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(POCS) [12], subgradient projection algorithms [21] and Richardson-Lucy method [3] can
also be used to solve related problems.

Some statistical algorithms are used in linear image reconstruction. The maximum likeli-
hood (ML) estimation criterion, which solves the problem of maximum likelihood estimation
of incomplete data is proposed to solve the linear imaging problem [16]. Assuming that the
measured data consists with the Poisson noise model, the expectation maximization (EM)
algorithm is developed in [17]. Furthermore, the ML-EM method is used to estimate the
attenuation coefficient by combining the ML method with the EM algorithm [4,11]. In order
to accelerate the convergent speed of the EM algorithm, some scholars divide the data into
different ordered subsets (OS) and propose different OS-EM algorithms [8]. The OS-EM is
extended into an infinite dimensional space in [6]. In addition, some regularization methods
are used to overcome the ill posed reconstruction problem with Poisson data [7].

In fact, the EM algorithm for linear systems can be obtained by optimizing the Kullback-
Leibler divergence (KL distance, or cross-entropy) between the measurement data and the
forward problem data. The KL divergence is first introduced by Kullback and Leibler
in [13]. Then the convergence properties of EM algorithm by optimizing KL divergence are
proved by the authors [1, 9]. Considering that the KL divergence is particularly sensitive
where the measurement data is very small, we introduce a parameter λ in KL divergence
and measure the difference between the measurements and the forward problem data with
the λ-KL divergence in this paper. We then derive an iterative formula for the linear sys-
tem using Karush-Kuhn-Tucker condition of the objective function. By introducing hidden
data, we transform the original problem into two optimization subproblems and obtain the
convergence results of the iterative algorithm. In order to further verify the convergence
performance of the algorithm, we simulate the scanning mode of fan beam CT and generate
simulation measurement data of Shepp-Logan phantom. The correctness and validity of the
iterative formula are verified by these data.

The rest of the paper is organized as follows. In Section 2, we make some basic assump-
tions about the linear system and introduce the concept and properties of λ-KL divergence.
We then derive an iterative method based on the λ-KL divergence and provide its conver-
gence property in Section 3 and Section 4, respectively. In Section 5, we consider numerical
test to validate the performances of the iteration method. In Section 6, we present the
conclusions.

2 Preliminaries

Throughout this paper, we mainly investigate a parameterized iterative reconstruction method
for imaging problem

Ax = b, (2.1)

where A ∈ Rm×n is the imaging matrix, b ∈ Rm is the detected data and x ∈ Rn is the
unknown image.

For convenience of description, we recall some notations and the definition for KL di-
vergence first. Let Rm

+ = {x ∈ Rm
∣∣ xi ≥ 0, i = 1, 2, . . . ,m}, Rm

++ = {x ∈ Rm
∣∣ xi > 0, i =

1, 2, . . . ,m}. For α = (α1, α2, · · · , αm)T ∈ Rm
++ and β = (β1, β2, · · · , βm)T ∈ Rm

++, the KL
divergence is defined as [9]

KL(α, β) =

m∑
i=1

(
αi log

αi

βi
+ βi − αi

)
. (2.2)
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Let λ ∈ (0, 1) be a constant. Similarly to λ-divergence [20], we define a new measure of
divergence as

dλ(α, β) = λKL(α, λα+ (1− λ)β) + (1− λ)KL(β, λα+ (1− λ)β)

=

m∑
i=1

[
λαi log

αi

λαi + (1− λ)βi
+ (1− λ)βi log

βi

λαi + (1− λ)βi

]
. (2.3)

The same definitions and notations can be applied to Rn
++ analogously.

3 Iteration formula for linear mathematical problem

In the following, we first make some assumptions for the system matrix and measurements.
Then we provide an iteration method for the image reconstruction problem. The properties
of the iteration operator and sequence are placed at the end of this section.

Assume that A ∈ Rm×n
+ satisfies

∑n
j=1 aij > 0 for all i = 1, 2, . . . ,m, and

∑m
i=1 aij = 1

for all j = 1, 2, · · · , n. b ∈ Rm
++ satisfies

∑m
i=1 bi = 1. These assumptions can be simply

achieved by the method of substituting variables.
According to the property of KL divergence, the imaging problem can be solved by

minimizing the function

F (x) =

{
dλ(b, Ax), x ∈ Γ,
+∞, otherwise,

(3.1)

where Γ = {x ∈ Rn
+

∣∣Ax ≻ 0}. Then the optimization problem can be solved by the iteration
method {

x(0) ∈ Rn
++,

x(k+1) = P (x(k)), for k = 0, 1, . . . .
(3.2)

Here the projection P : Γ → Γ is defined as

P (x)j = xj

m∏
i=1

[
λ

bi∑n
j=1 aijxj

+ (1− λ)

]aij

, for j = 1, 2, . . . , n. (3.3)

For the projection P and the sequence {x(k)} generated by the above method, the fol-
lowing propositions can be obtained.

Proposition 3.1. {x ∈ Γ
∣∣P (x) = x} ⊇ {x ∈ Γ

∣∣x = argminF (x)}.

Proof. It is easy to verify that Γ is a convex set. dλ(b, y) is convex with respect to y since
φλ(t) is strict convex. Composition with a linear transform y = Ax, F (x) is also convex and
it attains the minimum at those points in Γ. Then those points in the set of minimizers of
F satisfy the first order optimality conditions for F (x) such that x ≥ 0. That means

∂F

∂xj
= (1− λ)

m∑
i=1

aij log

∑n
j=1 aijxj

λbi + (1− λ)
∑n

j=1 aijxj
= µj , (3.4)

xj , µj ≥ 0, (3.5)

xjµj = 0, (3.6)
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for j = 1, 2, . . . , n. If xj ̸= 0, according to stationarity in Eq. (3.4), we obtain

m∏
i=1

[
λ

bi∑n
j=1 aijxj

+ (1− λ)

]aij

= 1. (3.7)

Therefore, whether xj is zero or not, we always have

xj

m∏
i=1

[
λ

bi∑n
j=1 aijxj

+ (1− λ)

]aij

= xj . (3.8)

Finally, we get the conclusion that the set of minimizer of F (x) is contained in the set of
fixed point of P .

Proposition 3.2. The nonnegative sequence {x(k)} generated by Eq. (3.2) is bounded by

n∑
j=1

x
(k+1)
j ≤ [1− (1− λ)k+1]

m∑
i=1

bi + (1− λ)k+1
n∑

j=1

x
(0)
j . (3.9)

In particular, if
∑n

j=1 x
(0)
j = 1, then

∑n
j=1 x

(k+1)
j ≤ 1 .

Proof. According to the iteration (3.2), we obtain

x
(k+1)
j = x

(k)
j exp

{
m∑
i=1

aij log

[
λbi∑n

s=1 aisx
(k)
s

+ (1− λ)

]}
. (3.10)

Using the convexity of the exp function, we then have

x
(k+1)
j ≤ x

(k)
j

{
m∑
i=1

aij

[
λbi∑n

s=1 aisx
(k)
s

+ (1− λ)

]}
. (3.11)

Summing on j

n∑
j=1

x
(k+1)
j ≤

n∑
j=1

x
(k)
j

{
m∑
i=1

aij

[
λbi∑n

s=1 aisx
(k)
s

+ (1− λ)

]}

=

m∑
i=1


n∑

j=1

aijx
(k)
j

[
λbi∑n

s=1 aisx
(k)
s

+ (1− λ)

]
=

m∑
i=1

λbi + (1− λ)

n∑
j=1

aijx
(k)
j


= λ

m∑
i=1

bi + (1− λ)

n∑
j=1

x
(k)
j . (3.12)
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Using recursive expression above, we get

n∑
j=1

x
(k+1)
j ≤ λ

m∑
i=1

bi + (1− λ)

λ m∑
i=1

bi + (1− λ)

n∑
j=1

x
(k−1)
j


...

≤
[
1 + (1− λ) + · · ·+ (1− λ)k

]
λ

m∑
i=1

bi + (1− λ)k+1
n∑

j=1

x
(0)
j

= [1− (1− λ)k+1]

m∑
i=1

bi + (1− λ)k+1
n∑

j=1

x
(0)
j . (3.13)

When
∑n

j=1 x
(0) = 1 and

∑m
i=1 bi = 1, we have

∑n
j=1 x

(k+1) ≤ 1.

4 Hidden data and convergence analysis

In this section, we divide the optimization problem into two subproblems and then prove
the convergent property of the iteration method.

Define anmn-dimensional hidden vector q(x) with entries (i = 1, 2, · · · ,m; j = 1, 2, · · · , n)

qij = qij(x) = aijxj . (4.1)

Meanwhile, let r be an mn-dimensional vector with entries

rij ≥ 0, and

n∑
j=1

rij = bi. (4.2)

Similar to F (x), we introduce an alternating function with respect to hidden data as follows

dλ(r, q(x))=

m∑
i=1

n∑
j=1

[
λrij log

rij
λrij + (1− λ)qij

+ (1− λ)qij log
qij

λrij + (1− λ)qij

]
. (4.3)

The convergent property of the iteration method (3.2) can be obtained by solving the fol-
lowing two subproblems with some constrains.

1. Find minimizer of dλ(r, q(x
(k))) with respect to r;

2. Find minimizer of dλ(r(x
(k)), q(x)) with respect to q(x).

Lemma 4.1. The minimizer of the problem dλ(r, q(x
(k))) with respect to r with the con-

straint
∑n

j=1 rij = bi (i = 1, 2, . . . ,m) is

rij(x
(k)) =

bi∑n
j=1 qij(x

(k))
qij(x

(k)). (4.4)

Proof. The Lagrange function for the optimal problem is

L(r, µ) = dλ(r, q(x
(k))) +

m∑
i=1

µi

 n∑
j=1

rij − bi

 . (4.5)
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According to stationarity condition

∂L

∂rij
= λ log

rij
λrij + (1− λ)qij(x(k))

+ µi = 0, (4.6)

we have

rij = e
µi
−λ

[
λrij + (1− λ)qij(x

(k))
]
. (4.7)

Summing over j and using the primal feasibility condition
∑n

j=1 rij = bi, we then have

e
µi
−λ =

bi
λbi + (1− λ)

∑n
j=1 qij(x

(k))
. (4.8)

By substituting Eq. (4.8) for Eq. (4.7), we know that

rij(x
(k)) =

bi∑n
j=1 qij(x

(k))
qij(x

(k)) (4.9)

is the minimizer of the optimal problem.

For simplicity, we use the following notations. Let

qkij = qij(x
(k)), (4.10)

T k
i =

bi∑n
j=1 qij(x

(k)
j )

=
bi∑n

j=1 q
k
ij

, (4.11)

rk+1
ij = rij(x

(k)) = T k
i q

k
ij , (4.12)

Sk
j =

m∏
i=1

[
λ

bi∑n
j=1 qij(x

(k)
j )

+ (1− λ)

]aij

=

m∏
i=1

[
λT k

i + (1− λ)
]aij

. (4.13)

Then

x
(k+1)
j = Sk

j x
(k)
j and qk+1

ij = Sk
j q

k
ij . (4.14)

Next, we fix r(x(k)) and consider the optimization problem

min
x∈Γ

f(x) = dλ(r(x
(k)), q(x)). (4.15)

Lemma 4.2. dλ(r(x
(k)), q(x(k+1))) ≤ dλ(r(x

(k)), q(x(k))).

Proof. Let rk+1
j = (rk+1

1j , · · · , rk+1
mj )T and qkj = (qk1j , · · · , qkmj)

T for j = 1, 2, . . . , n. Then

dλ(r
k+1, q(x(k))) =

n∑
j=1

dλ(r
k+1
j , qkj ), (4.16)

dλ(r
k+1, q(x(k+1))) =

n∑
j=1

dλ(r
k+1
j , Sk

j q
k
j ). (4.17)

In order to get the conclusion of the lemma, we only have to prove that

dλ(r
k+1
j , Sk

j q
k
j ) ≤ dλ(r

k+1
j , qkj ). (4.18)
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We can easily show that dλ(r
k+1
j , tqkj ) is convex with respect to t. Let t∗ be the minimum

point of dλ(r
k+1
j , tqkj ), then

d

dt
dλ(r

k+1
j , tqkj )

∣∣∣∣
t=t∗

=

m∑
i=1

(1− λ)qkij log
t∗

λT k
i + (1− λ)t∗

= 0. (4.19)

Since
∑m

i=1 aij = 1, we have

m∏
i=1

[
λ
T k
i

t∗
+ (1− λ)

]aij

= 1. (4.20)

Next we show that Sk
j is between 1 and t∗ in the following three cases.

If t∗ = 1, then

Sk
j =

m∏
i=1

[
λT k

i + (1− λ)
]aij

= 1. (4.21)

If t∗ > 1, then

m∏
i=1

[
λ
T k
i

t∗
+ (1− λ)

]aij

<

m∏
i=1

[
λT k

i + (1− λ)
]aij

<

m∏
i=1

[
λT k

i + (1− λ)t∗
]aij

. (4.22)

If t∗ < 1, then

m∏
i=1

[
λ
T k
i

t∗
+ (1− λ)

]aij

>

m∏
i=1

[
λT k

i + (1− λ)
]aij

>

m∏
i=1

[
λT k

i + (1− λ)t∗
]aij

. (4.23)

Using the convexity of dλ(r
k+1
j , tqkj ), we have dλ(r

k+1
j , Sk

j q
k
j ) ≤ dλ(r

k+1
j , qkj ). Consequently,

with Eqs. (4.16) and (4.17), we get the proof of the lemma.

Lemma 4.3. dλ(x
(k+1), x(k)) ