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[19, 1, 2, 10, 11, 26, 27], most of which are dynamic programming-based methods and
continuous relaxation-based branch-and-bound methods or a combination of dynamic pro-
gramming method and branch-and-bound method. The dynamic programming method is
used to solve separable integer programming problems with a single constraint [3, 12, 16].
Due to the property ’curse of dimensionality’ of the dynamic programming, it is not easy to
be extended directly to solve multiple constrained separable integer programming problems.
Branch-and-bound methods based on the continuous relaxation problem are often used for
solving convex integer programming problems, since its continuous relaxation problems can
be solved easily [5, 8, 13, 17, 18, 23, 28]. Also branch-and-bound methods based on global
optimization over a polyhedron for concave integer programming problems were presented in
[4, 6, 9, 14, 15, 6]. Hybrid approach which combines the dynamic programming method with
the branch-and-bound method was presented in [22, 24, 25] for solving nonlinear separable
integer programming problems.

In this paper, we consider linear mixed integer programming problem (P ) with sce-
nario constraints, which is a special case of linear mixed integer programming problems and
can cover many problems in practice such as stochastic or deterministic two stage linear
programming problems. As we know, problem (P ) can be solved by the traditional branch-
and-bound method. However, in problem (P ), the total number of variables is n + n1 × S
where there are n integer variables and n1 × S continuous variables, and the number of
the constraints is m + m1 × S except the constraint X and ys ≥ 0. Therefore, problem
(P ) is a kind of large-scale linear mixed integer programming problems. Also the traditional
branch-and-bound method is not very efficient for problem (P ) since too much storage space
is needed and it will spend too much CPU time to solve the continuous relaxation problem
in the traditional branch-and-bound method. This paper aims at developing a new exact
algorithm to efficiently solve problem (P ).

Recently, some domain cut skills are exploited to solve some integer programming prob-
lems. An novel contour cut technique was presented in [20] for separable quadratic integer
programming problems. Another new domain cut technique is proposed in [29] for solving
separable integer programming problems with concave objective function and linear con-
straints. A new algorithm is presented in [31] for general separable integer programming
problems, which combines linear approximation and Lagrangian dual with a simple cut. A
successive domain-reduction scheme for linearly constrained quadratic integer programming
problems is also studied in [30]. Motivated by these novel domain cut techniques, we de-
velop a new algorithm combining decomposition method with domain reduction technique
for (P ) in the paper. First we decompose the large-scale problem (P ) into small ones ac-
cording to the characteristics of (P ) and the domain reduction technique shrinks the feasible
region gradually in the iteration process. Thus the optimal solution of (P ) can be found
quickly within a finite steps of iterations. Finally, we give the numerical experiments and
the comparison results with the traditional branch-and-bound method.

The paper is organized as follows. Section 2 gives the decomposition method of (P )
and the feasibilities of the scenario constraints are discussed. Domain cut schemes are
presented in Section 3. Section 4 describes the proposed algorithms in details. Preliminary
computational results are reported in Section 5 for randomly generated linear mixed integer
programming problems. Finally, conclusion is given in Section 6.

2 Decomposition of the subproblem

For any α and β ∈ Zn, we first introduce two definitions: Let α = (α1, α2, · · · , αn) and β =
(β1, β2, · · · , βn), if αi ≤ βi, for all i = 1, 2, · · · , n, then α ≤ β, Otherwise, α ̸≤ β. Let [α, β]
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be the box (hyper-rectangle) formed by α and β, [α, β] = {x | αj ≤ xj ≤ βj , j = 1, . . . , n}.
Denote by ⟨α, β⟩ the set of integer points in [α, β],

⟨α, β⟩ = {x | αj ≤ xj ≤ βj , xj integer, j = 1, . . . , n} = Πn
j=1⟨αj , βj⟩.

Set ⟨α, β⟩ is termed an integer box. For convenience, we define [α, β] = ⟨α, β⟩ = ∅ if α ̸≤ β.
Let ⟨α, β⟩ ⊆ X = {x | lj ≤ xj ≤ uj , xj integer, j = 1, . . . , n} be a nonempty integer box
and (P⟨α,β⟩) be a subproblem of (P ) by replacing X by ⟨α, β⟩ with α ≤ β. Then we consider
the following subproblem:

(P⟨α,β⟩) min f(x) = cTx

s.t. T sx+W sys ≥ hs, ∀s ∈ {1, 2, · · · , S}
Dx ≤ d

x ∈ ⟨α, β⟩
ys ≥ 0, ∀s ∈ {1, 2, · · · , S}

We can decompose the subproblem (P⟨α,β⟩) into two parts: main problem (MP ) and the
feasibility subproblems (SPs) of s ∈ {1, 2, · · · , S} scenario constraints.

