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development, we wonder whether their potential function-based framework can be extended
to other types of first-order methods.

In this paper, we go a small step further along this direction by applying their poten-
tial function-based framework to composite convex optimization–minimizing the sum of a
smooth convex function and a possibly nonsmooth convex function. To this end, we first
revisit the proximal gradient mapping and introduce two new results–norm monotonicity
and refined descent; both of them may have an independent interest in their own. Then,
based on the newly discovered properties and the potential function-based framework of [3],
we establish the sublinear convergence for the norm sequence of proximal gradient mapping.
Moreover, we construct a new potential function to obtain faster convergence.

At the time of writing this paper, a closely related work [4], posted on arXiv very recently,
also addressed the problem of minimizing the proximal gradient mapping under the name
of proximal subgradient norm minimization. Here, we would like to point out three main
differences between this work and ours. First, the potential function-based frameworks are
different: they followed the discrete Lyapunov function in [7] while we extended that in [3].
Second, the accelerated algorithmic schemes are different: they analyzed the faster iterative
shrinkage-thresholding algorithm (FISTA) in [1] while we run two iterative processes for ac-
celeration. At last, the main results are different: they never used the norm monotonicity of
proximal gradient mapping so that their result on proximal subgradient norm minimization
for ISTA seems suboptimal. Nevertheless, we believe that these two works have their own
merits and complement each other.

Now, we summarize the contribution of this paper as follows:

• For minimizing the sum of a smooth strongly convex function and a non-smooth convex
function, we establish the exact worst-case convergence rate of the proximal gradient
method for any step size and for the norm of proximal gradient mapping; see Theorem
3.4. This result is inspired by the work [8] which built worst-case convergence rates of
the proximal gradient method for other standard optimality measures such as distance
gap and residual gradient norm. In particular, the residual gradient defined in [8] is
some certain subgradient, different from the standard proximal gradient.

• With the help of Theorem 3.4, we establish a refined descent lemma, which improves
several existing descent-type lemmas; see Theorem 3.6. We note that a similar discovery
was recently independently made by the authors of [9].

• With the help of Theorem 3.6, we extend the recently proposed potential function-based
framework in [3] from gradient descent to proximal gradient descent by constructing
suitable potential functions; see Theorem 4.1 and Theorem 4.4. Thanks to Theorem
3.4, the monotone convergence of the norm of gradient mapping with tight convergence
rates, shown in Theorem 4.1, seems new.

The remainder of the paper is organized as follows. In Section 2, we present the ba-
sic notation and preliminary knowledge of different function classes, the proximal gradient
method, and the potential function-based framework of [3]. In Section 3, we revisit the
proximal gradient mapping and establish two new properties. In Section 4, we study the
problem of minimizing the norm of proximal gradient mapping and show the main conver-
gence results. Finally, Section 5 gives some concluding remarks.
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2 Preliminaries and Preliminary Results

In this paper, we restrict our attention to an arbitrary finite dimensional space Rn associated
with inner product ⟨·, ·⟩ and norm ∥ ·∥ :=

√
⟨·, ·⟩. R+ is the set of nonnegative real numbers.

For a closed subset Q ⊆ Rn and a point x ∈ Rn, we define by d(x,Q) := infy∈Q ∥x− y∥ the
distance function from x to Q, and define the indicator function of Q by

δQ(x) :=

{
0, if x ∈ Q;
+∞, otherwise.

2.1 Different classes of functions

In order to introduce the class of smooth convex functions, we first give the definitions of
convexity and smoothness. There are several equivalent definitions of convexity; here we
present the first-order definition of convexity in the following form:

(∀x, y ∈ Rn) : f(y) ≥ f(x) + ⟨∇f(x), y − x⟩ . (2.1)

The convexity of f essentially says that the function f can be lower bounded by a linear
function; in contrast, the smoothness of f actually says that the function f can be upper
bounded by a quadratic function, that is

(∀x, y ∈ Rn) : f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L

2
∥y − x∥2, (2.2)

where L > 0 is a constant. A function is called smooth convex if the inequalities (2.1) and
(2.2) hold at the same time; the class of smooth convex functions is denoted by F1,1

L (Rn).
Surprisingly, the convexity inequality (2.1) and the smoothness inequality (2.2) can be equiv-
alently characterized by a single inequality, that is

(∀x, y ∈ Rn) : f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ 1

L
∥∇f(x)−∇f(y)∥2, (2.3)

from which the convexity is obviously implied. Interestingly, the inequality (2.3) is also
equivalent to the cocoercive property of gradient, formulated as

(∀x, y ∈ Rn) : ⟨∇f(x)−∇f(y), x− y⟩ ≥ 1

2L
∥∇f(x)−∇f(y)∥2. (2.4)

The fact of equivalence between the inequalities above was observed in the book [5].
In order to describe a more general fact, we introduce the first-order definition of strong
convexity in the form

(∀x, y ∈ Rn) : f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ µ

2
∥y − x∥2, (2.5)

where µ ≥ 0 is a constant, called modulus of strong convexity. In particular, for µ = 0 the
strong convexity reduces to convexity. In this sense, strong convexity with constant µ is
more general than convexity and hence a wider class of functions, denoted by S1,1

µ,L(Rn) and
called L-smooth and µ-strongly convex, follows. As a matter of fact, we have

S1,1
µ=0,L(R

n) = F1,1
L (Rn).

