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A NEW THREE-TERM CONJUGATE GRADIENT METHOD
WITH ADAPTIVELY ALTERNATIVE TWO-SIDE
APPROXIMATING STRATEGY THAT GENERATES
DESCENT SEARCH DIRECTION*
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Abstract: A new three-term conjugate gradient algorithm is developed, in which the involved search
direction satisfies the sufficient descent condition at each iteration under Wolfe conditions. Different from
the existent methods, a dynamical two—side approximating mechanism is proposed, which adaptively adjusts
the relative weight between sufficient descent condition and making fully use of curvature information of
objective functions. To some extent, the above strategy meaningfully exploits Hessian approximation of the
objective function and therefore increases the efficiency of the algorithm in practical computation. Under
mild conditions, we prove that the presented method converges globally for general objective functions.
Numerical results are reported, which illustrate that the proposed algorithm is practically encouraging.
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Introduction

Let f : R® — R be a continuously differentiable and nonlinear function, and its gradient
abbreviated as g(x) = Vf(x) is available. Here, we consider the following unconstrained
optimization problem:

i . 1.1

min f(z) (1.1)

Conjugate gradient (CG) methods have drawn considerable attention due to their effec-

tiveness and simplicity, especially for solving large—scale unconstrained optimization. For a
given initial point x; € R", the method generates the iterates via the recursion as follows:

Tht1 = Tk + Sk, Sk = agdi, Vk >1, (1.2)
where the search direction dj takes the following form

di = —g1,dk+1 = —Gr+1 + Brrrde, VE =1, (1.3)
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and o > 0 is a steplength generally determined by the well-known Wolfe conditions with
constants 0 < p < ¢ < 1, that is,

f@k + ardy) — f(xx) < porgy di, (1.4)

g (,’Ek; + Oékdk)Tdk Z Uggdk. (15)

In (1.3), Bk is a judiciously constructed CG parameter, which brought diversity of algo-
rithms, and with it quite diverse computational behavior and convergence results. Among
the CG methods, the Hestenes and Stiefel [17] (HS) scheme has been the focus of recent work,
not only for its essential history importance and impressive computational performance, but
also its theoretical property of satisfying conjugacy condition, namely,

diyp-1 =0, (1.6)

where yr_1 = gr — gk—1. On the other hand, in [14], Gilbert and Nocedal established the
convergence of the HS+ method for the general objective functions, in which
ﬂHs+ _ (g£+1yk)+. (1.7)
o df?/k

Here, b+ = max{b, 0}, where b is a constant.

Recently, various variations and great improvements of the HS method have been made
by designing sophisticated techniques for guaranteeing the Dai and Liao (DL) conjugacy
condition and the sufficient descent condition:

e As an extension of (1.6), Dai and Liao [10] proposed the following conjugacy condition:
dFyp_1 = —tglsi_1, (1.8)

where ¢t > 0 is a constant. Based on condition number analysis of iteration matrix of
search direction, Andrei [3] and Babaie-Kafaki [4, 5] gave several choices of optimal
parameter ¢, which fuels the boom in the open problem posed by Andrei [2], i.e., what
is the best conjugacy condition? For more details, we refer to the excellent survey [6].

e In some convergence analyses, the sufficient descent condition is required, namely,
digr < —cllgll?, Yk €N, for some c¢> 0. (1.9)

It is worth mentioning that Hager and Zhang (HZ), and Dai and Kou (DK) pioneered
new technique to force the presented search direction to satisfy automatically (1.9).
Here, we call the involved methods the HZ and DK methods for short. Meanwhile, the
resulting CG_.DESCENT [15] and CGOPT [11] are public domain software packages.

Our attention will be on the three—term conjugate gradient (TTCG) method. As a
natural extension of the standard CG method, it has received much study (see [1, 8, 19, 21]
and references therein), which not only enhances the freedom and flexibility of the selection of
parameters but also substantially embeds some favorable properties in the search direction.

Following a modified DL (MDL) method [7], we construct another search direction by
combining the advantages of the CGOPT method and quasi-Newton method to compensate
the loss of second-order curvature information of f(z) being caused by slightly improper
truncation in the MDL method. This can be viewed as the inheritance and development of
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properties of the MDL method in the sense that the twin search directions are computation-
ally comparable, while the alternatively generated search direction makes the corresponding
optimization behavior close to that of sequential the current one as much as possible.