(MP ) min f(x) = cTx

s.t. Dx ≤ d,

x ∈ ⟨α, β⟩

Obviously, the optimal objective function value of the continuous relaxation problem of
problem (MP ) can provide a lower bound for problem (P⟨α,β⟩) by discarding the integer
limitation.

For a given feasible solution x̂ of (MP ), we need to determine whether x̂ is feasible to the
scenario constraints or not. For ∀s ∈ {1, 2, · · · , S}, we can do this by solving the following
subproblems:

(SPs) min ts

s.t. T sx̂+W sys + ets ≥ hs,

ys ≥ 0, ts ≥ 0

where e ∈ Rm1 is a vector of 1’s. Obviously, if (ts)∗ = 0 where (ts)∗ is the optimal solution
of problem (SPs), then x̂ is feasible to the constraint T sx + W sys ≥ hs. Otherwise, it is
infeasible. And we have the dual problem of (SPs):

(DPs) max (hs − T sx̂)Tµs

s.t. (W s)Tµs ≤ 0,

eTµs ≤ 1

µs ≥ 0

Due to the strong duality property of linear programming problem, if (hs −T sx̂)T (µs)∗ = 0
where (µs)∗ is the optimal solution of (DPs), then x̂ is feasible to the constraint T sx +
W sys ≥ hs; If (hs − T sx̂)T (µs)∗ > 0, it is infeasible.
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3 Domain partition

In this section, we will present the domain partition techniques for several cases according
to whether an integer point x̂ being feasible to each constraint or not. The following lemmas
show us how to cut off a subbox from an integer box ⟨α, β⟩ associated with the subproblem.

Case 1. x̂ is feasible to (P⟨α,β⟩).

Lemma 3.1. If x̂ is feasible to (P⟨α,β⟩), then there is no solution better than x̂ in the integer
box B1 = ⟨ᾱ, β̄⟩ which is determined by the following equations:

ᾱj =

{
x̂j , cj > 0
αj , cj < 0

, j = 1, 2, · · · , n;

β̄j =

{
βj , cj > 0
x̂j , cj < 0

, j = 1, 2, · · · , n.
(3.1)

Proof. For ∀x ∈ ⟨ᾱ, β̄⟩, ᾱj ≤ xj ≤ β̄j , j = 1, 2, . . . , n. From Equation (3.1), we have
cj(xj − x̂j) ≥ 0, for j = 1, 2, . . . , n. Thus, cT (x − x̂) ≥ 0, cTx ≥ cT x̂. That is, there is no
solution better than x̂ in the integer box B1.

Case 2. x̂ is an integer solution but not feasible to some s ∈ {1, 2, · · · , S} scenario
constraint.

Lemma 3.2. If x̂ is infeasible to some s ∈ {1, 2, · · · , S} scenario constraint, then there
is no feasible solution in the integer box B2 = ⟨ᾱ, β̄⟩ which is determined by the following
equation:

ᾱj =

{
x̂j , ((T s)Tλs)j < 0
αj , ((T s)Tλs)j > 0

, j = 1, 2, · · · , n;

β̄j =

{
βj , ((T s)Tλs)j < 0
x̂j , ((T s)Tλs)j > 0

, j = 1, 2, · · · , n.
(3.2)

where λs is the optimal solution of problem (DPs).

Proof. For ∀x ∈ ⟨ᾱ, β̄⟩, ᾱj ≤ xj ≤ β̄j , j = 1, 2, . . . , n. From Equation (3.2), we have
((T s)Tλs)j(xj − x̂j) ≤ 0, for j = 1, 2, . . . , n. Thus, ((T s)Tλs)T (x− x̂) ≤ 0, (hs−T sx)Tλs ≥
(hs−T sx̂)Tλs > 0, which shows that there is no feasible solution in the integer box B2.

Case 3. x̂ is not feasible to Dx ≤ d.

Lemma 3.3. If Dx̂ ̸≤ d, without loss of generality, assume Dix̂ > di, where Di =
(di1, di2, . . . , din). Then there is no feasible solution in the integer box B3 = ⟨ᾱ, β̄⟩ which is
determined by the following equations:

ᾱj =

{
x̂j , (Di)j > 0
αj , (Di)j < 0

, j = 1, 2, · · · , n;

β̄j =

{
βj , (Di)j > 0
x̂j , (Di)j < 0

, j = 1, 2, · · · , n.
(3.3)

Proof. For ∀x ∈ ⟨ᾱ, β̄⟩, ᾱj ≤ xj ≤ β̄j , j = 1, 2, . . . , n. From (3.3), we have (Di)j(xj − x̂j) ≥
0, for j = 1, 2, . . . , n. Thus, Di(x− x̂) ≥ 0, Dix ≥ Dix̂ > di. So for ∀x ∈ B3, Dix ≥ di.
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Case 4. x̂ is not an integer solution, but the continuous optimal solution to (MP ).
First we can obtain an integer point x̂− as follows:

(x̂−)j =

{
⌊x̂j⌋, cj > 0
⌈x̂j⌉, cj < 0

, j = 1, 2, · · · , n

where ⌈x̂j⌉ and ⌊x̂j⌋ represent the ceiling and the floor of x̂j , respectively.
Then we will have the following lemma to find the corresponding domain cut.

Lemma 3.4. There is no feasible solution in the integer box B4 = ⟨ᾱ, β̄⟩ which is determined
by the following equation:

ᾱj =

{
(x̂−)j , cj < 0
αj , cj > 0

, j = 1, 2, · · · , n;

β̄j =

{
βj , cj < 0
(x̂−)j , cj > 0

, j = 1, 2, · · · , n.
(3.4)

Proof. Suppose ∃ x0 ∈ B4 is feasible to P⟨α,β⟩. Since x0 ∈ ⟨ᾱ, β̄⟩, ᾱj ≤ x0
j ≤ β̄j , j =

1, 2, . . . , n. From (3.4), we have cj(x
0
j−(x̂−)j) ≤ 0 and cj((x̂

−)j−x̂j) ≤ 0, for j = 1, 2, . . . , n.

Thus, cT (x0 − x̂−) ≤ 0 and cT (x̂− − x̂) ≤ 0. cTx0 ≤ cT x̂− ≤ cT x̂ which is a contradiction
with x̂ being the continuous optimal solution of (MP ).

Then B1, B2, B3, B4 can be cut off from ⟨α, β⟩ without removing off any feasible
solution better than x̂.

After we cut off a subbox ⟨γ, δ⟩ from ⟨α, β⟩, the remaining area is not a hyper-rectangle
in general. For the sake of further cutting the domain, the revised region needs to be
partitioned into a union of integer subboxes. The following lemma tells us how to partition
the domain.

Lemma 3.5 ([20, 21]). Let A = ⟨α, β⟩ and B = ⟨γ, δ⟩, where α, β, γ, δ ∈ Zn and α ≤ γ ≤
δ ≤ β. Then

A \B = {∪n
j=1

(
Πj−1

i=1 ⟨αi, δi⟩ × ⟨δj + 1, βj⟩ ×Πn
i=j+1⟨αi, βi⟩

)
}

∪{∪n
j=1

(
Πj−1

i=1 ⟨γi, δi⟩ × ⟨αj , γj − 1⟩ ×Πn
i=j+1⟨αi, δi⟩

)
}. (3.5)

4 The main algorithm

Now we propose the solution algorithm for linear mixed integer programming problem (P )
with scenario constraints.

Algorithm 4.1. (The algorithm for linear mixed integer programming problem
(P ))

Step 0. (Initialization) Obtain the continuous optimal solution x̃ by solving the continuous
relaxation problem of (MP ) associated with box X = ⟨l, u⟩. Set fbest := +∞, LB =
f(x̃), X0 := {X} and k := 0.

Step 1. Select the integer subbox ⟨αk, βk⟩ from Xk that yields the minimum lower bound
LB.
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• If x̃ is an integer solution, then solve each s ∈ {1, 2, · · · , S} subproblems (SPs)
for given x̃. If all subproblems are feasible, then we obtain the optimal solution
x̃ with the optimal objective value f(x̃) in the integer box ⟨αk, βk⟩. And set
fbest := f(x̃) and xbest := x̃ if f(x̃) < fbest. Specially, if ⟨αk, βk⟩ = X, stop and
xbest := x̃ is the optimal solution of (P ). Otherwise, solve problem (DPs) for the
infeasible subproblems (SPs) and goto (i) of Step 2.