Now, the following statement extends the basic fact that convexity and smoothness is equiv-
alent to (2.3) or (2.4); for more details please refer to [10].
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Fact 2.1. Let f : Rn → R be a given real-valued function. Then, f ∈ S1,1
µ,L(Rn) if and only

if one of the following inequalities holds:

(∀x, y ∈ Rn) : ⟨∇f(x)−∇f(y), x− y⟩ ≥ µL

µ+ L
∥x−y∥2+ 1

µ+ L
∥∇f(x)−∇f(y)∥2, (2.6)

(∀x, y ∈ Rn) : f(x) ≥f(y) + ⟨∇f(y), x− y⟩+ 1

2L
∥∇f(x)−∇f(y)∥2

+
µL

2(L− µ)
∥x− y − 1

L
(∇f(x)−∇f(y))∥2,

(2.7)

and
µ∥x− y∥ ≤ ∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥. (2.8)

At last, we let Γ0(Rn) be the class of proper closed and convex functions from Rn to
(−∞,+∞]. For any g ∈ Γ0(Rn), its subdifferential at x is given by

∂g(x) := {y ∈ Rn : g(u) ≥ g(x) + ⟨y, u− x⟩, ∀u ∈ Rn} .

The inequality g(u) ≥ g(x) + ⟨y, u − x⟩ is called subgradient inequality, and each vector in
∂g(x) is called a subgradient of g at x.

2.2 The proximal gradient method

The proximal gradient method, also called the forward-backward splitting method, is a well-
known method for minimizing the sum of a smooth function and a non-smooth function. In
the paper, we will be concerned with the following composite optimization

min
x∈Rn

φ(x) := f(x) + g(x), (2.9)

and we make the following blanket assumption.

Assumption 2.1 (Composite model assumption). The component functions f and g satisfy
that

(A) f ∈ S1,1
µ,L(Rn), i.e., f is a L-smooth and µ-strongly convex function,

(B) g ∈ Γ0(Rn), i.e., g is a proper closed convex function but it is possibly not smooth,
and

(C) X∗, the set of optimal solutions to (2.9), is nonempty. The optimal value of the
problem is denoted by φ̄.

Before introducing the concrete iterative scheme of the proximal gradient method, we
first give the definition of proximal gradient mapping.

Definition 2.2 (PG mapping). Suppose that f and g satisfy properties (A) and (B) of
Assumption 2.1. Then the proximal gradient mapping is the operator G : Rn × R+ → Rn

defined by
G(x, t) := t−1

(
x− proxtg(x− t∇f(x))

)
, (2.10)

where proxtg : Rn → Rn is the proximal mapping given by

proxtg(x) := argmin
y∈Rn

{
g(y) +

1

2t
∥y − x∥2

}
.

In particular, when g = δQ, the proximal gradient mapping reduces to the gradient mapping
in [5].
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Now, the proximal gradient method, originally given by

xk+1 = proxtkg

(
xk − tk · ∇f(xk)

)
,

can be equivalently written into the following form

xk+1 = xk − tk · G(xk, tk). (2.11)

2.3 The potential function-based framework

The authors of [3] introduced a novel potential function-based framework to study the
convergence of standard gradient-type methods for making the gradients small in smooth
convex optimization. In this part, we first review how their method applies to the standard
gradient descent for minimizing a smooth convex function f ∈ F1,1

L (Rn). The key ingredient
is that they constructed a potential function of the form

Ck =
k

L
∥∇f(xk)∥2 + f(xk),

where the sequence {xk}k≥0 is generated by the standard gradient descent method, i.e.,

xk+1 = xk − 1

L
∇f(xk), ∀k ≥ 0.

