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The problem (1.1) extends the single formalism of equilibria to systems of such problems,
covering in particular various forms of feasibility problems [1] and [15].

From the algorithmic viewpoint, several methods for solving scalar equilibrium problems
have been developed extensively. The most popular approaches are the proximal point
methods and the gradient ones. In the following, we review the general framework for the
first one, the second kind of iterative methods is more expansive, we refer to [34] for more
details. It is well known that the proximal-point method was firstly extended by Martinet
[20] from optimization problems to classical variational inequalities. A further extension has
been done by Rockafellar [26] to maximal monotone inclusions. The paper by Moudafi [22]
was the first work that extended the proximal methods to equilibrium problems, wherein
it was proved, as in the case of inclusions in [26], that when the solution set is nonempty,
the sequence (xk) of the iterative scheme defined by the associated proximal-point method
is weakly convergent to a solution. Note that this convergence is not of a strong type
in general, which has been underlined by Güler in [16] through an example in the space
l2 for the optimization case. Recently, more attention has been given to develop efficient
and implementable numerical methods to solve equilibrium problems, see [34] for more
details. Takahashi et al [31, 32] introduced a new iterative scheme based on the viscosity
approximation method for finding the best approximation for a common element of the set of
solutions of a system of an equilibrium problem and a fixed point problem with nonexpansive
mappings for which they obtained strong convergence results, in this regard we also refer to
[10, 19].

More recently, in [3], Buong proposed a regularization extragradient method for solving
a system of equilibrium problems. Unfortunately, the main result [3, Thm 2.1] fails in the
proof. Apparently, this reason has motivated the author of [3] to take back the same problem
in [4] by considering a finite family of inverse strongly monotone operators.

The first goal of this paper is to adapt and investigate the Moudafi’s proximal point
method for solving the equilibrium system (1.1) in the Hilbert framework. We prove the
strong convergence of the proposed iterative algorithm to a selected solution of the equilib-
rium system (1.1). The second goal of this work is to use our iterative algorithm proposed
for equilibrium system (1.1), for solving the split common fixed point problem as defined by
Censor and Segal in [5], by focusing on the relationship between the two problems. Finally,
we give a numerical example for our main result in space of real numbers.

Recall that the main idea for the proximal point method is to use an adequate resolvent
for equilibrium functions. If C is a convex set of H, F : C × C → R, r > 0 and x ∈ H,
the resolvent of F at x with parameter r, denoted by JF

r (x), is the set of solutions of the
perturbed equilibrium problem : Find z ∈ C such that

rF (z, y) + 〈y − z, z − x〉 ≥ 0 ∀y ∈ C.

We remark, see [10, Lemma 2.15], that if F (x, y) = f(y)−f(x) for x, y ∈ C and C ⊂ domf ,
then JF

r (x) = (I + r∂f)−1(x) where ∂f is the convex subdifferential of f . More generally, if
F (x, y) = supu∈Ax〈u, y − x〉 where A is a maximal monotone operator and C ⊂ int dom A
then JF

r is the Rockafellar’s resolvent of the operator A + NC . Here domf is the domain
of function f and NC is the normal operator to convex set C defined for all z ∈ C, by
NC(z) := {w ∈ H : 〈z − u,w〉 ≥ 0, ∀u ∈ H}.

In the sequel, the following usual conditions and lemmas will be used :

1. F (x, x) = 0 for each x ∈ C;

2. for each x ∈ C, y → F (x, y) is convex ;
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3. for each x ∈ C, y → F (x, y) is lower semicontinuous;

4. F is monotone, i.e., F (x, y) + F (y, x) ≤ 0 for each x, y ∈ C;

5. limt↓0 F (tz + (1− t)x, y) ≤ F (x, y) for any x, y, z ∈ C.

Lemma 1.1 (Minty’s lemma [2]). Let C be a nonempty closed convex subset of H and
let F : C × C → R and consider the equilibrium problem (EP) : find x ∈ C such that
F (x, y) ≥ 0, ∀y ∈ C, and the associated dual problem (DEP) : find x ∈ C such that
F (y, x) ≤ 0, ∀y ∈ C.

(i) If F satisfies (4), then each solution of (EP) is a solution to (DEP).

(ii) Conversely, if F satisfies (1), (2) and (5) then each solution of (DEP) is a solution
to (EP).

Remark 1.2. The following observation will be useful is the in the sequel:

(i) If a bifunction F : C ×C → R satisfies [(1)-(5)] and the set of solutions of equilibrium
problem (EP), say S, is not empty, then S is closed and convex. Indeed, let (xn) be a
sequence in S converging (strongly) to a point x. By (4), for each n ≥ 0, xn is also a
solution to (DEP), then we have lim infn−→∞ F (y, xn) ≤ 0. Now, use (3) and see that
F (y, x) ≤ 0, which means that x is a solution to (DEP). Under conditions (1), (2) and
(5), x is a solution to (EP). Hence, the set S is closed. On the other hand, from the
convexity of y → F (x, y) (condition (2)) and Minty’s Lemma follows the convexity of
S.

(ii) In view of the point (i) and the fact that the intersection of any closed and convex
sets is closed and convex, whenever the bifunction Fi : Ci × Ci → R satisfies [(1)-(5)]
for all i ≥ 1 and the problem (1.1) is consistent, it can be readily seen that the set of
solutions to (1.1) is closed and convex.

Lemma 1.3 ([8]). Let C be a nonempty closed convex subset of H and let F : C × C → R
satisfying [(1)-(4)]. Then the following are equivalent :

(i) F is maximal : (x, u) ∈ C ×H and F (x, y) ≤ 〈u, x− y〉, ∀y ∈ C imply that F (x, y) +
〈u, x− y〉 ≥ 0, ∀y ∈ C;

(ii) for each x ∈ H and r > 0, there exists a unique z = JF
r (x) such that

rF (z, y) + 〈y − z, z − x〉 ≥ 0, ∀y ∈ C. (1.2)

Let us mention that the maximality of F is ensured when assumptions (1), (2) and (5)
are satisfied (see [6, Lemma 2.1]). Thus the associated resolvent mapping JF

r : H → C is
well defined and satisfies the following

Lemma 1.4 ([10]). Let C be a nonempty closed convex subset of H and let F be a bi-function
from C × C into R satisfying [(1)-(5)]. Then,

(i) JF
r is firmly nonexpansive; i.e, for all x, y ∈ H∥∥JF

r (x)− JF
r (y)

∥∥2 ≤ 〈JF
r (x)− JF

r (y), x− y〉;
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(ii) x = JF
r (x) ⇔ F (x, y) ≥ 0, ∀y ∈ C.

A mapping T : C −→ H is called nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖ for allx, y ∈ C.

If T is nonexpansive, then the set of all fixed points FixT , which is defined by

FixT = {x ∈ C : x = Tx}

is always closed and convex, see [17].

Definition 1.5. Suppose T : C −→ C is nonexpansive and K a closed convex nonempty
subset of C. We say that T is attracting w.r.t K if for every x ∈ C\K, z ∈ K

‖Tx− z‖ < ‖x− z‖.

If K = FixT , we simply speak of attracting mappings.

Lemma 1.6 ([1, Proposition 2.10]). Suppose C is a closed convex nonempty set, T1, T2, . . . , Tm :
C −→ C are attracting and

⋂m
i=1 FixTi is nonempty. Then

Fix(TmTm−1 . . . T1) =

m⋂
i=1

FixTi

and TmTm−1 . . . T1 is attracting.

