bounds for βMDL+
k and βDK+

k , we can drop the superscript symbol
“+” in their expressions (2.7) and (2.9), and obtain that:

|βMDL+
k | =

∣∣∣∣∣βHS
k +

(
1− ∥yk−1∥2

sTk−1yk−1

)
· gTk sk−1

dTk−1yk−1

∣∣∣∣∣
≤ gTk yk−1

dTk−1yk−1
+

(
1 +

∥yk−1∥2

sTk−1yk−1

)
· gTk sk−1

dTk−1yk−1

≤ (1 + L)||gk|| · ||sk−1||
dTk−1yk−1

+
∥yk−1∥2

dTk−1yk−1
· gTk dk−1

dTk−1yk−1

≤ (1 + L)||gk|| · ||sk−1||
dTk−1yk−1

+ L2 ∥sk−1∥2

dTk−1yk−1

≤ (L+ 1)γ + 2BL2

(1− σ)ε2
||sk−1||.

(3.5)

Analogously, we get that |βDK+
k | ≤ (2BL2 + L)γ

(1− σ)ε2
||sk−1||.

Set C1 =
(L+ 1)γ + 2BL2

(1− σ)ε2
, and the desired conclusion |βk| ≤ C1||sk−1|| is satisfied.

Subsequently, we estimate the upper bound for pk. We consider the case where gTk dk−1 >
0 and gTk yk−1 > ε1 and β = βMDL+

k . We have from (3.3), (3.4) and (2.9) that

||pk|| ≤ ||gk||+ |
(
βMDL+
k

)− | · ||dk−1||+ |θMDL+
k | · ||yk−1||

= ||gk|| −min{βMDL+
k , 0}||dk−1||+

(gTk dk−1)
+

dTk−1yk−1
· ||gk − gk−1||

≤ ||gk|| − ηk||dk−1||+ ||gk − gk−1||
= 3γ +

1

||dk−1||min{η, ||gk−1||}
||dk−1||

≤ 3γ +
1

min{η, ε}
.

(3.6)

We now insert the Lipschitz estimate (1.5) for yk−1 into the expression (2.8) to get:

|τ+k | ≤

∣∣∣∣∣1− sTk−1yk−1

∥yk−1∥2

∣∣∣∣∣ ≤ 1 +
sTk−1yk−1

∥yk−1∥2
≤ 1 + 2B

γ

ε1
≜ Cτ , (3.7)
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where the lase inequality comes from the fact that
1

||yk−1||
<

||gk||
ε1

<
γ

ε1
.

By an analogous philosophy, we can deduce that

|pk| ≤
(
1 + 4B

ε1
ϵ

)
γ +

1

min{η, ε}
(3.8)

for βk = βDK+
k .

Assertion (3.2) follows directly from inequalities (3.6) and (3.8).

To proceed, we introduce the following lemma, called the Zoutendijk condition, which is
often used to prove global convergence of the nonlinear CG method.

Lemma 3.2 ([22]). Suppose that Assumptions 3.1 hold. Consider any iterative method of
the form (1.2), where dk satisfies gTk dk < 0 and αk is obtained by the Wolfe conditions.

Then
∑
k≥1

(gTk dk)
2

||dk||2
< ∞.

Next, we will establish the global convergence of the proposed method. To this end,
similar to [14], we will establish a bound for changes of the normalized direction uk =

dk/||dk||. Clearly, if gTk yk−1 ≤ ε1, then uk = − gk
||dk||

; otherwise, it suffices to consider

gTk yk−1 > ε1 for which uk is given by

uk =



−gk +
(
βMDL+
k

)−
dk−1 − θMDL+

k yk−1

||dk||
+
(
βMDL+
k

)+ dk−1

||dk||
, if βk = βMDL+

k ,

−gk +
(
βDK+
k

)−
dk−1 + τ+k yk−1

||dk||
+
(
βDK+
k

)+ dk−1

||dk||
, if βk = βDK+

k ,

− gk
||dk||

+ ηk
dk−1

||dk||
, if βk = ηk,

− gk
||dk||

+ βHS
k

dk−1

||dk||
, if βk = βHS

k ,

(3.9)

We also define rk =
pk

||dk||
and the nonnegative parameter δk =

||dk−1||
||dk||

(βk)
+, given by

δk =



||dk−1||
||dk||

(βMDL+
k )+, if βk = βMDL+

k ,

||dk−1||
||dk||

(βDK+
k )+, if βk = βDK+

k ,

0, if βk = 0 (gTk yk−1 ≤ ε1) or βk = ηk,
||dk−1||
||dk||

βHS+
k , if βk = βHS

k .