• If x̃ is not an integer solution, we can get two integer points x̃+ and x̃− by the
following equations, then goto (ii) of Step 2.

(x̃+)j =

{
⌊x̃j⌋, cj < 0
⌈x̃j⌉, cj > 0

, j = 1, 2, · · · , n

(x̃−)j =

{
⌊x̃j⌋, cj > 0
⌈x̃j⌉, cj < 0

, j = 1, 2, · · · , n

Step 2. (Domain partition)

(i) For given integer solution x̃ and some s ∈ {1, 2, · · · , S}, if problem (SPs) is
infeasible, then calculate integer box B2 via (3.2), cut it off from the box ⟨αk, βk⟩.

(ii) Cut the domain according to the feasibility of x̃+ and x̃−:

• If x̃+ is a feasible point, set fbest := f(x̃+) and xbest := x̃+ if f(x̃+) < fbest.
Calculate integer box B1 via (3.1) in the box ⟨αk, βk⟩.

• If x̃+ is an infeasible point with Dix̃
+ > di, where Di = (di1, di2, . . . , din).

Calculate integer box B3 via (3.3) in the box ⟨αk, βk⟩.
• If x̃+ is an infeasible point to some s ∈ {1, 2, · · · , S} scenario constraint,

calculate integer box B2 via (3.2) similar to (i).

• For x̃−, calculate integer box B4 via (3.4).

Set Y k+1 = [Xk \B4] \B1 where B1 can be B2 or B3 determined by the feasibility of
x̃+.

Step 3. For each new generated integer subbox ⟨α, β⟩ ∈ Y k+1, solve its continuous relax-
ation problem of (MP ), then obtain a continuous optimal solution x̃ and the corre-
sponding lower bound LB = f(x̃). Remove from Y k+1 these integer boxes for which
one of the following conditions holds:

• There are no feasible solutions.

• LB ≥ fbest.

Set Xk+1 = Y k+1
∪
(Xk \ ⟨αk, βk⟩)

Step 4. (Termination) If Xk+1 is empty, then stop and xbest is an optimal solution to (P ).
Otherwise, set k := k + 1, goto Step 1.

Theorem 4.2. Algorithm 4.1 terminates at an optimal solution of (P) within a finite number
of iterations.



A DECOMPOSITION-BASED DOMAIN-CUT ALGORITHM 131

Proof. By domain partition in Step 2, no optimal solution is removed. Therefore, xbest must
be the optimal solution to (P ) when the algorithm stops in Step 4 with Xk+1 = ∅. The
finite termination of the algorithms is obvious due to the finiteness of X and the fact that
at least x̃+ and x̃− can be removed at each iteration.

5 Computational experiments

The algorithm is programmed in FORTRAN 90 and runs on a PC with Pentium(R) Dual-
core CPU E6700@3.2GHz for problem (P ).

10 problems with randomly generated data from uniform distribution are tested. c ∈
[−10, 20], T s = (tij)m1×n is generated with tij ∈ [−1, 1] for i = 1, . . . ,m1, j = 1, . . . , n,
W s = (wij)m1×n1

with wij ∈ [−5.5, 4.5] for i = 1, . . . ,m1, j = 1, . . . , n1, and hs = T s · [l +
rr·(u−l)] for each scenario s ∈ {1, 2 · · · , S} where S = 5 and rr ∈ [0.65, 0.95]. The constraint
matrix D = (dij)m×n is generated with dij ∈ [−20, 20] for i = 1, . . . ,m, j = 1, . . . , n; The
right-hand side d is taken as d = D · [l+r ·(u− l)], where l = (l1, . . . , ln)

T , u = (u1, . . . , un)
T ,

li = 1, ui = 5 for i = 1, . . . , n and r = 0.6.
In our implementation, the continuous relaxation problem of (MP ) is solved by the

simplex method. The numerical results are summarized in Tables 1-6, where

• n = number of integer variables,

• n1 = number of continuous variables in the scenario constraints,

• m = number of constraints Dx ≤ d,

• S = number of scenario constraints,

• m1 = number of constraints T sx+W sys ≥ hs,

• cut1 stands for number of feasible cut,

• cut2 stands for number of infeasible cut for scenario constraints,

• cut3 stands for number of infeasible cut for Dx ≤ d,

• iters stands for number of iterations,

• brans stands for number of branches generated when solve the problems by the tradi-
tional branch-and-bound method,

• avg stands for average results of the algorithms for 10 test problems.