We structure the remainder of the paper as follows. In Sect.2, we present formally
the modified MDL method and investigate the sufficient descent condition. In Sect.3, we
establish the convergence analysis of the above method. In Sect.4, a variant of the proposed
method is given. In Sect.5, numerical results are report to demonstrate the efficiency of the
proposed methods. The paper is concluded in the last section.

A New CG Algorithm

Recently, Babaie—Kafaki and Ghanbari [8] proposed the MDL method, in which the main
contribution is to combine the DL method and the TTCG algorithm framework in such a
way that the search direction can automatically satisfy the standard Newton equation. How-
ever, theoretically, the above method lacks significant descent property. To circumvent this
difficult, a constant £ > 0 was introduced and an improved search direction was proposed:

91{+1yk MDL ng+15k
dry1 = —grt1 + -w —— | di — Op+1Yk, 2.1
+ + dzyk k d{yk + ( )
where )
MDL __ 1 lly | 29
wk+1 = max ga - T ) ( . )
S Yk
T
gk+1dk
Ops1 = ) (2.3)
dLyi

It can be seen that the above method converges for uniformly convex objective functions,
under the Wolfe conditions, with a promising computational behavior. Meanwhile, the
truncation scheme (2.2) is slightly inefficient in that an excessive use of the value of £ may
cause the information being close to the Newton direction to be regretfully neglected.

However, what one loses on the swings, he gets back on the roundabouts. General
iterative schemes, which are usually based on a quadratic model have been successfully
in solving (1.1). Consequently, to adequately utilize curvature information of f(x) plays
a significant role in accelerating the iterations. To compensate the loss of second-order
curvature information, another search direction that most closely approximates that of the
quasi-Newton method is promptly supplemented in a proper way that acceleration of the
whole of iteration would be anticipated.

Formally, we obtain the leading search directions as follows

mainl f Sgyk > Hgk-i-IH2

; d i
e U Y ER = (2:4)
dpein?, otherwise,

in which £ > 0 is an acceptable tolerance of the norm of the unconstrained stationary point.
In (2.4), the search direction Zf{” consists of twin sub-directions, given by,

APt = —gry1 + 51?+I§+dk' + 71 Yk (2.5)

A = —gry1 + Bt F e — 01 i, (2.6)
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where involved parameters are given as follows:

el
AT =B~ gy qr G ) (2.7)
T T )T
Toi1 = <1— Skyl;) (gk+T1 k) ) (2.8)
x| di. Y
2 T +
Bl]c\/ill)L-i- ﬂ]grSlJr ”?{rkH (gk+j}5k) 7 (2.9)
S Yk dkyk
T
grore _ Wienad)” (2.10)
dkyk

Remark 2.1. The search direction of the TTCG method djy1 is ususlly generated by a
linear combination of —ggy1, di and y,. Based on the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) update in the sense that the updated matrix Hy = I , a search direction is derived,
which can be viewed as that of a class of four-term extension of the DK method, given by

dir1 = —grr1 + BEAdr +Mk1yk — Megrsi. (2.11)
—_————

DK
dk+1

T T
9k+1Yc G 1dk||yk|| gk 15k
n (2.11), gPK = et Il o d Ay = B

di Y (di vk) Sk Y

The simple deletion of the last term in (2.11) leads to another TTCG search direction,
say, dipt1. As a remedy, di41 satisfies the quasi-Newton equation Hy1yr = Sk, provided
that A1 is replaced by

T T
5p Yk \ i1k
Thpr = (1— ) . 2.12

( llyell? ) diyn (212)

The fact above partially accounts for the motivation of the search direction d;’f{”l

Remark 2.2. Notice that dj’{"! and d'¢{"* are essentially designed based on an adap-
tive switch from quasi-Newton equation Hyi1yr = S to “pure” conjugacy condition (1.6)
when g,{Hdk < 0. Furthermore, we combine the most recently observed information about
the objective function with the existing knowledge of second-order curvature information
embedded in the alternative Hessian approximation as much as possible. Specifically, if the
current Hessian matrix “incorrectly” abandons the curvature in the objective function, and
if this bad estimate may slow down the iteration, then the alternative Hessian approximation
will tend to correct itself within a few steps. Perhaps, it would be more appropriate to call
it “adaptively alternative two-sided approximating strategy”.