By invoking the inequalities (2.3) or (2.4), they can show that the sequence {Ck}k≥0 is
nonincreasing with respect to k and hence can conclude that ∀k ≥ 0,

∥∇f(xk)∥2 ≤ 2L(f(x0)− f(x∗))

2k + 1
, (2.12)

where x0 is an arbitrary initial point and x∗ is a minimizer of f . In order to design a faster
method than the standard gradient descent, they considered a different potential function
of the form

Ck =

k−1∑
i=0

ai∥∇f(xi)∥2 +Bk(f(x
k)− f(x∗)), (2.13)

where ai > 0 (∀i ≥ 0) the sequence of scalars Bk > 0 (∀k ≥ 0) is strictly increasing, and the
sequence {xk}k≥0 is generated by the following fast gradient method (FGM)

vk :=vk−1 − bk−1

L
· ∇f(xk−1),

xk :=
Bk−1

Bk

(
xk−1 − 1

L
· ∇f(xk−1)

)
+

bk
Bk

vk,
(FGM)

with a given arbitrary initial point x0 and v0 = x0. Under some restrictions on the param-
eters ai and Bk, invoking again the inequalities (2.3) and (2.4) they showed that

Ck+1 − Ck ≤ L

2

(
∥x∗ − vk∥2 − ∥x∗ − vk+1∥2

)
, ∀k ≥ 0,

from which both convergences in function value and in norm of gradient can be obtained.
As pointed out in [3], their analysis is the first one that simultaneously leads to both tight
convergence guarantees.
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3 New Properties on Proximal Gradient Mapping

In this section, we first introduce three basic properties of proximal gradient mapping, whose
proofs postpone to Appendix. Then, we highlight two new properties, both of which were
discovered in [11] by the second author of this paper and posted on arXiv three years ago,
but they have not yet been submitted for publication.

3.1 Basic lemmas

The first lemma is an equivalent characterization of the proximal mapping.

Lemma 3.1. Let g ∈ Γ0(Rn) and t > 0. Thus, z = proxtg(y) if and only if y ∈ (I+t·∂g)(z).

The second lemma provides the relationship between the norm of proximal gradient
mapping and the smallest norm of subgradient.

Lemma 3.2. Suppose that f and g satisfy properties (A) and (B) of Assumption 2.1. For
any x ∈ Rn and t > 0, we have

∥G(x, t)∥ ≤ d(0, ∂φ(x)). (3.1)

The last lemma is a slight modification of the classic descent lemma, originally discovered
by Beck and Teboulle in [1]. It also extends Corollary 2.3.2 in [5] from gradient mapping to
proximal gradient mapping. When µ = 0, it reduces to the pivotal inequality in the recent
work [4].

Lemma 3.3. Suppose that f and g satisfy properties (A) and (B) of Assumption 2.1. Then,
we have

φ(x)− φ(y − tG(y, t)) ≥ t

(
1− L

2
t

)
∥G(y, t)∥2 + ⟨G(y, t), x− y⟩+ µ

2
∥x− y∥2. (3.2)

In particular, the inequality above with t = 1
L and µ = 0 in (3.2) yields

φ(x)− φ(y − 1

L
G(y, 1

L
)) ≥ 1

2L

∥∥∥∥G(y, 1L )

∥∥∥∥2 +〈
G(y, 1

L
), x− y

〉
. (3.3)

3.2 New and refined results

For simplicity, we define the updated iterate point by using the superscript ”+” as follows:

x+ := proxtg(x− t∇f(x)) = x− t · G(x, t),

where the step size t > 0 is clear from the context. Using this notation and Lemma 3.1, we
immediately have

x− t∇f(x) ∈ x+ + t∂g(x+).

Thus, there must exist a subgradient s+ ∈ ∂g(x+) such that

x+ = x− t(∇f(x) + s+). (3.4)

Now, we are ready to present the first new property of proximal gradient mapping.
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Theorem 3.4 (Norm monotonicity). Suppose that f and g satisfy properties (A) and (B)
of Assumption 2.1. Denote ρ(t) := max{|1− Lt|, |1− µt|}. Then, we have

∥G(x+, t)∥ ≤ d(0, ∂φ(x+)) ≤ ρ(t)∥G(x, t)∥ ≤ ρ(t)d(0, ∂φ(x)). (3.5)

In particular, for f ∈ F1,1
L (Rn), g ∈ Γ0(Rn), and 0 < t ≤ 2

L , it holds that

∥G(x+, t)∥ ≤ d(0, ∂φ(x+)) ≤ ∥G(x, t)∥ ≤ d(0, ∂φ(x)).