Table 1-3 summarize the numerical results for different size of scenario constraints, re-
spectively. From Table 1-3, we can see that the average CPU time, the average integer
boxes and the average iterations to solve the problems are increasing when the sizes of the
problems are increasing for fixed size of scenario constraints. Also the problems with a large
size of scenario constraints are more difficult to solve than the ones with a small size of
scenario constraints in terms of the average CPU time. In Table 1, we can calculate the
problems with m = 30, but we can only calculate the problems with m = 25 in Table 2
and m = 18 in Table 3. From the computational results in Table 1-3, we can observe that
Algorithm 4.1 can find the exact solutions of linear mixed integer programming problems
with scenario constraints in reasonable computation time.

On the other hand, we know that problem (P ) can be solved by the traditional branch-
and-bound method. The traditional branch-and-bound method is based on the continuous
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Table 1: Numerical results for problem (P ) with n1 = 10,m1 = 5

n×m Avg CPU Avg boxes Avg iters Avg cut1 Avg cut2 Avg cut3
50× 10 1.017 4061.0 164.9 19.9 40.5 104.1

110× 10 31.175 43874.7 1083.2 23.0 705.6 354.6
160× 10 92.041 58204.5 731.7 101.0 104.7 526.0
200× 10 79.591 56381.7 1546.1 11.9 928.1 606.0
50× 15 16.134 31570.1 1068.5 33.5 127.5 907.5

100× 15 196.694 107788.7 1719.8 148.0 15.3 1556.4
150× 15 496.361 151836.7 1527.9 240.3 59.1 1228.5
200× 15 937.125 232691.6 2283.9 409.9 381.6 1492.4
50× 20 224.659 228800.1 6812.5 79.2 23.6 6709.6
70× 20 1412.874 975859.6 19404.4 243.2 24.6 19136.5
90× 20 1417.124 859469.1 14546.7 210.5 41.8 14294.4
40× 25 199.733 290690.3 14051.0 24.1 762.1 13264.8
50× 25 1296.070 928937.2 26250.7 254.7 87.2 25908.8
70× 25 1287.228 488210.1 10658.4 320.4 242.6 10095.3
35× 30 352.392 318777.9 12199.3 45.8 40.9 12112.6
45× 30 694.641 372077.4 10820.6 91.9 20.9 10707.8

optimal solution from the continuous relaxation problem of (P ). In the traditional branch-
and-bound method, according to an non-integer component xi of the continuous optimal
solution x, two branches, xi ≤ ⌊xi⌋ and xi ≥ ⌈xi⌉, are generated at each node, then
add these two constraints to the original problem, respectively. Thus two subproblems are
generated and one of them is selected to solve next. The performance of Algorithm 4.1 has
been compared with the traditional branch-and-bound method and the comparison results
are presented in Table 4-6 where average CPU time, average subbox number (or average
branches) and average iterations are obtained by running 10 test problems for each n×m.
From Table 4-6, it is clear that the proposed algorithm is much better than the traditional
branch-and-bound method in terms of average CPU time. This main reason is the innovation
of the presented algorithm which lies in the decomposition method and the domain partition
techniques, which diminish the dimension of problem (P ) and the optimality gap gradually
in the iteration process. According to our computational experiment, the CPU time used by
Algorithm 4.1 depends both on the number of integer boxes and the computation time to
identify the optimal solution to the continuous programming problem (MP ) in each integer
box. While the size of the problem in the tradition branch-and-bound method is very large
since the number of the variables is n+n1×S and the number of constraints is m+m1×S
except the lower bounds and the upper bounds, and the integer limitation, of the variables,
thus it will spend much more CPU time to solve the continuous relaxation problem by the
traditional branch-and-bound method. This is also witnessed by Table 4-6.