Then, the AMDL method can be described, where A stands for “approximating”.

The search direction of the BFGS quasi-Newton method is given by di41 = —Hg4+19k+1, updated
by the following iterative formula from the previous approximation Hj of V2 f(xpi1)"': Hipy1 = Hy +

14 yF Heyr \ sest kY T Hy, +Hkyk3k
sfye ) sty sFyk
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Algorithm 2.3. (A modified DL-type TTCG algorithm with adaptively alternative two-
side approximating strategy)

Step 1. Given positive constants ¢, €1, and p < ¢ < 1. Choose an initial point z; € R"
and set d; = —¢g; and k = 1.

Step 2. Determine a steplength «y, satisfying the Wolfe conditions (1.4) and (1.5).

Step 3. Let 11 = x + axdy and calculate giy1. If ||gr11]| < &, then stop.

Step 4. If g,{ﬂyk < ¢1, then set di4+1 = —gr+1 and k = k 4 1, and goto Step 2.

Step 5. If g,:fﬂyk > £1, then compute scalars ,B,?f?, 7',;:1, B,ﬁ?““ and 9%3““ by (2.7),
(2.8), (2.9) and (2.10). Finally, compute the search direction dj1; as follows:

—Gk+1 + 61514»517 Z.f ke Kla

ditr = —9k+1 + Mkrrde,  if k€ Ky, (2.13)
At if ke Ks,

where d}'#™ is defined by (2.4) and

-1
Nk+1 = N . (2.14)
T J|dg][ min{n, [[ge1all}
Also, the index sets Ky, Ko and K3 in (2.13) are individually presented by
Ky = {k|k € N|gi_s 1yx > 1,9} 1dr < O} (2.15)
Ky = {klk € Nlg/, yyx > €1, gf 1 di > 0,5;€D+I§+ < Nkt1 or 5%5L+ < M1} (2.16)

K3 = {klk € Nlgi s yyk > 1, g8 padi > 0, 8087 > gy and BUYYT >}, (2.17)
Set k = k + 1 and goto Step 2.

Remark 2.4. As commented by Dai and Kou [11] and Kou et al. [18], the method with
nonnegative Sy, firstly proposed by Powell [20], processes attractive properties of establishing
global convergence for the general objective functions and preventing effectively jamming
phenomenon from occurring. We employ the search direction of the HS+ method to invoke
the restarting strategy. Also, we cautiously replace the restarting condition g,zﬂyk <0 by
a variant, i.e., ggﬂyk < g1 to avoid possible “divide by zero” occurs in the scalar le' 1

Remark 2.5. If ||gk+1]| < &, then we get from Step 3 of the Algorithm 2.3 that the iterations

\|9k+1|\2
2

€
basic fact will fascinate the proof of the following lemma.

stop, and so, the condition > 1 always hold provided that d};’f}" is used. The above

Lemma 2.6. Suppose that the steplength oy, satisfies the Wolfe conditions. Then the search
directions {d} of Algorithm 2.8 satisfy (1.9) with ¢ = 1.

Proof. We provide a proof by induction. The basis of induction is verified by k = 1. Suppose
that (1.9) holds for k, that is, dZ gr, < —||gx > What remains to do is to show the conclusion
holds for k£ + 1, which concerned with the following cases.

Case (i) If g/ yr < e1, then the conclusion holds clearly.

Case (ii) If k£ € K1, then the method reduces to the HS method. We get from (1.5) that

0< —(1—0o)gidy < dfy. (2.18)

It is obviously seen that the conclusion follows immediately since 7541 < 0 < ﬁ,fﬁ.
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Case (iii) Consider the truncation form of the search direction, i.e., k € K5. By direct
computations, we have g} dp1 < —||grs1 ]
Case (iv) Last but not least, if k¥ € K3, then the rest of the proof falls naturally within

two cases: - )
First, if %k ykz > H9k+21|| , then
vl £
+ Szyk (gg+1dk)Jr Hngr1||2 (91{+1dk)+
Ty = (1— 5 T < (1= - <0, (2.19)
Iy ]| dj, Yk € dj, Yk

which together with (2.5) and g,y > €1 gives

gl{-;-ld?-ﬁnl = _||gk+1||z + Blg+§+¥{+1dk + le+1gl€+1yk‘
< —|?|)9k+1|| T P19k 1k (2.20)
< -= 2,
> 4H9k+1”