Proof. The inequalities ∥G(x+, t)∥ ≤ d(0, ∂φ(x+)) and ρ(t)∥G(x, t)∥ ≤ ρ(t)d(0, ∂φ(x)) di-
rectly follow from Lemma 3.2. To show the relationship (3.5), it suffices to show that

d(0, ∂φ(x+)) ≤ ρ(t)∥G(x, t)∥. (3.6)

Since s+ ∈ ∂g(x+), we have d(0, ∂φ(x+)) ≤ ∥∇f(x+)+ s+∥. Therefore, if we can show that

∥∇f(x+) + s+∥2 ≤ ρ2(t)∥G(x, t)∥2, (3.7)

then the desired inequality (3.6) follows immediately. Using the expression x+ = x −
t(∇f(x) + s+) in (3.4), we derive that

∥∇f(x+) + s+∥2

=∥∇f(x) + s+ +∇f(x+)−∇f(x)∥2

=∥∇f(x) + s+∥2 + 2
〈
∇f(x) + s+,∇f(x+)−∇f(x)

〉
+ ∥∇f(x+)−∇f(x)∥2

=
1

t2
∥x+ − x∥2 − 2

t

〈
x+ − x,∇f(x+)−∇f(x)

〉
+ ∥∇f(x+)−∇f(x)∥2

≤ 1

t2
∥x+ − x∥2 − 2

t

(
µL

µ+ L
∥x+ − x∥2 + 1

µ+ L
∥∇f(x+)−∇f(x)∥2

)
+ ∥∇f(x+)−∇f(x)∥2

=
1

t2

[
(1− 2tµL

µ+ L
)∥x+ − x∥2 + t(t− 2

µ+ L
)∥∇f(x+)−∇f(x)∥2

]
,

where the inequality follows from (2.6) in Fact 2.1. In order to bound ∥∇f(x+)−∇f(x)∥2
in terms of ∥x+ − x∥2, we use (2.8) in Fact 2.1 to get

µ2∥x+ − x∥2 ≤ ∥∇f(x+)−∇f(x)∥2 ≤ L2∥x+ − x∥2.

If t− 2
µ+L ≥ 0, then we have

(t− 2

µ+ L
)∥∇f(x+)−∇f(x)∥2 ≤ L2(t− 2

µ+ L
)∥x+ − x∥2.

If t− 2
µ+L < 0, then we have

(t− 2

µ+ L
)∥∇f(x+)−∇f(x)∥2 ≤ µ2(t− 2

µ+ L
)∥x+ − x∥2.

In both cases, we always have that

(t− 2

µ+ L
)∥∇f(x+)−∇f(x)∥2 ≤ max

{
L2(t− 2

µ+ L
), µ2(t− 2

µ+ L
)

}
∥x+ − x∥2.
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Therefore, we can continue to derive that

∥∇f(x+) + s+∥2

≤ 1

t2

[
(1− 2tµL

µ+ L
)∥x+ − x∥2 + t ·max

{
L2(t− 2

µ+ L
), µ2(t− 2

µ+ L
)

}
∥x+ − x∥2

]
=

1

t2
max

{
1− 2tµL

µ+ L
+ tL2(t− 2

µ+ L
), 1− 2tµL

µ+ L
+ tµ2(t− 2

µ+ L
)

}
∥x+ − x∥2

=
1

t2
max{(1− Lt)2, (1− µt)2}∥x+ − x∥2

=ρ2(t)∥G(x, t)∥2,

from which the inequality (3.7) follows. This completes the proof.

Remark 3.5. Here, the factor ρ(t) is optimal; otherwise, it will contradict the following
exact worst-case convergence rate for residual gradient norm

∥∇f(x+) + s+∥ ≤ ρ(t)∥∇f(x) + s∥, ∀s ∈ ∂g(x),

which was recently established in [8]. In fact, the inequality above is equivalent to

∥∇f(x+) + s+∥ ≤ ρ(t)d(0, ∂φ(x));

whilst in our proof, we have shown ∥∇f(x+)+s+∥ ≤ ρ(t)∥G(x, t)∥ in (3.7) which is a tighter
estimation and hence it is impossible to improve.

Below, we state the second new property of proximal gradient mapping, which may be
viewed as a refined descent lemma.

Theorem 3.6 (Refined descent). Suppose that f and g satisfy properties (A) and (B) of
Assumption 2.1. Then, we have

φ(x) ≥ φ(x+) +
t

2
∥G(x, t)∥2 + t

2(1− µt)
∥G(x+, t)∥2, 0 < t ≤ 1

L
. (3.8)

In particular,

for f ∈ F1,1
L (Rn), g ∈ Γ0(Rn), it holds that

φ(x) ≥ φ(x+) +
t

2
∥G(x, t)∥2 + t

2
∥G(x+, t)∥2, 0 < t ≤ 1

L
. (3.9)

for f ∈ F1,1
L (Rn), g ≡ 0, it holds that

f(x) ≥ f(x+) +
t

2
∥∇f(x)∥2 + t

2
∥∇f(x+)∥2, 0 < t ≤ 1

L
. (3.10)

Proof. Note that 0 < t ≤ L−1 implies t−1 ≥ L which further implies that the L-smooth
function must also be t−1-smooth; hence, we can conclude that

S1,1
µ,L(R

n) ⊂ S1,1
µ,t−1(Rn).
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We now use (2.7) in Fact 2.1 with L = t−1 and y = x+ to get

f(x) ≥ f(x+) +
〈
∇f(x+), x− x+

〉
+

t

2
∥∇f(x)−∇f(x+)∥2

+
µ

2(1− µt)
∥x− x+ − t(∇f(x)−∇f(x+))∥2.