6 Conclusion

A new exact solution method is developed in this paper for solving linear mixed integer
programming problems (P ) with scenario constraints. The primal problem is divided into
two subproblems by the decompose method, then some integer boxes that do not contain
any optimal solution are cut off from X via domain partition techniques. Incorporating
the solution scheme into a branch-and-bound frame, the proposed solution method reduces
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Table 2: Numerical results for problem (P ) with n1 = 13,m1 = 7

n×m Avg CPU Avg boxes Avg iters Avg cut1 Avg cut2 Avg cut3
50× 10 1.780 7425.7 454.3 18.3 248.9 187.0
100× 10 11.155 16088.9 368.1 7.8 178.6 181.5
150× 10 59.153 41637.7 563.2 26.1 245.5 291.6
200× 10 72.892 33056.0 318.4 31.3 36.3 250.4
50× 15 30.380 49877.8 1958.6 36.6 98.2 1823.8
100× 15 267.408 230649.2 4916.9 47.7 343.6 4525.6
150× 15 401.075 150206.5 1837.9 44.9 329.9 1463.0
200× 15 1817.731 391428.2 3081.4 240.7 139.7 2700.9
50× 20 623.125 605758.8 15377.2 119.0 94.0 15164.2
60× 20 443.466 385772.6 12319.0 72.2 1440.7 10806.0
75× 20 1210.913 690093.8 14161.4 822.2 18.7 13320.4
40× 25 168.134 166052.1 6269.5 45.6 208.6 6015.3
45× 25 277.128 190392.6 5832.7 109.1 111.8 5611.6
55× 25 580.892 365227.4 10106.9 231.0 144.7 9731.1
60× 25 2811.833 1485885.9 39630.9 239.6 176.4 39214.9

Table 3: Numerical results for problem (P ) with n1 = 15,m1 = 10

n×m Avg CPU Avg boxes Avg iters Avg cut1 Avg cut2 Avg cut3
70× 10 6.388 13401.2 459.2 13.2 201.7 244.2
100× 10 18.244 25162.9 531.8 60.7 123.7 347.4
150× 10 40.686 35457.9 583.8 41.9 301.8 240.1
200× 10 22.780 12194.4 219.5 12.4 136.3 70.6
80× 14 58.598 58159.0 1519.3 74.4 347.3 1097.6
100× 14 361.780 307521.1 6047.5 40.3 418.3 5588.9
150× 14 351.650 164465.8 2176.0 103.0 283.6 1789.4
200× 14 845.192 182235.1 1533.3 135.1 36.9 1361.3
80× 18 75.081 50149.9 1154.1 72.4 101.6 980.1
100× 18 510.251 247254.2 4380.5 283.0 36.8 4060.7
150× 18 817.096 235639.0 2508.8 229.6 30.5 2248.7
180× 18 1273.598 261445.2 2633.5 213.1 53.5 2633.9

Table 4: The comparison results with n1 = 10, m1 = 5

Algorithm 4.1 Tradition BB
n×m

Avg CPU(s) Avg iters Avg boxes Avg CPU(s) Avg iters Avg brans
20× 10 0.102 924.0 78.3 17.484 2310.2 2311.2
30× 10 0.675 4114.9 251.4 109.994 7609.8 7610.8
50× 10 7.767 30731.2 1685.9 112.352 6261.2 6262.2
100× 10 7.597 10046.3 283.3 608.692 17072.4 17073.4
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Table 5: The comparison results with n1 = 13, m1 = 7

Algorithm 4.1 Tradition BB
n×m

Avg CPU(s) Avg iters Avg boxes Avg CPU(s) Avg iters Avg brans
20× 10 0.652 6128.5 468.4 32.498 2529.6 2530.6
30× 10 0.838 5447.0 304.9 373.977 19846.2 19847.2
50× 10 1.917 7425.7 454.3 474.630 15897.4 15898.4
100× 10 3.434 4134.2 71.0 1124.327 18933.4 18934.4

Table 6: The comparison results with n1 = 15, m1 = 10

Algorithm 4.1 Tradition BB
n×m

Avg CPU(s) Avg iters Avg boxes Avg CPU(s) Avg iters Avg brans
18× 10 0.116 285.7 27.7 23.028 946.6 947.6
29× 10 0.656 3987.4 222.3 177.316 7888.6 7889.6
51× 10 2.353 8291.2 500.8 451.000 11889.0 11890.0
100× 10 43.408 61653.2 1454.8 1354.208 13491.6 13492.6

the optimality gap gradually in the solution iterations. Furthermore, the proposed solution
method is of a finite-step convergence. In contract to the traditional branch-and-bound
method, the proposed method is more efficient. On one hand, the decompose method
reduces the dimension of large-scale problem (P ). On the other hand, the proposed method
generates and evaluates more than two new integer boxes simultaneously, while two new
subproblems are generated at each node and one of them is selected to solve next in the
traditional branch-and-bound method. This exact algorithm can also be extended to solve
nonlinear integer programming problems with scenario constraints.
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