The last inequality is seen from Lemma 2.6, please see [11].
Second, taking inner product on both sides of (2.6) with ggﬂ, we obtain that

91?+1d2nffn2 = —llges1l]* + Blﬁ’f“g;%ldk —Teﬁ?L:g;nyk
Yk (Gr115k)
= ng+1||2<1 ”TH > k+7} g%‘+1dk
ke /o dpYn (2.21)
€ Q. 2
< *gk12* 1= +——3) 55— (Gip1dk
|| + ||2 ( ||9k+1||2) d’]];yk( k+1 )
< —llgrgall*
Based on the discussion above, we set ¢ = 1 to finish the proof. O

Convergence Analysis

In this section, we study the convergence analysis of the presented algorithm for the general
functions in the sense that likm inf [|gr|| = 0. We assume that g, # 0, otherwise, a stationary
— 00

point has been obtained. Thus, we assume that there exists a positive constant ¢ such that
llgx|| > €, VEk € N. (3.1)

Meanwhile, the following regular assumptions are commonly used to analyze the global
convergence of the CG methods.

Assumption 3.1. (Al): The level set Q = {z € R"|f(z) < f(z1)} is bounded; (A2): In
some neighborhood £ of 2, the objective function f is continuously differentiable and
its gradient g is Lipschitz continuous, namely, there exists a constant L > 0 such that

llg(z) — g(w)|| < Ll|lz — yl|, Y,y € Qo.

The assumptions imply there exist positive constants B and +, such that ||z|| < B,Vz €
L, and ||g(z)|| <7, for all z € Q.

Lemma 3.1. Suppose that Assumptions 3.1 hold. Let {x1} be generated by Algorithm 2.3.
If (3.1) holds, then there exist positive constants Cy and M such that

1Bk] < Cullsk—all, llpxll < M, (3.2)
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where
gk, if ke K1 or gflye <en,
) 9k Hmedi1, if ke Ko, (3.3)
P g (B 0, ke Ky (=g, B
—gi + (BPET) dioet + 7y, if ke Ks (B =pBP5T).

Proof. We estimate a bound for [. FiI‘bt we should state the following fact. Both CG
parameters BMDL+ and ﬂkDK+ reduce to * provided that ngyk > ¢; and gkﬂd;C <0
are satisfied simultaneously. So, for future use we readily get the following relationships

Td +
gMPLt — M €1[0,1). (3.4)
dk—l(gk — k1)
Before we give the bounds for ﬁM DL+ and BD K+ we can drop the superscript symbol

“+” in their expressions (2.7) and (2.9), and obtain that:

W}J@\4DL+| HS 41— yr—1> . gi k-1
st iye—1) Al yk—
< ngk—l 1 ||il/k71||2 ngSkq
s 7ttt T
di 1 Yk—1 Sp_1Yk—1 ] di_1Yk—1
< (14 L)||grll - [|sk—1]| n lyr—1]2 ' gt di—1 (3.5)
Al yr—1 dl Jyk—1 dF jyp—1
2
< (1+ D)llgxll - l|sk-1ll + L2 ||T51c—1||
dk 1Yk—1 dk_lykfl
(L+1)y+2BL?
< e |[sk—1l-

2BL L
Analogously, we get that |3P5T| < (2BL*+ L)y a 4—)6 ) l|sk—1]]-
—0
(L+1)y+2BL?
(1-0)e?
Subsequently, we estimate the upper bound for py. We consider the case where gf dj_1 >
0 and gf'yr—1 > &1 and B = B PLT. We have from (3.3), (3.4) and (2.9) that

Set C1 = , and the desired conclusion |B| < C||sk—1]| is satisfied.