The subgradient inequality of g gives g(x) ≥ g(x+) + ⟨s+, x− x+⟩ since s+ ∈ ∂g(x+).
Summing up these two inequalities, we derive that

φ(x) ≥φ(x+) +
〈
∇f(x+) + s+, x− x+

〉
+

t

2
∥∇f(x)−∇f(x+)∥2

+
µ

2(1− µt)
∥x− x+ − t(∇f(x)−∇f(x+))∥2

=φ(x+) +
〈
∇f(x) + s+, x− x+

〉
−
〈
∇f(x+)−∇f(x), x+ − x

〉
+

t

2
∥∇f(x)−∇f(x+)∥2 + µ

2(1− µt)
∥x− x+ − t(∇f(x)−∇f(x+))∥2.

Using the expression x+ = x− t(∇f(x) + s+) in (3.4), we can further derive that

φ(x) ≥φ(x+) +
1

t
∥x− x+∥2 −

〈
∇f(x+)−∇f(x), x+ − x

〉
+

t

2
∥∇f(x)−∇f(x+)∥2 + µt2

2(1− µt)
∥s+ +∇f(x+)∥2

=φ(x+) +
1

2t
∥t(∇f(x+)−∇f(x))− x+ + x∥2

+
1

2t
∥x− x+∥2 + µt2

2(1− µt)
∥s+ +∇f(x+)∥2

=φ(x+) +
1

2t
∥x− x+∥2 + t

2(1− µt)
∥s+ +∇f(x+)∥2.

Note that x− x+ = tG(x, t) and use the fact that

∥s+ +∇f(x+)∥ ≥ d(0, ∂φ(x+)) ≥ ∥G(x+, t)∥.

We finally obtain

φ(x) ≥ φ(x+) +
t

2
∥G(x, t)∥2 + t

2(1− µt)
∥G(x+, t)∥2.

This completes the proof.

Remark 3.7. We make a few remarks:

In [5], for φ = f + g with f ∈ S1,1
µ,L(Rn) and g being the indicator function of a set Q,

the descent lemma of the projected gradient method can be stated as

φ(x) ≥ φ(x+) +
t

2
∥gQ(x, t)∥2, 0 < t ≤ 1

L
. (3.11)

where gQ(x, t) := t−1(x− x+) is the gradient mapping of f on Q. In [1], for φ = f + g

with f ∈ F1,1
L (Rn) and g ∈ Γ0(Rn), the corresponding descent lemma of the proximal

gradient method is

φ(x) ≥ φ(x+) +
L

2
∥x+ − x∥2. (3.12)

It is not hard to see that our result improves these existing descent lemmas.
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In time of this paper was under preparation, we noticed that the special case (3.9) was
implicitly rediscovered by combining Lemma 9 and Lemma 11 in [9].

4 Small Norm of Proximal Gradient Mapping

In this section, we aim to extend the potential function-based framework previously reviewed
from gradient descent to proximal gradient descent and its acceleration, for minimizing the
sum of a smooth convex function and a possibly nonsmooth convex function.

4.1 Proximal gradient descent

The following result is a direct extension of Lemma 2.1 in [3]. However, its proof relies on
the new properties of proximal gradient mapping in the last section.

Theorem 4.1. Suppose that Assumption 2.1 with µ = 0 holds. Let x0 be an arbitrary initial
point and assume that xk+1 = xk − tkG(xk, tk) with constant step sizes tk ≡ η

L for some
0 < η ≤ 1. Then

Ck :=
η

L
· k∥G(xk,

η

L
)∥2 + φ(xk)

is nonincreasing with k, and the norm sequence of proximal gradient mappings converges
sublinearly in the sense that for any k ≥ 0,

∥G(xk,
η

L
)∥ ≤

√
L(φ(x0)− φ̄)

ηk
. (4.1)

Proof. We first show that for any k ≥ 0,

Ck+1 ≤ Ck.

Using the definition of Ck, we have that

Ck+1 − Ck =
η

L
(k + 1)∥G(xk+1,

η

L
)∥2 − ηk

L
∥G(xk,

η

L
)∥2 + φ(xk+1)− φ(xk).

Using Theorem 3.6 yields

φ(xk)− φ(xk+1) ≥ η

2L
∥G(xk,

η

L
)∥2 + η

2L
∥G(xk+1,

η

L
)∥2.

Thus,

Ck+1 − Ck ≤ η

L

(
k +

1

2

)(
∥G(xk+1,

η

L
)∥2 − ∥G(xk,

η

L
)∥2

)
.