(3.10)

Now, we can reformulate uk as follows:

uk =
pk

||dk||
+

||dk−1||
||dk||

(βk)
+ · dk−1

||dk−1||
= rk + δkuk−1. (3.11)

Lemma 3.3. Suppose that Assumptions 3.1 and (3.1) are satisfied. Let {xk} and {dk} be
generated by Algorithm 2.3. If (3.1) holds, then we have dk ̸= 0 and

+∞∑
k=1

||uk − uk−1||2 < ∞. (3.12)
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Proof. From Lemma 2.6, we have dk ̸= 0. Note that ||uk|| = 1, we have

||rk|| = ||uk − δkuk−1|| = ||uk−1 − δkuk|| =
√
1 + δ2k − 2δkuT

k−1uk. (3.13)

Equality (3.13), together with the triangle inequality and δk ≥ 0 implies that

||uk − uk−1|| ≤ (1 + δk)||uk − uk−1||
≤ ||uk − δkuk−1||+ ||uk−1 − δkuk||
= 2||rk||.

(3.14)

Also, from (3.2) we get

∑
k≥1

||rk||2 =
∑
k≥1

||pk||2

||dk||2

≤
∑
k≥1

M2

||gk||4
||gk||4

||dk||2

≤ M2

ε4
∑
k≥1

(gTk dk)
2

||dk||2
< +∞,

(3.15)

where the second inequality follows from (1.9). Finally, (3.15) and (3.14) ensure (3.12), and
so, the proof is completed.

Now, we deal with the global convergence of Algorithm 2.3. In this context, we present
a theorem that shows our method inherits the built-in self-restarting mechanism of the HS
method, which was firstly proposed by Gilbert and Nocedal in [14] and then slightly modified
by Dai and Liao [10].

Subsequently, we give the convergence result of our presented method, in which the proof
is analogous to that of Theorem 3.2 in [15], and we omit it here.

Theorem 3.4. Suppose that Assumptions 3.1 hold. Let {xk} be generated by Algorithm
2.3. If (3.1) holds, then lim inf

k→∞
||gk|| = 0.

Proof. The proof is divided into the following two phases.
Phase 1. (Finding a bound for the steps {sk}k≥1) We observe that for any l ≥ k,

xl − xk =
l−1∑
j=k

xj+1 − xj =
l−1∑
j=k

||sj ||uk +
l−1∑
j=k

||sj || (uj − uk). (3.16)

Using the triangle inequality and recalling that ||uk|| = 1, we can write

l−1∑
j=k

||sj || ≤ ||xl − xk||+
l−1∑
j=k

||sj ||||uj − uk|| ≤ B +

l−1∑
j=k

||sj ||||uj − uk||. (3.17)

Now, let △ be a positive integer, chosen large enough such that △ ≥ 4BC1, where B and
C1 are defined in Assumption (A1) and (3.2), respectively. By Lemma 3.3, there exists an
index k0 such that ∑

i≥k0

||ui+1 − ui||2 ≤ 1

4∆
. (3.18)
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If j > k > k0 and j − k ≤ ∆, then by (3.18) and Cauchy inequality we have

||uj − uk|| ≤
j−1∑
i=k

||ui+1 − ui|| ≤
√

j − k

(
j−1∑
i=k

||ui+1 − ui||2
) 1

2

≤
√
j − k

2
√
∆

≤ 1

2
. (3.19)

We obtain from the above inequality and (3.17) that

l−1∑
j=k

||sk|| ≤ 2B. (3.20)

Phase 2. (Finding a bound for the directions {dl}) We obtain that scalars βMDL+
k and