pell < llgell + 1 (BYP5T) |- lde—all + 102 P 5] - [lye—al|
_ . MDL+ (dik—l)Jr
= |lgk|| — min{S; 70}||dk—1||+7dT “Nlgk = gr-1ll
L_1Yk—1
< lgwll = nelldi—1l] + llgr — gr—1l| (3.6)
= 3Iv+ - ||dr—1]|
IIdk—11||mln{n7 llgr—1l[}
< 3 _
= min{n, e}

We now insert the Lipschitz estimate (1.5) for y,_;1 into the expression (2.8) to get:

T
S _
Shoa¥hl g oY oo (3.7)

lyx—112 €1

T
Skflyk—l

<1+
lyr—1?

|Tk|—
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where the lase inequality comes from the fact that < e 2,
lye—all — e &
By an analogous philosophy, we can deduce that
€1 1
<(1+4B) v+ —— 3.8
|pk|_( + € 7+min{n,€} (3:8)
for B = ,? K+,
Assertion (3.2) follows directly from inequalities (3.6) and (3.8). O

To proceed, we introduce the following lemma, called the Zoutendijk condition, which is
often used to prove global convergence of the nonlinear CG method.

Lemma 3.2 ([22]). Suppose that Assumptions 3.1 hold. Consider any iterative method of
the form (1.2), where dy, satisfies gidr < 0 and oy is obtained by the Wolfe conditions.

(¢ di)*
Then
PONTALE

< 0

Next, we will establish the global convergence of the proposed method. To this end,
similar to [14], we will establish a bound for changes of the normalized direction wuj, =

; otherwise, it suffices to consider

di/||dy]]. Clearly, if g{yr—1 < €1, then u = _Hzik”’
k

g,{yk,l > g1 for which wuy is given by

—gk + (5£4DL+)_ di—1 — 0 PE MDLF k-1 . _ oMDL+
T AT g A= AT
DEK+\~
—gk + ( & +) di—1 +7']jyk71 + ( kDK+)+ di—1 Zf B = ]?K+
uy, = ||| [l
9k k—1 .
- TR if Bk =k,
|| IIdgH
9k HS Yk—1 . HS
— T if Br= )
lldell 7% [ldall g (39)
o .
e also define 7, = and the nonnegative parameter o = k)", glven by
We also defi IIZkII d th i 5 ”|Z |1” Bi)*, given b
k k
dp— .
|||dk|1|||( IZCMDL+)+7 Zf Bk = B}iWDL+7
||dk*1|| DK+\+ . DK+
) 1 = )
So=13 T ) , I Oe=P (3.10)
(|)|7d | if Brk=0 (g9} yr—1 <e1)or By =,
k-1l ,HS .
Tl % o=
Now, we can reformulate uy as follows:
. dp— dp—
wp = P Mdicllg e Aoy (3.11)

el [ldw]] |ldk—1]|

Lemma 3.3. Suppose that Assumptions 3.1 and (3.1) are satisfied. Let {x} and {dy} be
generated by Algorithm 2.3. If (3.1) holds, then we have di # 0 and

+oo
Z lJug, — ugp_1|* < oo. (3.12)
k=1
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Proof. From Lemma 2.6, we have dj, # 0. Note that ||ug|| = 1, we have

ril| = [|uk — OgUk—1|| = ||Uk—1 — Ouk|| = k— 20KUp_qUE. .
7kl = [lug =6 =1 Sru| 1+ 67 — 20kuj; (3.13)

Equality (3.13), together with the triangle inequality and J; > 0 implies that

llug —uk—1l] < (1 + 0)[|luk — ug—1]|
< ||uk — dpug—1]|| + Huk71 — 5kuk\| (3.14)
= 2[|rgl].
Also, from (3.2) we get
A
Sl = X
K1 =1 |1del|?
M ||gw||*
<z 3.15
2y ol [ (3.15)
< Z < o0,
k>1 HdkHz

where the second inequality follows from (1.9). Finally, (3.15) and (3.14) ensure (3.12), and
so, the proof is completed. O

Now, we deal with the global convergence of Algorithm 2.3. In this context, we present
a theorem that shows our method inherits the built-in self-restarting mechanism of the HS
method, which was firstly proposed by Gilbert and Nocedal in [14] and then slightly modified
by Dai and Liao [10].

Subsequently, we give the convergence result of our presented method, in which the proof
is analogous to that of Theorem 3.2 in [15], and we omit it here.