Corollary 1.7. Under assumptions of Lemma 1.4 we claim that

(i) the mapping JF
r is attracting;

(ii) x is a solution to (1.1) if, and only if, x = JFi
r (x) ∀i = 1, . . .m, which is equivalent to

x = JFm
r J

Fm−1
r . . . JF1

r (x).

Proof. (i) Let x /∈ Fix(JF
r ) and y ∈ Fix(JF

r ), we have F (y, JF
r x) ≥ 0 and

rF (JF
r x, y) + 〈JF

r x− x, y − JF
r x〉 ≥ 0.

By adding the two last inequalities and using monotonicity of F , we infer

〈JF
r x− x, y − JF

r x〉 ≥ 0,

which leads to
〈JF

r x− y, y − x〉+ ‖y − x‖2 − ‖x− JF
r x‖2 ≥ 0.

Now, since JF
r is firmly nonexpansive and x 6= JF

r (x), we finally get

‖JF
r x− y‖2 ≤ ‖y − x‖2 − ‖x− JF

r x‖2 < ‖y − x‖2.

(ii) Observe that

x is a solution to (1.1) ⇔ JFi
r (x) = x ∀i = 1, . . . ,m (see Lemma 1.4 (ii))

⇔ x = JFm
r JFm−1

r . . . JF1
r (x) (see Lemma 1.6).
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Definition 1.8. A mapping T is said to be demiclosed if for any sequence (vk) in H, the
following implication holds: if vk ⇀ v and T (vk) −→ w, then T (v) = w, where “ ⇀ ” and
“ −→ ” stand for the weak convergence and strong convergence, respectively. If v = 0, the
zero vector in H, then T is called demiclosed at zero.

Lemma 1.9 ([14, Theorem 10.3]). Let H be a real Hilbert space, C a nonempty closed
convex subset of H, and T : C −→ H a nonexpansive mapping such that FixT is nonempty.
Then, the mapping I − T is demiclosed on C, where I is the identity mapping, that is

vk ⇀ v in H and (I − T )(vk) −→ w

implies that v ∈ C and w = (I − T )v.

Lemma 1.10 ([30]). Let H be a real Hilbert space, let (αk) be a sequence of real numbers
such that 0 < lim infk→+∞ αk ≤ lim supk→+∞ αk < 1 and let (xk) and (yk) be bounded
sequences in H such that xk+1 = αkx

k + (1− αk)y
k and

lim sup
k→0

(
‖yk+1 − yk‖ − ‖xk+1 − xk‖ → 0.

Then ‖yk − xk‖
)
−→ 0.

Lemma 1.11 ([36]). Let (ak) be a sequence of nonnegative real numbers such that ak+1 ≤
(1− tk)ak + δk where

∑+
k=1 ∞tk = +∞ and lim supk→+∞

δk
tk

≤ 0. Then ak → 0.

2 Strong Convergence Theorem

We are now ready to introduce our iterative process :

Algorithm 2.1. From x0 ∈ Cm, we generate a sequence (xk) by

xk+1 = αkx
k + βkg(x

k) + γkJ
Fm
r JFm−1

r . . . JF1
r (xk). (2.1)

Theorem 2.2. Let C =
m
∩
i=1

Ci be nonempty, and let Fi, for i = 1, . . . ,m, be a family of

bi-functions from Ci × Ci into R satisfying [(1)-(5)]. Suppose that the set S of solutions
to (1.1) is nonempty and let g : Cm −→ Cm be a δ − contaction, δ ∈ (0, 1). Assume
that αk, βk, γk are positive scalars such that αk + βk + γk = 1, βk → 0,

∑
βk = +∞ and

(αk) ⊂ [c, d] for some c, d ∈ (0, 1). Then, the sequence (xk) strongly converges to a point
x ∈ S which satisfies x = ΠS(g(x)).

Proof. To simplify, we take m = 2.
Step 1: ΠS ◦ g : Cm −→ S is a contraction. Indeed,

‖ΠS ◦ g(x)−ΠS ◦ g(y)‖ ≤ ‖g(x)− g(y)‖ ≤ δ‖x− y‖,

where δ ∈ (0, 1). Then, there exists a unique x such that ΠS ◦ g(x) = x.
Step 2: We first set uk = JF1

r (xk). Since x ∈ S, in view of Lemma 1.6, it follows that

x = JF1
r (x). Thus

‖uk − x‖ = ‖JF1
r (xk)− JF1

r (x)‖ ≤ ‖xk − x‖.
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Set M = max{‖x0 − x‖, 1
1−δ‖g(x)− x‖} and suppose that ‖xk − x‖ ≤ M to see that

‖xk+1 − x‖ = ‖αk(x
k − x) + βk(g(x

k)− x) + γk(J
F2
r (uk)− x)‖

≤ αk‖xk − x‖+ βk‖g(xk)− x‖+ γk‖uk − x‖
≤ (αk + γk)‖xk − x‖+ βk(δ‖xk − x‖+ ‖g(x)− x‖)
≤ (1− βk + δβk)‖xk − x‖+ βk‖g(x)− x‖

= (1− (1− δ)βk)‖xk − x‖+ (1− δ)βk
1

1− δ
‖g(x)− x‖

≤ M.

Hence, by induction, (xk) and (uk) are bounded.
Step 3: We shall show that (xk+1 − xk) and (uk+1 − uk) strongly converge to 0. Indeed,

by definition of uk = JF1
r (xk) and uk+1 = JF1

r (xk+1), which are in C1, and replacing
respectively y by uk+1 and uk in (1.3), we have

F1(u
k, uk+1) +

1

r
〈uk+1 − uk, uk − xk〉 ≥ 0

and

F1(u
k+1, uk) +

1

r
〈uk − uk+1, uk+1 − xk+1〉 ≥ 0.

By summing the last two inequalities and using monotonicity of F1, we get

0 ≤
〈
uk+1 − uk, uk − xk

〉
+
〈
uk − uk+1, uk+1 − xk+1

〉
=

〈
uk+1 − uk, (uk − xk)− (uk+1 − xk+1)

〉
= −‖uk+1 − uk‖2 +

〈
uk+1 − uk, xk+1 − xk

〉
,

which implies ‖uk+1 − uk‖ ≤ ‖xk+1 − xk‖. Let us write xk+1 = αkx
k + (1− αk)y

k with

yk =
βk

1− αk
g(xk) +

γk
1− αk

J(xk),

where J = JF2
r ◦ JF1

r . Therefore, given that ‖g(xk)‖, ‖J(xk)‖ are upper-bounded by K > 0
and αk + βk + γk = 1, it follows that

‖yk+1 − yk‖ − ‖xk+1 − xk‖ =

∥∥∥∥( βk+1

1− αk+1
g(xk+1) +

γk+1

1− αk+1
J(xk+1)

)
−
(

βk

1− αk
g(xk) +

γk
1− αk

J(xk)

)∥∥∥∥− ‖xk+1 − xk‖

≤ βk+1δ

1− αk+1
‖xk+1 − xk‖+

∣∣∣∣ βk+1

1− αk+1
− βk

1− αk

∣∣∣∣ ‖g(xk‖

+
γk+1

1− αk+1
‖xk+1 − xk‖+

∣∣∣∣ γk+1

1− αk+1
− γk

1− αk

∣∣∣∣ ‖J(xk‖

− ‖xk+1 − xk‖

≤ βk+1

1− αk+1
(δ + 1)‖xk+1 − xk‖+ 2K

∣∣∣∣ βk+1

1− αk+1
− βk

1− αk

∣∣∣∣ .
Then, as βk −→ 0 and 0 < lim inf αk ≤ lim supαk < 1, it results that

lim sup
k→0

(‖yk+1 − yk‖ − ‖xk+1 − xk‖) ≤ 0.
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This allows us to Lemma 1.10 to get ‖yk − xk‖ −→ 0. Thus

‖xk+1 − xk‖ = ‖αkx
k + (1− αk)y

k − xk‖ = (1− αk)‖yk − xk‖ −→ 0.

In addition, since ‖uk+1 − uk‖ = ‖JF1
r (xk+1) − JF1

r (xk)‖ ≤ ‖xk+1 − xk‖, we also have
‖uk+1 − uk‖ −→ 0.
Step 4: Now, we will prove that the sequence (xk −uk) strongly converges to 0. To do that

observe first that

‖uk − x‖2 = ‖JF1
r (xk)− JF1

r (x)‖2

≤ 〈JF1
r (xk)− JF1

r , xk − x〉 (by Lemma 1.4, (ii))

= 〈uk − x, xk − x〉

=
1

2
(‖uk − x‖2 + ‖xk − x‖2 − ‖uk − xk‖2).

Hence
‖uk − x‖2 ≤ ‖xk − x‖2 − ‖xk − uk‖2,

which implies that

‖xk+1 − x‖2 ≤ βk‖g(xk)− x‖2 + αk‖xk − x‖2 + γk‖JF2
r (uk)− x‖2

≤ βk‖g(xk)− x‖2 + αk‖xk − x‖2 + γk‖uk − x‖2

≤ βk‖g(xk)− x‖2 + (αk + γk)‖xk − x‖2 − γk‖xk − uk‖2.

Accordingly, we obtain

γk‖xk − uk‖2 ≤ βk‖g(xk)− x‖2 + (1− βk)‖xk − x‖2 − ‖xk+1 − x‖2

≤ βk‖g(xk)− x‖2 + ‖xk − x‖2 − ‖xk+1 − x‖2

≤ βk‖g(xk)− x‖2 + (‖xk − x‖ − ‖xk+1 − x‖)(‖xk − x‖+ ‖xk+1 − x‖)
≤ βk‖g(xk)− x‖2 + ‖xk+1 − xk‖(‖xk+1 − x‖+ ‖xk − x‖).

Since (βk) −→ 0 and (αk) ⊂ [c, d] for c, d ∈ (0, 1), then the sequence (γk) with γk =
1− αk − βk doesn’t converge to 0, so using Step 3, we deduce that xk − uk −→ 0.
Step 5: Let us show that

lim sup
k−→+∞

〈g(x)− x, xk − x〉 ≤ 0. (2.2)

In view of the boundedness of (xk), there exists a subsequence (xki) which weakly converges
to some w ∈ H such that

lim sup
k→+∞

〈g(x)− x, xk − x〉 = lim
i→+∞

〈g(x)− x, xki − x〉.

Moreover, as (xk − uk) strongly converges to 0, we deduce also that (uki) weakly converges
to w.

We will prove that w ∈ S. Taking into account uk = JF1
r (xk) and (1.3) we obtain from

the monotonicity of F1 the following

〈y − uk, uk − xk〉 ≥ rF1(y, u
k) ∀y ∈ C1. (2.3)
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F1(y, .) being convex and lower semicontinuous (lsc), it is weakly lsc, so when i goes to +∞
in (2.3), we get

rF1(y, w) ≤ lim inf
i→+∞

rF1(y, u
ki) ≤ lim inf

i→+∞
〈y − uki , uki − xki〉. (2.4)

Coming back to the fact that (uki) weakly converges to w and (xk − uk) strongly converges
to 0, we deduce that

lim sup
i

〈y − uki , uki − xki〉 = 0.

In addition, by (2.4), we also have

F1(y, w) ≤ 0 ∀y ∈ C1,

which means that w is a dual solution of EP (F1). Consequently, due to Minty’s Lemma 1.1
(ii), we are able to conclude that w ∈ EP (F1).

Next, we show that w ∈ EP (F2). To this end, with αk + βk + γk = 1 we can write

xk+1 − JF2
r (uk) = αkx

k + βkg(x
k) + γkJ

F2
r (uk)− JF2

r (uk)

= αk(x
k − JF2

r (uk)) + βk(g(x
k)− JF2

r (uk)).

Then

‖JF2
r (uk+1)− xk+1‖ ≤ ‖JF2

r (uk+1)− JF2
r (uk)‖+ ‖JF2

r (uk)− xk+1‖
≤ ‖uk+1 − uk‖+ αk‖xk − JF2

r (uk)‖+ βk‖g(xk)− JF2
r (uk)‖

≤ (1− (βk + γk))‖xk − JF2
r (uk)‖+ (‖uk+1 − uk‖

+ βk‖g(xk)− JF2
r (uk)‖).

Now, let us set ak = ‖xk−JF2
r (uk)‖, δk = ‖uk+1−uk‖+βk‖g(xk)−JF2

r (uk)‖ and tk = βk+γk.
Since γk > 0 and γk ↛ 0, then

∑+∞
k=0 γk = +∞. Furthermore, as δk → 0, we also have

lim supk
δk
γk

≤ 0. Hence, by virtue of Lemma 1.11, we obtain limk→+∞ ‖JF2
r (uk)− xk‖ = 0,

which combined with

‖JF2
r (uk)− uk‖ ≤ ‖JF2

r (uk)− xk‖+ ‖xk − uk‖

leads to limk→+∞ ‖JF2
r (uk)− uk‖ = 0.

Therefore, by taking T = JF2
r in Lemma 1.9 and using the fact that uki

w−→ w and

(I − JF2
r )(uki)

s−→ 0, we see that 0 = (I − JF2
r )(w), i.e., JF2

r (w) = w and then w ∈ EP (F2).

Finally, since w ∈ S, the characterization of projection x = ΠS(g(x)) gives us 〈g(x) −
x,w − x〉 ≤ 0, which implies that

lim sup
k

〈g(x)− x, xk − x〉 = lim
i
〈g(x)− x, xki − x〉

= 〈g(x)− x,w − x〉
≤ 0.

Step 6: Having in mind that ‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉, we can write
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‖xk+1 − x‖2 = ‖αk(x
k − x) + γk(Jx

k − x) + βk(g(x
k)− x)‖2

≤ ‖αk(x
k − x) + γk(Jx

k − x)‖2 + 2βk〈g(xk)− x, xk+1 − x〉
≤ (αk‖(xk − x)‖+ γk‖Jxk − x‖)2 + 2βk〈g(xk)− g(x), xk+1 − x〉

+2βk〈g(x)− x, xk+1 − x〉
≤ (αk + γk)

2‖xk − x‖2 + βkδ[‖xk − x‖2 + ‖xk+1 − x‖2]
+2βk〈g(x)− x, xk+1 − x〉

≤ (1− βk)
2‖xk − x‖2 + βkδ‖xk − x‖2 + βkδ‖xk+1 − x‖2

+2βk〈g(x)− x, xk+1 − x〉.