βHZ+
k are simultaneously truncated by ηk. Then, from (2.4), we obtain

||dl||2 ≤
(
max{||gl||+ |βDK+

l |||dl−1||+ ||τlyl−1||, ||gl||+ ||βMDL+
l dl−1||+ ||θlyl−1||}

)2
≤ ((1 + 2Cτ )γ + C1||sl−1|| · ||dl−1||)2

≤ 2(1 + 2Cτ )
2γ2 + 2 (C1||sl−1|| · ||dl−1||)2 ,

(3.21)
where the second inequality follows from (3.2), (3.4) and (3.7). Now, set Si = 2C2

1 ||si||2.
By induction, we have

||dl||2 ≤


2(1 + 2Cτ )

2γ2 + Sk0||dk0||2, l = k0 + 1,

2(1 + 2Cτ )
2γ2

(
1 +

l−1∑
i=k0+1

l−1∏
j=i

Sj

)
+ ||dk0

||2
l−1∏
j=k0

Sj , l > k0 + 1.
(3.22)

Let us consider a product of ∆ consecutive Sj for k ≥ k0, that is

k+∆−1∏
j=k

Sj =

k+∆−1∏
j=k

2C2
1 ||sj ||2 ≤


k+∆−1∑
j=k

√
2C1||sj ||

∆


2∆

≤

(
2
√
2BC1

∆

)2∆

≤ 1

2∆
, (3.23)

where the first inequality follows form arithmetic-geometry inequality, the second one follows
from (3.20) and the third one is due to △ ≥ 4BC1. The product of ∆ consecutive Sj is
bounded by 1/2∆, and hence, using (3.23), we obtain that the sum in (3.22) is bounded,
independent of l. Furthermore, we can conclude that there exist two positive constants p
and q which are independent of l > k0 such that ||dl||2 ≤ pl + q. Finally, from Lemma 2.6,

we get
∑
k≥1

(gTk dk)
2

||dk||2
≥
∑
k≥1

ε2

p
= +∞, which contradicts Lemma 3.3. Hence, the proof is

finished.

4 A Variant of the AMDL Method

In this section, we are interested in a variant of Algorithm 2.3, which stems from the following
observations.

• First, closely associated to the curvature information of f(x) is the expression 1− sTk yk
∥sk∥2

in (2.2), in which the very parameter
sTk yk
∥sk∥2

contains the information of a simple
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approximation of the Hessian of f(x) along the line segment [xk, xk+1], and therefore
it is closely related to the estimated Rayleigh quotient of the Hessian of f(x).

• Second, by using a singular value study, the author [13] proposed the optimal value
of the parameter ωk+1 = 0 in (2.2) in the sense that the condition number in the
iteration matrix of the search direction is at minimum, which is preciously the same as
the famous 3HS+ method proposed by Narushima et al. in [19].

• Third, we get from Cauchy–Schwarz inequality and (2.18) that

1− ∥yk∥2

sTk yk
≤ 1− sTk yk

∥sk∥2
≤ 1. (4.1)

If 1− ∥yk∥2

sTk yk
= 0 and the Wolfe conditions are employed, then the MDL method reduces

to the 3HS+ method. Consequently, all singular values of the iteration matrix are equal

to 1, which is no other than the simple approximation expression
sTk yk
∥sk∥2

= 1, then it

will obtain an ideal distribution of the singular values.

It seems to hint us that the choice of ξ = 0 in (2.2) has its intrinsic advantage, which
will increase opportunity of boosting the well–conditioned matrix of search direction. It
should be pointed out that the new variant is different from the original AMDL method in
that dmain

k+1 in Algorithm 2.3, here we denote it as d̄k+1, is renewed. For simplicity, we only
give the search direction in Step 5 of the algorithm, and the strong Wolfe conditions are
employed, namely, (1.4) and

|g (xk + αkdk)
T
dk| ≤ −σgTk dk, (4.2)

while the other steps are as exactly the same as Algorithm 2.3.
The complete Hessian approximation by (2.5) and (2.6) with (gTk+1dk)

+ replaced with

gTk+1dk, and (gTk+1sk)
+ replaced with gTk+1sk.