Theorem 3.4. Suppose that Assumptions 3.1 hold. Let {xy} be generated by Algorithm
2.3. If (3.1) holds, then 1ikminf||gk|\ =0.
—00

Proof. The proof is divided into the following two phases.
Phase 1. (Finding a bound for the steps {s;}r>1) We observe that for any I > k,

1—1

T — Tk = kaJJrl — Ty = Z [Isj|u + Z |I8;1] (uj — ug). (3.16)
J_
Using the triangle inequality and recalling that ||ug|| = 1, we can write
-1 -1 -1
Do lssll < Ml —aall + D llsylllleg —urll < B+ llsglllluy — sl (3.17)
j=k j=k j=k

Now, let /A be a positive integer, chosen large enough such that A > 4BC7, where B and
Cy are defined in Assumption (Al) and (3.2), respectively. By Lemma 3.3, there exists an
index kg such that

3 s — will® < o (3.18)

le?O
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If j > k> ko and j — k < A, then by (3.18) and Cauchy inequality we have

1
j—1 j-1 2 -
- i—k 1
wj — upl] < uip1 —uil| < Vj—k wipr —ui? ] < <-. (319
o = ] < 3 e =l < (;n a ||> <5 G
We obtain from the above inequality and (3.17) that
-1
> llskll < 2B. (3.20)
j=k
Phase 2. (Finding a bound for the directions {d;}) We obtain that scalars 33/ ”** and
,? Z+ are simultaneously truncated by 7. Then, from (2.4), we obtain

ldil> < (max{llgil| + 18P lldial + [1migeall lonll + 182 P5F dya || + 116uan ][}
< (1 +2C)y + Cillsi-a ] - lldi- 1)
< 2(1 42002 + 2(Ch[sial] - ldia 1)

(3.21)
where the second inequality follows from (3.2), (3.4) and (3.7). Now, set S; = 20%||s;||*.

By induction, we have

2(1+2C-r)2'72+5k0||dk0”,2 l=ko+1,

A2 < -1 1-1 =1 .22
1GE=0 2012022 (14 S T8 ) +lldell? TT S50 1> kot1. 322
i=ko+1j=1 Jj=ko
Let us consider a product of A consecutive S; for k > ko, that is
k+A—1\f S
_ A 2C||s;
Hﬁls-—HﬁlzCQIISvll% g’“ e < (2v284 <L (3.23)
=k j_j:k T A - A B

where the first inequality follows form arithmetic-geometry inequality, the second one follows
from (3.20) and the third one is due to A > 4BC;. The product of A consecutive S; is
bounded by 1/22, and hence, using (3.23), we obtain that the sum in (3.22) is bounded,
independent of [. Furthermore, we can conclude that there exist two positive constants p
and ¢ which are independent of [ > kg such that ||d;||?> < pl + ¢. Finally, from Lemma 2.6,

T .2 2
we get > (95 d)

> 2 > < - 400, which contradicts Lemma 3.3. Hence, the proof is
k>1 ||dk|| k>1 P
finished. O

A Variant of the AMDL Method

In this section, we are interested in a variant of Algorithm 2.3, which stems from the following
observations.

Sgyk
(A

e First, closely associated to the curvature information of f(z) is the expression 1—

T
Sk Yk

in (2.2), in which the very parameter e
Sk

contains the information of a simple
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approximation of the Hessian of f(x) along the line segment [z, x;+1], and therefore
it is closely related to the estimated Rayleigh quotient of the Hessian of f(x).

e Second, by using a singular value study, the author [13] proposed the optimal value
of the parameter wgy; = 0 in (2.2) in the sense that the condition number in the
iteration matrix of the search direction is at minimum, which is preciously the same as
the famous 3HS+ method proposed by Narushima et al. in [19].

e Third, we get from Cauchy—Schwarz inequality and (2.18) that

2 T
-”%M' <1- SKUE o (4.1)
Sk Yk [

1 s

[y

T
S Yk

to the 3HS+ method. Consequently, all singular values of the iteration matrix are equal
Sk Yk
[Enls

If1-

= 0 and the Wolfe conditions are employed, then the MDL method reduces

to 1, which is no other than the simple approximation expression =1, then it

will obtain an ideal distribution of the singular values.