In addition, using Theorem 3.4 yields

∥G(xk+1,
η

L
)∥ ≤ ∥G(xk,

η

L
)∥,

which leads to the monotonically decreasing Ck+1 ≤ Ck and the result

φ(xk)− φ̄+
ηk

L
· ∥G(xk,

η

L
)∥2 ≤ · · · ≤ C0 = φ(x0)− φ̄.

Equivalently,
ηk

L
∥G(xk,

η

L
)∥2 ≤ φ(x0)− φ(xk) ≤ φ(x0)− φ̄,

from which the conclusion follows.
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Remark 4.2. The authors of the recent paper [4] established the following result for the
proximal gradient method:

min
0≤i≤k

∥G(xi,
η

L
)∥ ≤

√
2

3k(k + 1)

L∥x0 − x∗∥
η

, (4.2)

where x∗ ∈ X∗. At the first glance, it seems that our bound (4.1) is worse than the bound
(4.2) because the latter improves the order of complexity from O( 1√

k
) to O( 1k ). But in fact,

combining the boundedness of Ck and the standard convergence result φ(xk) − φ(x∗) ≤
O
(

L∥x0−x∗∥2

ηk

)
(see e.g. Theorem 10.21 [2]), we derive that

∥G(xk,
η

L
)∥2 = O

(
L(φ(xk)− φ(x∗))

ηk

)
= O

(
L2∥x0 − x∗∥2

η2k2

)
,

and hence the better bound of the order O( 1k ) can be reobtained; similar deduction can be
found on page 10 in [3]. The main advantage of our result lies in removing the operation of
taking the minimum of proximal gradient. Finally, it should be noted that the bound (4.1)
is tight since it generalizes the tight bound (2.12).

4.2 Accelerated norm minimization

We start with the following iterative scheme which is obtained by replacing the gradient in
the fast gradient method by the proximal gradient mapping and introducing a new sequence
{yk}. For any k ≥ 1, 

yk−1 := xk−1 − 1

L
· G(xk−1,

1

L
),

vk := vk−1 − bk−1

L
· G(xk−1,

1

L
),

xk :=
Bk−1

Bk
yk−1 +

bk
Bk

vk,

(APG)

where the sequence of scalars Bk > 0 will be determined later and the sequence of scalars bk
is defined by b0 = B0 and bk = Bk−Bk−1 for k ≥ 1. For simplicity, we let G(xk) ≡ G(xk, 1

L )
be the proximal gradient mapping when the step size t equals to 1

L . Our forthcoming analysis
mainly relies on the following potential function: for any k ≥ 0,

Ck :=

k∑
i=0

ai∥G(xi)∥2 +Bk(φ(y
k)− φ̄), (4.3)

which is inspired by the potential function (2.13). However, when zooming into the ex-
pression more carefully, the reader can find that it is not obtained by simply replacing the
gradient in (2.13) by the proximal gradient mapping. Actually, we use the function value at
yk rather than at xk and the sum is from i = 0 to k rather than to k−1. These modifications
are pivotal to deduce our desired conclusions.

Lemma 4.3. Suppose that Assumption 2.1 with µ = 0 holds. Let x0 be an arbitrary initial
point with v0 = x0 and assume that the sequences of {xk}, {yk} and {vk} are generated by
the algorithm (APG). If the nonnegative scalars ak, bk, Bk satisfy that ∀k ≥ 1,

ak ≤ Bk − b2k
2L

,
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then we have

Ck − Ck−1 ≤ L

2
(∥x∗ − vk∥2 − ∥x∗ − vk+1∥2), ∀k ≥ 1,

where x∗ ∈ X∗.

Proof. Using the definition of Ck in (4.3), we have that for any k ≥ 1,

Ck − Ck−1 ≤ ak∥G(xk)∥2 +Bkφ(y
k)−Bk−1φ(y

k−1)− bkφ̄. (4.4)

Now, we use (3.3) in Lemma 3.3 to bound the unknown optimal function value φ̄. Actually,
the inequality (3.3) with x = x∗ and y = xk gives us

φ̄ = φ(x∗) ≥ φ(yk) +
1

2L
∥G(xk)∥2 +

〈
G(xk), x∗ − xk

〉
. (4.5)

Using (3.3) again with x = yk−1 and y = xk leads to

φ(yk−1)− φ(yk) ≥ 1

2L
∥G(xk)∥2 +

〈
G(xk), yk−1 − xk

〉
. (4.6)