Let us set 1− tk = (1−βk)
2+βkδ

1−δβk and δk = 2βk

1−δβk
〈g(x)− x, xk+1 − x〉. Of course we have

lim sup
k

δk
tk

= lim sup
k

[
2βk

1− δβk
〈g(x)− x, xk+1 − x〉 × 1− δβk

(2− βk − 2δ)βk

]
= lim sup

k

2

2− βk − 2δ
〈g(x)− x, xk+1 − x〉

≤ 0.

The last inequality comes from (2) and the fact that limk
2

2−βk−2δ = 1
1−δ . On the other

hand, remark that βk ≥ 0 implies 1 − δβk ≤ 1 and that βk −→ 0 ensures the existence of
some constant K > 0 such that for every k ≥ K, βk ≤ 1 − δ. In this way, observe that
(2− βk − 2δ) ≥ (1− δ) and then tk ≥ (1− δ)βk for k ≥ K. Accordingly,∑

k

tk ≥ (1− δ)
∑
k

βk = +∞.

Then, with ak = ‖xk − x‖, the conditions of Lemma (1.11) are satisfied. This permits to
conclude that (xk) strongly converges to x = ΠS(g(x)).

Remark 2.3. Let us emphasize that:

(i) The theorem above is not impacted by the order of the inequalities of the system (1.1),
we can commute them freely in the formulation of the problem.

(ii) In [27], the author has developed an iterative scheme strongly convergent to a com-
mon solution of variational inequalities and systems of equilibrium problems and fixed
points of families and semigroups of nonexpansive mappings. Our algorithm (2.1) is
a special case of the one in [27, Theorem 3.1] from which we can derive our result in
Theorem 2.2, but for completeness, we have included our independent proof to let also
our paper be self-contained for the reader convenience.

3 Application to the Split Common Fixed Point Problem

Let H1 and H2 be two real Hilbert spaces and let A : H1 −→ H2 be a bounded linear
operator. Given non-linear operators (Ui)

m
i=1 : H1 −→ H1 and (Ti)

m
i=1 : H2 −→ H2 where

m ≥ 1 is an integer. The split common fixed point problem (SCFPP) consists at finding a
point x satisfying the system:

x ∈
m⋂
i=1

FixUi such that Ax ∈
m⋂
j=1

FixTj . (3.1)
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We denote by Γ the set of solutions to the problem (3.1).
In particular, if m = 1 then the problem (3.1) reduces to finding a point x with the following
property

x ∈ FixU such that Ax ∈ FixT. (3.2)

(3.2) is usually called the two set split common fixed point problem. We denote by Γ0 the
solution set of problem (3.2).

From the chronological viewpoint, the problem (3.1) was firstly introduced by Censor and
Segal in [5] in Euclidean spaces. Later, Moudafi [24] initiated the algorithmic treatment for
solving the two split common fixed point problem for the class of demicontractive operators
in Hilbert space by the use of Féjer-monotonicity sequences. Thereafter, Wang and Xu [35]
proposed a cyclic iterative algorithm for solving (SCFPP) for directed operators. In recent
years, many authors have made several efforts to develop implementable iterative methods
for solving these problems, in this sense we quote here for example [5], [33], [7], [24], [18].

In the present paper our goal is to develop an iterative algorithm for solving problems
(3.2) and (3.1) by formulating theses problems as a system the equilibrium problems pur-
posed in Section 2. Actually, for given bifunctions Fi : Ci × Ci → R, we observe that x is

a solution to (1.1) if and only if x is a fixed point of the mapping JFm
r J

Fm−1
r . . . JF1

r (see
Corollary 1.7). This means that

x ∈
m⋂
i=i

FixJFi
r .

Therefore, the problem (1.1) is equivalent to (3.1) with H1 = H2 = H, A = idH and
Ui = Ti = JFi

r for 1 ≤ i ≤ m. Conversely, given two Hilbert spaces H1 and H2, with
inner product denoted respectively by 〈·, ·〉H1

and 〈·, ·〉H2
, two operators U : H1 −→ H1,

T : H2 −→ H2 with nonempty intersection of fixed point sets FixU and FixT , and a
bounded linear operator A : H1 −→ H2, a decisive step in our treatment is based on the fact
that problem (3.1) can be converted into the problem (1.1) for a suitable class of operators.

Let us recall first some important concepts of operators which are usually involved in
iterative methods for the split common fixed point.

Definition 3.1. The mapping K : H −→ H is said to be β-demicontractive if there exists
β ∈ R such that

‖Kx− q‖2 ≤ ‖x− q‖2 + β‖Kx− x‖2 ∀x ∈ H, q ∈ FixK, (3.3)

which is equivalent to

〈x−Kx, x− q〉 ≥ 1− β

2
‖Kx− x‖2 ∀x ∈ H, q ∈ FixK.

Usually, the constant β is supposed to be in the interval [0, 1), in this case the mapping K
is called demicontractive mapping. For negative values of β the class of β-demicontractive
mappings is a subject to a great restriction, such a class (with negative value of β) was
considered in [1] under the name of strongly attracting maps. In particular, a mapping
K which satisfies (3.3) with β = −1 is called pseudo-contractive. Notice that the class of
β-demicontractive mappings properly includes the class of quasi-nonexpansive mappings in
the case when the constant β is supposed to be a positive number. Note also that a mapping
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K satisfying (3.3) with β = 1 is usually called hemi-contractive and it was considered by
some authors in connection with the strong convergence of the implicit Mann-type iteration
(see [25] and [28] for example).

To start the treatment of this section let us assume that the operators U and T are
demicontractive operators with constant β ∈ [0, 1) and µ ∈ [0, 1) respectively, set C̃1 =
FixU , C̃2 = A−1(FixT ) and consider two closed and convex subsets in H1, C1 and C2

such that C̃1 ⊂ C1 and C̃2 ⊂ C2. We further introduce the real-valued bifunctions FU :
C1 × C1 −→ R and F(A,T ) : C2 × C2 −→ R defined respectively by{

FU (x, y) = 〈x− Ux, y − x〉H1
∀x, y ∈ C1,

F(A,T )(x, y) = 〈Ax− T (Ax), A(y − x)〉H2
∀x, y ∈ C2.

(3.4)

Of course, if the problem (3.2) admits a solution x then x ∈ C̃1∩ C̃2 ⊂ C1∩C2, which means
that U(x) = x and T (Ax) = Ax. Hence, FU (x, y) = 0 for each y ∈ C1 and F(A,T )(x, y) = 0
for each y ∈ C2 and then x solve the problem (1.1) in the case m = 2, F1 = FU and
F2 = F(A,T ). Conversely, if we suppose that the system of equilibrium problem (1.1) admits
a solution for the bifunctions FU and F(A,T ), then there exists a common element x ∈ C1∩C2

such that {
〈x− Ux, y − x〉H1

≥ 0 ∀y ∈ C1

〈Ax− T (Ax), A(y − x)〉H2
≥ 0 ∀y ∈ C2.

(3.5)

Given that C̃1 ⊂ C1 and C̃2 ⊂ C2 then the system (3.5) implies{
〈x− Ux, y − x〉H1

≥ 0 ∀y ∈ C̃1

〈Ax− T (Ax), A(y − x)〉H2
≥ 0 ∀y ∈ C̃2.

(3.6)

Using the fact that the operator U is demicontractive and C̃1 = FixU we deduce that

〈x− Ux, x− y〉H1
≥ 1− β

2
‖x− Ux‖2 ≥ 0 ∀y ∈ C̃1. (3.7)

If we compare the last inequality with the first inequality of the system (3.6) we see that

〈x− Ux, x− y〉H1
= 0 ∀y ∈ C̃1. (3.8)

Then, combining (3.7) and (3.8) we obtain ‖x − Ux‖ = 0. The same technique can be
used to prove that T (Ax) = Ax. Indeed, the operator T being demicontractive and C̃2 =
A−1(FixT ), for a fixed point y in C̃2, one has Ay ∈ FixT and moreover

〈Ax− T (Ax), Ax−Ay〉H2
≥ 1− µ

2
‖Ax− T (Ax)‖2 ≥ 0. (3.9)

From last inequality and the second inequality of system (3.6) as well as the linearity of
operator A it follows that

〈Ax− T (Ax), Ax−Ay〉H2
= 0 ∀y ∈ C̃2.

Therefore, ‖Ax − T (Ax)‖ = 0. Consequently, Ax is a fixed point of T, hence x solve the
problem (3.2). As a conclusion, the problem (3.2) is equivalent to the system of equilibria
(1.1), with m = 2, whenever the operators T and U are demicontractives. By the argument
of induction, the problem (3.1) is easily shown to be equivalent to (1.1) for any m ≥ 1.
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Next we aim at applying the iterative scheme developed in section 2 to solve the two
problems (3.1) and (3.2). But before this, let us observe that the bifunctions FU , F(A,T ) are
not monotone in general if the operators U and T are only demicontractives. To see this
fact, let us consider for example: Take U : R −→ R defined by U(x) = x2. Clearly, 0 is the
unique fixed point of U . On the other hand, for any x ∈ R,

|U(x)− 0|2 = |U(x)|2 = |x|2 ≤ |x|2 + β|U(x)− x|2,

for any β ≥ 0. Thus U is β-demicontractive for any β ≥ 0. But if we take FU (x, y) =
〈x− U(x), y − x〉 for each x, y ∈ C1, wherein C1 is a closed and convex subset of R contain-
ing 0, it is a simple matter to check that FU is not monotone (for instance the monotonicity
condition fails for x = 1 and y = 2).
For this reason linked to the monotonicity property (on FU and F(A,T )), we suggest the
following alternative, which can be regarded as a concept leading to a subclass of demicon-
tractive operators.

Definition 3.2. The mapping K : H −→ H is said to be M-demicontractive (or β-M-
demicontractive) if there exists β ∈ R such that{

‖Kx− y‖2 ≤ ‖x− y‖2 + β‖Kx− x‖2 ∀(x, y) ∈ H × FixK.

〈Kx−Ky, x− y〉 ≤ ‖x− y‖2 ∀(x, y) ∈ H × (H \ FixK).
(3.10)

Remark 3.3. It is clear that any M-demicontractive operator is demicontractive but the
inverse is not true. To see that let us take K : R −→ R defined by K(x) = x2 for every
x ∈ R. Then K is demi-contractive while the second inequality of (3.10) is not satisfied for
x = 1 and y = 2.

Example 3.4. As an example of a demicontractive mapping we take K : R −→ R defined

by K(x) = −4

5
x for every x ∈ R. Then (3.10) is satisfied. In fact, 0 is clearly the unique

fixed point of K. Furthermore, for any x ∈ R,

|K(x)− 0|2 = |K(x)|2 =
16

25
|x|2 ≤ |x|2 ≤ |x|2 + β|K(x)− x|2,

for any β ≥ 0. Thus, K is demicontractive. In addition, for any (x, y) ∈ R × (R \ {0}), we
have

(K(x)−K(y))(x− y) = −4

5
(x− y)2 ≤ (x− y)2.

Thus, K is M-demicontractive. We observe that this example can be generalized to any
non-expansive operator. Precisely, if K is non-expansive operator, for any x, y ∈ H, we have

‖K(x)−K(y)‖ ≤ ‖x− y‖.

Hence,
‖K(x)−K(y)‖‖x− y‖ ≤ ‖x− y‖2.

This implies that
〈K(x)−K(y), x− y〉 ≤ ‖x− y‖2,

and then the second inequality of (3.10) is satisfied. Moreover, it is well known that any
nonexpansive operator is demicontractive and satisfies the first inequality of (3.10). Accord-
ingly, the set of nonexpansive operators is a subclass of M -demicontractive operators.
A further interesting question that arises in this context is whether the mapping I − K
disposes at the demi-closedness property at 0 for a given M-demicontractive operator K :
H −→ H. The answer is negative as shows the following counterexample:
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Example 3.5. Let us consider the mapping K : R −→ R defined by:
K(x) :=

2x

x+ 1
, x ∈]1,∞[;

K(x) := 0, x ∈]−∞, 1].

Then I − K is not demi-closed at point 0. Actually, the sequence yn := n+1
n converges

to 1 and when n −→ ∞, yn − K(yn) −→ 0 (because K(yn) = 2yn

yn+1 = 2(n+1)
2n+1 ) while

1 − K(1) = 1 6= 0. However, K is M -demicontracive as the inequalities of (3.10) can be
checked as follows. Firstly, observe that K has a unique fixed point 0 and

|Kx− 0|2 ≤ |x|2 + 3

4
|Kx− x|2 ∀x ∈ R.

Furthermore, a direct calculus gives us

(K(x)−K(y))(x− y) ≤ |x− y|2, ∀x ∈ R, ∀y ∈ R \ {0}.

Hence, K is M -demicontractive with the coefficient β = 3
4 .

Lemma 3.6. Let U : H1 −→ H1, T : H2 −→ H2 be M-demicontractive operators with some
constants β ∈ [0, 1) and µ ∈ [0, 1) respectively, with FixU, F ix T are non empty sets, and
let A : H1 −→ H2 be a bounded linear operator. For any closed and convex subsets of H1,
C1 and C2, such that C1 ⊇ FixU and C2 ⊇ A−1(FixT ), the bifunctions FU and F(A,T )

defined in (3.4) are monotones.

Proof. Let (x, y) ∈ C1 × C1. There are two cases to treat:

First case: y ∈ FixU .
From the first inequality of (3.10) it follows that

‖Ux− y‖2 ≤ ‖x− y‖2 + β‖Ux− x‖2,

which is equivalent to

〈x− Ux, x− y〉H1
≥ 1− β

2
‖x− Ux‖2.

Now, using the definition of FU and the fact that β ∈ [0, 1), we infer

FU (x, y) ≤
β − 1

2
‖x− U(x)‖2 ≤ 0.

On the other hand, we have FU (y, x) = 〈y − Uy, x− y〉H1
= 0 (since y is a fixed point of

U), then, in this case, FU (x, y) + FU (y, x) ≤ 0.

Second case: y ∈ C1 \ FixU .
By the definition of M-demicontractive operators, the second inequality of (3.10) holds

and we have

FU (x, y) + FU (y, x) = 〈x− Ux, y − x〉H1
+ 〈y − Uy, x− y〉H1

= 〈Ux− Uy, x− y〉H1
− ‖x− y‖2

≤ 0.
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In both of the two cases, we have the inequality FU (x, y)+FU (y, x) ≤ 0, hence the bifunction
FU is monotone.

Now, we shall prove that F(A,T ) is monotone. At first recall that

C2 ⊇ C̃2 = A−1(FixT ).

Take any x, y ∈ C2. There are again two cases to discuss.

First case: y ∈ C̃2, in this case, Ay ∈ FixT , so given that T is M-demicontractive with
constant µ ∈ [0, 1), we have

〈z − Tz, z − q〉H2
≥ 1− µ

2
‖z − Tz‖2 (z, q) ∈ (H2 × FixT ). (3.11)

By making the choice z = Ax and q = Ay in (3.11) we obtain

〈Ax− T (Ax), Ax−Ay〉H2
≥ 1− µ

2
‖Ax− T (Ax)‖2.

Thus

F(A,T )(x, y) ≤
µ− 1

2
‖Ax− T (Ax)‖2 ≤ 0.

As Ay ∈ FixT , we can write

F(A,T )(y, x) = 〈Ay − T (Ay), Ax−Ay〉H2
= 0,

which implies that
F(A,T )(x, y) + F(A,T )(y, x) ≤ 0.

Second case: y ∈ C2 \ C̃2. In this case, we have Ay /∈ FixT, so let us write the second
inequality in the definition of M-demicontractivity of T as follows :

〈Tz − Tz′, z − z′〉H2
≤ ‖z − z′‖2 ∀(z, z′) ∈ (H2 × (H2 \ FixT )). (3.12)

Then by injecting the values z = Ax and z′ = Ay in (3.12) we get

〈T (Ax)− T (Ay), Ax−Ay〉H2
≤ ‖Ax−Ay‖2.

Of course, the last inequality is equivalent to F(A,T )(x, y) + F(A,T )(y, x) ≤ 0, which means
that the bifunction F(A,T ) is monotone.

Next, we introduce the concept of F -upper hemicontinuity mapping which can be viewed
as the split counterpart of the standard upper hemicontinuity of equilibrium bifunctions
associated to the operators.

Definition 3.7 ([21, Definition 2.2]). Let C be any subset of a real Hilbert space H. A
mapping K : C −→ H is said to be F -upper hemicontinuous (lower hemicontinuous) if
for all v ∈ C, the function u 7−→ 〈K(u), u − v〉 is weakly upper semicontinuous (lower
semicontinuous) on C.

This kind of semi-continuity, introduced firstly by Fan (See [13],[12]), is well known in
the framework of the existence theory of variational inequalities. Note that in the literature,
the F -lower hemicontinuity is called F -hemicontinuity. We mention that Ernest and Théra
[11] proved the following result: If K is linear and continuous operator then the F -lower
hemicontinuity of K is equivalent to the following property

if xk ⇀ 0 then lim inf
k

〈K(xk), xk〉 ≥ 0. (3.13)
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Example 3.8. Let us consider any linear and continuous mapping K : H −→ H such that
the implication (3.13) is not satisfied. Then K is not F-hemicontinuous, whereas I −K is
demiclosed at 0. Conversely, we present the following example:

Fix a > 1 and consider the function defined on [0, 1] by

K(x) =


−1
x + a, si x ∈] 1

2a , 1],
−a si x ∈]0, 1

2a ],
a si x = 0.

K(x) is F-hemicontinuous on [0, 1] but obviously I −K is not demiclosed at 0. Clearly, the
sequence yn := 1

2an , n ≥ 1 converges to 0 and yn − K(yn) −→ a (when n −→ ∞) while
(I −K)(0) = −a 6= a.

Lemma 3.9. Let U : H1 −→ H1, T : H2 −→ H2 be F -upper hemicontinuous mappings,
with FixU, F ix T are non empty sets, and let A : H1 −→ H2 be a bounded linear operator.
For any closed and convex subsets of H1, C1 and C2, such that C1 ⊇ FixU and C2 ⊇
A−1(FixT ), the bifunctions FU and F(A,T ) defined in (3.4) verify the condition (5).

Proof. Let x, y, z be fixed points in C1, take xt := (1 − t)x + tz an arbitrary element in
segment [z, x], then xt converges to x if t −→ 0+ and we have

lim sup
t↓0+

FU (xt, y) = lim sup
t↓0+

〈xt − U(xt), y − xt〉

≤ lim sup
t↓0+

〈xt, y − xt〉+ lim sup
t↓0+

〈U(xt), xt − y〉

≤ 〈x, y − x〉+ 〈U(x), x− y〉. (by F-hemicontinuity of U).

= FU (x, y).

Then the condition (5) is satisfied by bifunction FU . A similar argument permits to conclude
that the condition (5) is also satisfied by bifunction F(A,T ) under F-hemicontinuity condition
on T .

Now, we are in position to give our convergence result relative to the split common fixed
point problem (3.2).

Algorithm 3.10. From x0 ∈ C2, we generate a sequence (xk) by

xk+1 = αkx
k + βkg(x

k) + γkJ
F(A,T )
r JFU

r (xk), (3.14)

where JFU
r and J

F(A,T )
r are the resolvent of the special bifunctions FU and F(A,T ) defined

by the expression (3.4) and g : C2 −→ C2 an arbitrary δ -contraction, δ ∈ (0, 1), while
αk, βk, γk are positive scalars such that αk + βk + γk = 1, βk → 0,

∑
βk = +∞ and

(αk) ⊂ [c, d] for some c, d ∈ (0, 1).

Theorem 3.11. Let A : H1 −→ H2 be a bounded linear operator. Let U : H1 −→ H1

and T : H2 −→ H2 be F-hemicontinuous and M-demicontractive operators with constant
β ∈ [0, 1) and µ ∈ [0, 1) respectively such that FixU 6= ∅ and FixT 6= ∅. If the problem
(3.2) is consistent (i.e., Γ0 is nonempty) then the sequence (xk) generated by the Algorithm
(3.14) strongly converges to a point x ∈ Γ0.
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Proof. Recall that the bifunction FU is given by

FU (x, y) = 〈x− Ux, y − x〉H1
,

for each x, y in the closed and convex subset C1 of H1 such that C1 ⊇ FixU while the other
one F(A,T ) is defined by

F(A,T )(x, y) = 〈Ax− T (Ax), A(y − x)〉H2
,

for each x, y in the closed and convex subset C2 of H1 such that C2 ⊇ A−1(FixT ). Then,
based on the above discussion we see that the problems (3.2) and (1.1) are equivalent i.e.,
S0 = Γ0, with S0 is the set of solutions of system of equilibrium problems defined by the
bifunctions FU and F(A,T ). By using Remark 1.2, we see that Γ0 is a closed and convex set.
Hence, we have,

‖ΠΓ0
◦ g(x)−ΠΓ0

◦ g(y)‖ = ‖ΠS0
◦ g(x)−ΠS0

◦ g(y)‖,
≤ ‖g(x)− g(y)‖,
≤ δ‖x− y‖.

Therefore, ΠΓ0 ◦ g : C2 −→ Γ0 is a contraction and there exists a unique point x such that
ΠΓ0

◦g(x) = x. Furthermore, the bifunctions FU : C1×C1 −→ R and F(A, T ) : C2×C2 −→ R
verify the conditions [(1)-(5)]. Precisely, For FU , it is clear that FU (x, x) = 0 for each
x ∈ C1. Since the inner product is linear and continuous then the conditions (2), (3) trivially
hold. The monotonicity of FU is guaranteed by Lemma 3.6 under M-demicontractivity of
the operator U , and the condition (5) is ensured by Lemma 3.9 under F-hemicontinuity of
mapping U . For F(A,T ), the operator A being linear we have A(0) = 0, hence F(A,T )(x, x) = 0

for each x ∈ C2. Moreover, using the continuity and again the linearity of A, the conditions
(2), (3) are automatically satisfied. The monotonicity of F(A,T ) is a consequence of Lemma
3.6 under M-demicontractivity of operator T , and the condition (5) comes Lemma 3.9 under
F-hemicontinuity of T .

Now, if the problem (3.2) admits a solution x, then x is also a solution to the system of
equilibrium points (1.1) with F1 = FU and F2 = F(A,T ). It remains only to take m = 2 in

the Algorithm (2.1) and replace JF1
r and JF2

r by JFU
r and J

F(A,T )
r respectively to derive from

Theorem 1.1 that the sequence (xk) generated by the Algorithm (3.14) strongly converges
to a point x ∈ Γ0.

In this paragraph, we obtain a further result for the problem (3.1) with a family of
M-demicontractive mappings. Let (Ui)

m
i=1 : H1 −→ H1 and (Ti)

m
i=1 : H2 −→ H2 be

M-demicontractive mappings. Assume that
⋂m

i=1 FixUi 6= ∅ and
⋂m

i=1 FixTi 6= ∅. Ob-
serve that these sets are convex and closed subsets (since the mappings Ti and Ui are
M-demicontractive) and F-hemicontinuous. Let A : H1 −→ H2 be a bounded linear opera-
tor. For any i ∈ {1, . . . ,m}, set CUi

= FixUi, C(A,Ti) = A−1(FixTi) and choose any closed
and convex subset of H1 noted Di, such that Di ⊇ CUi

∪C(A,Ti). By Γ we denote the set of
solutions to the problem (3.1) and assume that Γ is not empty, which implies that the set Di

is also nonempty for any i ∈ {1, . . . ,m}. Also observing that Di ⊃ CUi and Di ⊃ C(A,Ti).
For each i ∈ {1, . . . ,m}, let us introduce the bifunctions

FUi : Di ×Di −→ R, FUi(x, y) = 〈x− Uix, y − x〉H1
, (3.15)

and

F(A,Ti) : Di ×Di −→ R, F(A,Ti)(x, y) = 〈Ax− Ti(Ax), A(y − x)〉H2
. (3.16)
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Observing from now that, if x solves (3.1) then FUi(x, y) = F(A,Ti)(x, y) = 0, for each y ∈ Di

and each i ∈ {1 . . .m}. In the following we consider for each i ∈ {1 . . .m} and for some
λ ∈ (0, 1) the bifunction

Gλ
i : Di ×Di −→ R, Gλ

i (x, y) = (1− λ)FUi
(x, y) + λF(A,Ti)(x, y). (3.17)

With the well-known result below of Lemma 3.12 we are able to prove that {Gλ
i , 1 ≤ i ≤ m}

satisfy our conditions [(1)-(5)]. Besides, it will give us the link between the common solution
of EP (FUi

, Di) and EP (F(A,Ti), Di) and the solution to EP (Gλ
i , Di).

Lemma 3.12. Let C be a nonempty closed convex subset of a real Hilbert space H. For
i ∈ {1 . . . k} let Fi : C × C −→ R be a bifunction satisfying conditions [(1)-(5)]. Then

(i)

k∑
i=1

λiFi satisfies the conditions [(1)-(5)], where λi ∈ (0.1) for every i ∈ {1 . . . k} and

k∑
i=1

λi = 1.

(ii) If

k⋂
i=1

S(Fi, C) 6= ∅ then S(

k∑
i=1

λiFi, C) =

k⋂
i=1

S(Fi, C), where S(Fi, C) is the set solu-

tion of equilibrium problem EP (Fi, C).

Proof. For (i) see [18]. For (ii) see [29].

By this moment we present our convergence result relatively to the split common fixed
point problem (3.1).

Algorithm 3.13. From x0 ∈ Cm, we generate a sequence (xk) by

xk+1 = αkx
k + βkg(x

k) + γkJ
Gλ

m
r J

Gλ
m−1

r . . . J
Gλ

1
r (xk). (3.18)

where, J
Gλ

i
r is the resolvent of the special bifunction Gλ

i defined by the expression (3.17),
and g : Cm −→ Cm an arbitrary δ -contraction, δ ∈ (0, 1), while αk, βk, γk are positive
scalars such that αk + βk + γk = 1, βk → 0,

∑
βk = +∞ and (αk) ⊂ [c, d] for some

c, d ∈ (0, 1).

Theorem 3.14. Let (Ui)
m
i=1 : H1 −→ H1 and (Ti)

m
i=1 : H2 −→ H2 be F-hemicontinuous

and M-demicontractive mappings with nonempty intersection of fixed point sets
m
∩
i=1

FixUi

and
m
∩
i=1

FixTi. Let A : H1 −→ H2 be a bounded linear operator. If the solution set Γ

is nonempty, i.e., the problem (3.1) is consistent then the sequence (xk) generated by the
Algorithm (3.18) strongly converges to a point x ∈ Γ.

Proof. Let us first recall the construction of the sequence of bifunctions {Gλ
i , i = 1, . . . ,m}

used to convert the problem (3.1) into a system of equilibrium problems. The first point is
the use the assumption Γ is not empty. Let x ∈ Γ. This is equivalent to

x ∈

(
m⋂
i=1

FixUi

)⋂
A−1

(
m⋂
i=1

FixTi

)
. (3.19)
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Now, for each i ∈ {1, . . . ,m}, take any closed and convex subset Di of H1 such that

Di ⊃ FixUi ∪A−1(FixTi). (3.20)

Clearly, from (3.19) it follows that x ∈
⋂m

i=1 Di. For a given value of i ∈ {1, . . . ,m},
we construct two bifunctions FUi

and F(A,Ti) over the domain Di × Di, which are defined
respectively by relations (3.15) and (3.16). Then, take the convex combination of FUi and
F(A,Ti). Let us denote by Gλ

i this combination for some λ ∈ (0, 1), so Gλ
i is defined by

relation (3.17). Let S be the set of solutions of the system of equilibrium problems defined
by {Gλ

i , i = 1, . . . ,m}.i.e.,

S :=
{
x ∈

m
∩
i=1

Di such that Gλ
i (x, y) ≥ 0, ∀y ∈ Di

}
.

Now, observe that Lemma 3.6 and Lemma 3.9 ensure that the bifunctions FUi
and F(A,Ti)

satisfy the conditions [(1)-(5)] for all i ∈ {1, . . . ,m}. Consequently, by the use of the point
(i) of Lemma 3.12, the bifunction Gλ

i satisfies the conditions [(1)-(5)] for all i ∈ {1, . . . ,m}.
At this stage, thanks to these conditions on Gλ

i , we are able to claim that Γ = S. Indeed,
if x ∈ Γ, then it is clear that x ∈

⋂m
i=1 Di and for any {1 ≤ i ≤ m}, Gi(x, y) = 0 for all

y ∈ Di, hence x ∈ S. Conversely, if x ∈ S, then by the point (ii) of Lemma 3.12, for any
{1 ≤ i ≤ m}, we have {

FUi(x, y) ∀y ∈ Di,
F(A,Ti)(x, y) ∀y ∈ Di.

(3.21)

According to the case of two set split common fixed point discussed above, for any arbitrary
{1 ≤ i ≤ m}, we conclude that x ∈ FixUi and Ax ∈ FixTi, which means that x ∈ Γ. Use
now Remark 1.2 and see that Γ = S is a closed and convex subset of H1. Thus, in view of
the projection mapping on this subset we infer

‖ΠΓ ◦ g(x)−ΠΓ ◦ g(y)‖ = ‖ΠS ◦ g(x)−ΠS ◦ g(y)‖,
≤ ‖g(x)− g(y)‖,
≤ δ‖x− y‖.

Therefore, ΠΓ ◦ g : Cm −→ Γ is a contraction. This implies that there exists a unique point
x such that ΠΓ ◦ g(x) = x. The strong convergence of the sequence (xk) to x is immediate
from Theorem 2.2.

4 A Numerical Example:

In this section, we give a numerical example to support our main Theorem.

Example 4.1. Let H1 = R2, H2 = R. Define the mappings U : R2 −→ R2, T : R −→ R
and A : R2 −→ R by U(x1, x2) = (−x1, x2), T (x) = − 4

5x and A(x1, x2) = x1 + x2 for all
x, x1, x2 in R. Clearly, FixU = {0} ×R, FixT = {0}, A is a bounded and linear operator.
In addition, T is M-demicontractive. Let us show that U is M-demicontractive. Take two
points x = (x1, x2) and q = (0, q2) in R2 and FixU respectively. Then

‖Ux− q‖2 = ‖(−x1, x2)− (0, q2)‖2

= |x1|2 + |x2 − q2|2

= ‖x− q‖2

≤ ‖x− q‖2 + β‖Ux− q‖2, for some β ∈ [0, 1).
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Then the first inequality in (3.10) is satisfied. For the second inequality of (3.10), for any
points x = (x1, x2) and y = (y1, y2) in R \ {0} × R we write

〈Ux− Uy, x− y〉R2 = 〈(−x1, x2)− (−y1, y2), (x1 − y1, x2 − y2)〉R2

= −(x1 − y1)
2 + (x2 − y2)

2

≤ ‖(x1, x2)− (y1, y2)‖2.

This shows that U is M-demicontractive mapping for any β ∈ [0, 1). Now, our problem (3.2)
is equivalent to finding (x1, x2) ∈ (0,R) such that

x1 + x2 = 0.

In other terms

x1 = x2 = 0.

Hence, (0, 0) is the unique solution to the problem (3.2).
Let C1 be any closed and convex subset of R2 such that {0} × R ⊂ C1. For example

take C1 = R × R. We further introduce the bifunction FU : C1 × C1 −→ R defined for any(
(x1, x2), (y1, y2)

)
∈ C1 × C1 by

FU

(
(x1, x2), (y1, y2)

)
:= 〈(x1, x2)− U(x1, x2), (y1, y2)− (x1, x2)〉R2 = 2x1(y1 − x1).

It is clear that the conditions (1), (2), (3) and (4) are satisfied. For the monotonicity of FU ,
observe that

FU

(
(x1, x2), (y1, y2)

)
+ FU

(
(y1, y2), (x1, x2)

)
= −2(y1 − x1)

2 ≤ 0.

Let C2 be a closed and convex subset of R2 such that C̃2 := A−1{0} ⊂ C2 (note that
A−1{0} = {(x,−x), x ∈ R}), for example we my choose C2 = R × R. For any x =
(x1, x2), y = (y1, y2) ∈ C2 × C2, we define F(A,T ) : C2 × C2 −→ R by

F(A,T )(x, y) :=
(
Ax− T (Ax)

)
.A(y − x) =

9

5
(x1 + x2).

(
(y1 − x1) + (y2 − x2)

)
.

It is clear that the condition (1), (2), (3) and (4) are satisfied. The monotonicity of F(A,T )

is also fulfilled thanks to the following easy observation

F(A,T )

(
(x1, x2), (y1, y2)

)
+ F(A,T )

(
(y1, y2), (x1, x2)

)
= −9

5

(
(x1 + x2)− (y1 + y2)

)2
≤ 0.

So the bifunction F(A,T ) verifies all the conditions (1)-(5).
On the other hand, x := (0, 0) ∈ C1 ∩ C2 and it is a common solution for the system of

equilibrium problems defined by two bifunctions FU and F(A,T ). Accordingly, the Algorithm
(3.14) applied to this example converges to a solution x to the corresponding split common
fixed point problem.

We turn now our attention to the case when r = 1 (in the definition of the resolvent of
the underlying bifunction) and uk := JFU

1 (xk), for every k ≥ 0 to obtain uk ∈ C1 and

〈y − uk, 2uk − U(uk)− xk〉R2 ≥ 0 ∀y ∈ C1. (4.1)
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In particular, for y = −uk + U(uk) + xk in (4.1) we get −‖2uk − U(uk) − xk‖2 = 0, which
means that 2uk − U(uk)− xk = 0. Of course, uk ∈ C1 = R2. Then

uk =

(
1
3 0
0 1

)
xk. (4.2)

Let us put vk := J
F(A,T )

1 JFU
1 (xk) = J

F(A,T )

1 (uk) for every k ≥ 0, so vk ∈ C2 and

F(A,T )(vk, y) + 〈y − vk, vk − uk〉R2 ≥ 0 ∀y ∈ C2. (4.3)

We shall transform the expression (4.3) by writing F(A,T )(vk, y) as a scalar product in R2.
To do that let us introduce the following notation:

vk :=

(
vk,1
vk,2

)
, λk := 9

5 (vk,1 + vk,2), θk := λk.

(
1
1

)
Accordingly, write F(A,T )(vk, y) as the

following
F(A,T )(vk, y) = 〈y − vk, θk〉R2

and see that (4.3) is equivalent to

〈y − vk, vk − uk + θk〉R2 ≥ 0 ∀y ∈ C2. (4.4)

In particular, for y = uk − θk in (4.4) we get −‖vk − uk + θk‖2 = 0. By elementary calculus
we obtain

vk =

 14
23

−9
23

−9
23

14
23

uk. (4.5)

Hence, combine (4.2) with (4.5) to get that

vk = Mxk, (4.6)

where

M =

 14
69

−9
23

−3
23

14
23

 .

In our algorithm (3.14) let us inject αk := k+1
2k+1 , βk := 1

100k , γk := 100k2−2k−1
200k2+100k and

g : C2 −→ C2 defined by g(x, y) := 1
2 (x, y) to obtain that x1 ∈ C2 and for every k ≥ 1

xk+1 =
200k2 + 202k + 1

400k2 + 200k
xk +

100k2 − 2k − 1

200k2 + 100k
Mxk . (4.7)
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Figure 1: Convergence of sequences ln(‖xk‖) and ln(‖vk‖) to 0, with x0 = (−5, 5).

Figure 2: Convergence of sequences ln(‖xk‖) and ln(‖vk‖) to 0, with x0 = (−8, 8).
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