It seems to hint us that the choice of £ = 0 in (2.2) has its intrinsic advantage, which
will increase opportunity of boosting the well-conditioned matrix of search direction. It
should be pointed out that the new variant is different from the original AMDL method in
that d;”ﬁ" in Algorithm 2.3, here we denote it as dj 1, is renewed. For simplicity, we only
give the search direction in Step 5 of the algorithm, and the strong Wolfe conditions are
employed, namely, (1.4) and

g (xx + apdy)” di| < —ogldy, (4.2)

while the other steps are as exactly the same as Algorithm 2.3.
The complete Hessian approximation by (2.5) and (2.6) with (g, ;dx)" replaced with
g,a_ldk, and (ng+1sk)+ replaced with g{+1sk.

Algorithm 4.1. (A variant of the AMDL method with the strong Wolfe conditions)

| —gksr+meadi, if k€ Ky,
dk-i—l - { d?—ﬁ{nv ’Lf ke K57 (43)

where 741 is defined by (2.14) and index sets are given by as follows

Ky = {klk € Nlg{ yyr > 1, BLE < mir or BEDY <mega} (4.4)
K5 = {klk € N|g,7;+1yk > 51,51?+I§ > Ne+1 and B%?L > Nt} (4.5)

In (4.3), (4.4) and (4.5), the search direction d}%™ and involved scalars are presented by

Jmain _ { —O0k+1 + B:%F?Ldk - ék}-‘rlyka Zf Sgyk} Z HkaQ, (46)
h —gkt1 + B + Trgayk,  if stk < llyl?
in which .
2 lyell®\ Grs15k
une = ot - (1- , (47)
k+1 k+1 Sgyk‘ d%‘yk‘
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T T
_ S Yk \ Jkt19k
Te1 = [ 1— ) , 4.8
* ( Toel®) ~dTye (4.8)
T
= 9k 1dk
RE = ot (49)
2DK _ oqHS+ ||2Uch2 T 4 4.10
k+1 —5k+1 (dTyk) Jk+10k- (4.10)
k C

Remark 4.2. We drop the sign “+” in the superscript of terms ggﬂdk and ggﬂsk appearing
in parameters ﬁf_ﬁ"‘, T,:rl, B,ivfl)“r and elﬁ?L+ defined by (2.7), (2.8), (2.9) and (2.10),
which come (4.7), (4.9), (4.10) and (4.8). In order to globalize the Algorithm 4.1, we employ
exactly the same restarting mechanism of the PRP+ method and the truncation form of the
CG_DESCENT method as Algorithm 2.3 does.

Theorem 4.3. If the stepsize is determined by the strong Wolfe conditions (1.4) and (4.2)
with 0 < p < o < 1/2, then the search direction {dy} of Algorithm 4.1 satisfies di g <
~llgkll*.

Proof. It suffices to consider the case where dy;1 = —gpp1 + B,’?ﬁdk + Tr41Yy, without
truncation form is used. In such a case, g,a_lyk > g7 is satisfied.
First, if g{Hdk < 0, then it is easy to verify that 7,41 < 0, and so,

- _ ) 3
Gdisr = g |? + BB gL 1 dk + Terrgl 1y < *Z||gk+1”2' (4.11)

Second, consider the case where gf, d; > 0. We get from (2.18) and (4.2) that

T T T
= Sk Uk \ Y19k Gry1dk o A =
Tey1 = [ 1— > < < 20, 412

: ( WlP?) dfye = dfye ~1-0 (4-12)

which together with 0 < o < 1/2 gives 0 < 711 < Cy < 1.
By direct computation, we obtain that

G dr = —||gk+1||2+g’{“d’“g£ 1yk(1+?k+1)—7(gg+1dk)2||yk\|2
+ dfy, 7FF (dfyr)? )
_ 2 _ T
14+ Tt 1+ Tpqa Gper19k
_ 2 2 _ +1
= gl + (FE) Pt g 4 Sty
_ 2
1+ 7
< - 1—(2+1) >||gk+1|2
1+0,\°
< - 1( ) o2
2
(4.13)
O

The convergence analysis of the Algorithm 4.1 can be derived using a similar argument,
so we omit it here.