Combining the three inequalities above, we derive that

Ck − Ck−1 ≤ak∥G(xk)∥2 +Bkφ(y
k)−Bk−1φ(y

k−1)− bkφ(y
k)− bk

2L
∥G(xk)∥2

− bk
〈
G(xk), x∗ − xk

〉
=ak∥G(xk)∥2 +Bk−1(φ(y

k)− φ(yk−1))− bk
2L

∥G(xk)∥2

− bk
〈
G(xk), x∗ − xk

〉
≤ak∥G(xk)∥2 − Bk−1

2L
∥G(xk)∥2 −Bk−1

〈
G(xk), yk−1 − xk

〉
− bk

2L
∥G(xk)∥2

+ bk
〈
G(xk), xk − x∗〉

=

(
ak − Bk

2L

)
∥G(xk)∥2 +Bk−1

〈
G(xk), xk − xk−1 +

1

L
G(xk−1)

〉
+ bk

〈
G(xk), xk − x∗〉 .

(4.7)

In order to get an acceptable upper bound of Ck − Ck−1, we need to estimate the inner
product term

〈
G(xk), xk − x∗〉. This can be done by going through the following arguments

which are standard in mirror-descent-type analysis. First, note that

vk+1 = argmin
u

{
bk

〈
G(xk), u− vk

〉
+

L

2
∥u− vk∥2

}
= vk − bk

L
G(xk).

Then, we can deduce that

bk
〈
G(xk), xk − x∗〉 =bk

〈
G(xk), xk − vk+1

〉
+ L

〈
vk − vk+1, vk+1 − x∗〉

=bk
〈
G(xk), xk − vk

〉
+

b2k
L
∥G(xk)∥2 + L

2
∥x∗ − vk∥2

− L

2
∥x∗ − vk+1∥2 − L

2
∥vk+1 − vk∥2

=bk
〈
G(xk), xk − vk

〉
+

b2k
2L

∥G(xk)∥2

+
L

2
∥x∗ − vk∥2 − L

2
∥x∗ − vk+1∥2,

(4.8)
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where the relationship vk+1 := vk− bk
L ·G(xk, 1

L ) have been repeatedly used. Now, combining
(4.8) and (4.7), we can get

Ck − Ck−1 ≤
(
ak − Bk − b2k

2L

)
∥G(xk)∥2 + L

2
∥x∗ − vk∥2 − L

2
∥x∗ − vk−1∥2

+

〈
G(xk), Bkx

k −Bk−1(x
k−1 − 1

L
G(xk−1))− bkv

k

〉
.

(4.9)

Note that

Bkx
k −Bk−1

(
xk−1 − 1

L
G(xk−1)

)
− bkv

k = Bkx
k −Bk−1y

k−1 − bkv
k = 0.

The inner product term (4.9) disappears and hence using the condition ak ≤ Bk−b2k
2L we

finally obtain

Ck − Ck−1 ≤ L

2
∥x∗ − vk∥2 − L

2
∥x∗ − vk+1∥2.

This completes the proof.

Now, we are ready to present the accelerated convergence of proximal gradient mapping
for minimizing the sum of a smooth convex function and a non-smooth convex function.

Theorem 4.4. Suppose that the assumption in Lemma 4.3 holds. Denote

C̃ := a0∥G(x0)∥2 + b0(φ(y
0)− φ̄) +

L

2
∥x∗ − v0∥2.

Then, we have

φ(yk)− φ̄ ≤ C̃
Bk

, k ≥ 1, (4.10)

k∑
i=0

ai∥G(xi)∥2 ≤ C̃, k ≥ 1. (4.11)

In particular, if bk = 1
4 (k + 1), Bk = 1

8 (k + 1)(k + 2), ak = 1
32L (k + 1)2 for any k ≥ 1, then

φ(yk)− φ̄ ≤ 8C̃
(k + 1)(k + 2)

, (4.12)

and

min
0≤i≤k

∥G(xi)∥2 ≤ 192LC̃
(k + 1)(k + 2)(k + 3)

. (4.13)

Proof. Using Lemma 4.3 and the definition Ck, we have

Ck ≤ C0 +
L

2
∥x∗ − v0∥2 − L

2
∥x∗ − vk+1∥2

≤ a0∥G(x0)∥2 +B0(φ(y
0)− φ̄) +

L

2
∥x∗ − v0∥2

= C̃.

(4.14)

Note that each term in Ck is nonnegative. Thus, for any k ≥ 1 we can get

Bk(φ(y
k)− φ̄) ≤ Ck ≤ C̃,
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and
k∑

i=0

ai∥G(xi)∥2 ≤ Ck ≤ C̃,

from which the first part follows.

As for the second part, we first show that the condition ak ≤ Bk−b2k
2L can be verified by

the current setting bk = 1
4 (k + 1), Bk = 1

8 (k + 1)(k + 2), and ak = 1
32L (k + 1)2. In fact,

Bk − b2k
2L

=
1

2L

[
1

8
(k + 1)2 +

1

8
(k + 1)− 1

16
(k + 1)2

]
≥ 1

2L
· 1

16
(k + 1)2

= ak.

Now, summing ai from i = 0 to i = k, we obtain

k∑
i=0

ai =

k∑
i=0

1

32L
(i+ 1)2 =

(k + 1)(k + 2)(2k + 3)

192L
.

Therefore, combining with (4.11) in the first part, we finally get

min
0≤i≤k

∥G(xi)∥2 ≤

k∑
i=0

ai∥G(xi)∥2

k∑
i=0

ai

≤ 192L · C̃
(k + 1)(k + 2)(2k + 3)

, (4.15)

which completes the proof.

Remark 4.5. Again, we would like to point out that the bound (4.15) is tight since it
generalizes the corresponding tight bound in [3].

5 Concluding Remarks

In this paper, we successfully extended the potential function-based framework in [3] from
gradient descent to proximal gradient descent, with the help of two newly discovered proper-
ties on the proximal gradient mapping. However, the modulus µ > 0 of strong convexity has
not yet been exploited in the current potential function-based framework to provide linear
convergence guarantees for the norm of gradient or proximal gradient mapping; we would
like to leave it as future work.
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Appendix: The missing proofs

The proof of Lemma 3.1: Using the definition of the proximal mapping yields

z = proxtg(y) = argmin
x

{
t · g(x) + 1

2
∥x− y∥2

}
.

Based on the first-order optimality condition, we have

0 ∈ t · ∂g(z) + z − y.

Hence, the relationship y ∈ (I + t · ∂g)(z) follows. This completes the proof.

The proof of Lemma 3.2: Take a subgradient s ∈ ∂φ(x) = ∂g(x) +∇f(x); then, it holds
that

x− t∇f(x) + ts ∈ (I + t · ∂g)(x).

Hence, from Lemma 3.1 we have

x = proxtg(x− t∇f(x) + ts).

Using the nonexpansive property of proximal mapping, for any s ∈ ∂φ(x) we have

t∥G(x, t)∥ = ∥x− proxtg(x− t∇f(x))∥
= ∥proxtg(x− t∇f(x) + ts)− proxtg(x− t∇f(x))∥
≤ t∥s∥, ∀s ∈ ∂φ(x),

from which the upper bound (3.1) follows. This completes the proof.

The proof of Lemma 3.3: First of all, we define the following auxiliary function

h(x, y) := g(x) + f(y) + ⟨∇f(y), x− y⟩+ 1

2t
∥x− y∥2.

Denote
y+ := argmin

x
h(x, y). (A.1)

Then, one can verify that
y+ = y − tG(y, t).

Applying the L-smoothness of f in (2.2), we obtain

φ(x) = f(x) + g(x) ≤ h(x, y) + (
L

2
− 1

2t
)∥x− y∥2.

Plugging x = y+ in the above equation, we get

φ(y+) ≤ h(y+, y) + (
L

2
− 1

2t
)∥y+ − y∥2,

or equivalently,

φ(x)− φ(y+) ≥ φ(x)− h(y+, y)− (
L

2
− 1

2t
)∥y+ − y∥2. (A.2)
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Due to the optimality condition of (A.1), there must exist a subgradient gs ∈ ∂g(y+) such
that

0 = gs +∇f(y) +
1

t
(y+ − y). (A.3)

Invoking the subgradient inequality for g and the µ-strong convexity for f , we have

f(x) ≥ f(y) + ⟨∇f(y), x− y⟩+ µ

2
∥x− y∥2,

g(x) ≥ g(y+) +
〈
gs, x− y+

〉
.

Adding these two inequalities together, we get

φ(x) ≥ f(y) + g(y+) + ⟨∇f(y), x− y⟩+
〈
gs, x− y+

〉
+

µ

2
∥x− y∥2. (A.4)

On the other hand,

h(y+, y) = g(y+) + f(y) +
〈
y+ − y,∇f(y)

〉
+

1

2t
∥y+ − y∥2.

Combining the preceding equation with (A.2) and (A.4), we finally get

φ(x)− φ(y+) ≥ φ(x)− h(y+, y)− (
L

2
− 1

2t
)∥y+ − y∥2

≥ − 1

2t
∥y+ − y∥2 +

〈
x− y+,∇f(y) + gs

〉
− (

L

2
− 1

2t
)∥y+ − y∥2 + µ

2
∥x− y∥2

(A.3)
= − 1

2t
∥y+ − y∥2 + 1

t

〈
y − y+, x− y+

〉
− (

L

2
− 1

2t
)∥y+ − y∥2 + µ

2
∥x− y∥2.

The desired conclusion follows by substituting G(y, t) = t−1(y− y+) into the above relation-
ship. This completes the proof.
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