Algorithm 4.1. (A variant of the AMDL method with the strong Wolfe conditions)

d̄k+1 =

{
−gk+1 + ηk+1d̄k, if k ∈ K4,
d̄main
k+1 , if k ∈ K5,

(4.3)

where ηk+1 is defined by (2.14) and index sets are given by as follows

K4 = {k|k ∈ N|gTk+1yk > ε1, β̄
DK
k+1 ≤ ηk+1 or β̄MDL

k+1 ≤ ηk+1}, (4.4)

K5 = {k|k ∈ N|gTk+1yk > ε1, β̄
DK
k+1 > ηk+1 and β̄MDL

k+1 > ηk+1}. (4.5)

In (4.3), (4.4) and (4.5), the search direction d̄main
k+1 and involved scalars are presented by

d̄main
k+1 =

{
−gk+1 + β̄MDL

k+1 dk − θ̄k+1yk, if sTk yk ≥ ∥yk∥2,
−gk+1 + β̄DK

k+1dk + τ̄k+1yk, if sTk yk < ∥yk∥2,
(4.6)

in which

β̄MDL
k+1 = βHS+

k+1 −
(
1− ∥yk∥2

sTk yk

)
gTk+1sk

dTk yk
, (4.7)
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τ̄k+1 =

(
1− sTk yk

||yk||2

)
gTk+1dk

dTk yk
, (4.8)

θ̄MDL
k+1 =

gTk+1dk

dTk yk
, (4.9)

β̄DK
k+1 = βHS+

k+1 − ∥yk∥2

(dTk yk)
2
gTk+1dk. (4.10)

Remark 4.2. We drop the sign “+” in the superscript of terms gTk+1dk and gTk+1sk appearing

in parameters βDK+
k+1 , τ+k+1, β

MDL+
k+1 and θMDL+

k+1 defined by (2.7), (2.8), (2.9) and (2.10),
which come (4.7), (4.9), (4.10) and (4.8). In order to globalize the Algorithm 4.1, we employ
exactly the same restarting mechanism of the PRP+ method and the truncation form of the
CG DESCENT method as Algorithm 2.3 does.

Theorem 4.3. If the stepsize is determined by the strong Wolfe conditions (1.4) and (4.2)
with 0 < ρ < σ < 1/2, then the search direction {dk} of Algorithm 4.1 satisfies dTk gk ≤
−∥gk∥2.

Proof. It suffices to consider the case where d̄k+1 = −gk+1 + β̄DK
k+1dk + τ̄k+1yk without

truncation form is used. In such a case, gTk+1yk > ε1 is satisfied.

First, if gTk+1dk ≤ 0, then it is easy to verify that τ̄k+1 ≤ 0, and so,

gTk+1d̄k+1 = −||gk+1||2 + β̄DK
k+1g

T
k+1dk + τ̄k+1g

T
k+1yk ≤ −3

4
||gk+1||2. (4.11)

Second, consider the case where gTk+1dk > 0. We get from (2.18) and (4.2) that

τ̄k+1 =

(
1− sTk yk

||yk||2

)
gTk+1dk

dTk yk
<

gTk+1dk

dTk yk
≤ σ

1− σ
≜ C̄σ, (4.12)

which together with 0 < σ < 1/2 gives 0 < τ̄k+1 < C̄σ < 1.
By direct computation, we obtain that

gTk+1d̄k+1 = −||gk+1||2 +
gTk+1dk

dTk yk
gTk+1yk(1 + τ̄k+1)−

(gTk+1dk)
2

(dTk yk)
2
||yk||2

= −||gk+1||2 +
(
1 + τ̄k+1

2

)2

||gk+1||2 −

(
1 + τ̄k+1

2
gk+1 +

gTk+1dk

dTk yk
yk

)2

≤ −

(
1−

(
1 + τ̄k+1

2

)2
)
||gk+1||2

≤ −

(
1−

(
1 + C̄σ

2

)2
)
||gk+1||2.

(4.13)

The convergence analysis of the Algorithm 4.1 can be derived using a similar argument,
so we omit it here.

Theorem 4.4. Suppose that Assumptions 3.1 hold. Let {xk} be generated by Algorithm
4.1. If (3.1) holds, then lim inf

k→∞
||gk|| = 0.
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5 Numerical Experiments

In this section, we report numerical results in order to evaluate the numerical performance of
our proposed methods with that of the existing methods CG DESCENT, 3HS+ and MDL:

• The HZ method [15]: The CG method with the parameter

βk+1 = max

{
gTk+1yk

dTk yk
− 2

||yk||2

(dTk yk)
2
gTk+1dk, η

gTk dk
||dk||2

}
, where η = 0.4.

• The MDL method [8]: The CG method with the parameters (2.1), (2.2) and (2.3),

where ϖMDL
k+1 = max

{
0.66, 1− ∥yk∥2

sTk yk

}
;

• The 3HS+ method [19]: The CG method with the parameters (2.1), (2.3) and βk+1 =
gTk+1yk

dTk yk
, that is to say, ϖMDL

k+1 = 0;

• Algorithm 2.3: We call it the AMDL1 method, where ε1 = 10−14;

• Algorithm 4.1: We call it the AMDL2 method, where ε1 = 10−14.

The implementation code is written in C on a PC ( CPU 2.9 GHz with 4GB RAM). Our
experiments have been done on a set of 145 nonlinear unconstrained optimization test prob-
lems of the CUTEr collection [9], with default dimensions as presented in Hager’s homepage:
http://www.math.ufl.edu/~hager/papers/CG. Since CG DESCENT is based on the CG
method by Hager and Zhang, HZ denotes CG DESCENT itself.

It should be first stressed that in order to enhance the numerical performance, we uni-
formly replace the older truncation scheme (2.14) in CG DESCENT version 5.3, by the

latest truncation form η∗k+1 = η
gTk dk
||dk||2

, where η = 0.4. And we employ exactly the same

truncation above form in Algorithms 2.3 and 4.1 in actual computation.
All attempts to solve the test problems were limited to achieving a solution which satisfies

the termination condition of [16], namely, the inequality ||gk||∞ ≤ 10−6(1 + |f(xk)|) is
satisfied. Meanwhile, the first four algorithms use exactly the same implementation of the
Wolfe line search conditions with ρ = 0.1, σ = 0.9, while the AMDL2 method utilizes the
strong Wolfe conditions, in which ρ = 0.1, σ = 0.4. The performance profile of [12] proposed
by Dolan and Morè are employed to get more insight on the performance of the above
methods, on the ground of the number of iterations, the number of function evaluations, the
number of gradient evaluations and the CPU time.

From Figure 1, it is concluded that the most efficient algorithm in terms of the number
of iterations is the AMDL1 method, being the fastest for 50% of the problems, followed by
AMDL2 and HZ, for nearly 40% and 36% of the problems. The other methods correspond
to the 3HS+ method and the MDL method.

The second part of our comparisons was made on the performance of our methods with
that of the other methods based on the total number of function and gradient evaluations
being equal to Nf+3Ng [16], where Nf and Ng respectively denote the number of function
and gradient evaluations. As seen in Figures 2, the curves of the AMDL1 and AMDL2
methods are very close, which are often preferable to the HZ method.

Figure 3 vividly demonstrates that the performance profile of AMDL2 is under the others,
and AMDL1 is more time consuming comparatively.
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Figure 1: Performance profile of iterations

Figure 2: Performance profile of total number of function and gradient evaluations

Figure 3: Performance profile of CPU time
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Computationally, AMDL1 is not always superior to the other methods, but this method
performed better on average. The corresponding search directions make full use of curvature
information by exploiting new approximating strategy, which accelerate iteration and im-
prove the reduction in functions values. Thus, the proposed methods seem to be practically
promising, specially for solving large-scale problems.

6 Conclusions

In this paper, we propose a new method with adaptively alternative two–side approximating
strategy, to compensate the loss of second–order curvature information. Specifically, if it
happens that the truncation parameter fails to satisfy Newton equation/qausi–Newton equa-
tion after some iterations, the strategy mentioned above begins to work. In such situation,
we employ a computationally equivalent yet effective search direction, which simultaneously
preserves as much information as possible from the current approximation. By doing so, it
maintains almost the same efficiency as the original method and achieves much higher accu-
racy. Theoretically, we proved that the new method can be globalized even if the objective
function is nonconvex. To some extent, numerical experiments showed that exploitation of
the reawakened techniques enhance the computational efficiency
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