Theorem 4.4. Suppose that Assumptions 3.1 hold. Let {xy} be generated by Algorithm
4.1. If (3.1) holds, then likminf||gk|| = 0.
— 00
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Numerical Experiments

In this section, we report numerical results in order to evaluate the numerical performance of
our proposed methods with that of the existing methods CG_DESCENT, 3HS+ and MDL:

e The HZ method [15]: The CG method with the parameter

T 2 T

i+1Yk Iy || T 9y Ak

Br+1 = max -2 i 1di,m , where n = 0.4.
i dfye (@2

e The MDL method [8]: The CG method with the parameters (2.1), (2.2) and (2.3),

2
where wMPL = max<{ 0.66,1 — Ilyell” :
k+1 Tye

e The 3HS+ method [19]: The CG method with the parameters (2.1), (2.3) and Siy1 =
91{4—191@
iy

, that is to say, w%_’?L = 0;

e Algorithm 2.3: We call it the AMDL1 method, where £, = 10~!4;
e Algorithm 4.1: We call it the AMDL2 method, where ¢; = 10714,

The implementation code is written in C on a PC ( CPU 2.9 GHz with 4GB RAM). Our
experiments have been done on a set of 145 nonlinear unconstrained optimization test prob-
lems of the CUTEr collection [9], with default dimensions as presented in Hager’s homepage:
http://www.math.ufl.edu/~hager/papers/CG. Since CG.DESCENT is based on the CG
method by Hager and Zhang, HZ denotes CG_DESCENT itself.

It should be first stressed that in order to enhance the numerical performance, we uni-
formly replace the older truncation scheme (2.14) in CG_DESCENT version 5.3, by the
gidr
[l >
truncation above form in Algorithms 2.3 and 4.1 in actual computation.

All attempts to solve the test problems were limited to achieving a solution which satisfies
the termination condition of [16], namely, the inequality ||gk|lcc < 1075(1 + |f(zk)|) is
satisfied. Meanwhile, the first four algorithms use exactly the same implementation of the
Wolfe line search conditions with p = 0.1, = 0.9, while the AMDL2 method utilizes the
strong Wolfe conditions, in which p = 0.1, = 0.4. The performance profile of [12] proposed
by Dolan and More are employed to get more insight on the performance of the above
methods, on the ground of the number of iterations, the number of function evaluations, the
number of gradient evaluations and the CPU time.

From Figure 1, it is concluded that the most efficient algorithm in terms of the number
of iterations is the AMDL1 method, being the fastest for 50% of the problems, followed by
AMDL2 and HZ, for nearly 40% and 36% of the problems. The other methods correspond
to the 3HS+ method and the MDL method.

The second part of our comparisons was made on the performance of our methods with
that of the other methods based on the total number of function and gradient evaluations
being equal to N f +3Ng [16], where N f and Ng respectively denote the number of function
and gradient evaluations. As seen in Figures 2, the curves of the AMDL1 and AMDL2
methods are very close, which are often preferable to the HZ method.

Figure 3 vividly demonstrates that the performance profile of AMDL2 is under the others,
and AMDL1 is more time consuming comparatively.

latest truncation form n;,, =7 where 7 = 0.4. And we employ exactly the same
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Figure 1: Performance profile of iterations
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Figure 2: Performance profile of total number of function and gradient evaluations
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Computationally, AMDL1 is not always superior to the other methods, but this method
performed better on average. The corresponding search directions make full use of curvature
information by exploiting new approximating strategy, which accelerate iteration and im-
prove the reduction in functions values. Thus, the proposed methods seem to be practically
promising, specially for solving large-scale problems.

(6] Conclusions

In this paper, we propose a new method with adaptively alternative two—side approximating
strategy, to compensate the loss of second—order curvature information. Specifically, if it
happens that the truncation parameter fails to satisfy Newton equation/qausi-Newton equa-
tion after some iterations, the strategy mentioned above begins to work. In such situation,
we employ a computationally equivalent yet effective search direction, which simultaneously
preserves as much information as possible from the current approximation. By doing so, it
maintains almost the same efficiency as the original method and achieves much higher accu-
racy. Theoretically, we proved that the new method can be globalized even if the objective
function is nonconvex. To some extent, numerical experiments showed that exploitation of
the reawakened techniques enhance the computational efficiency
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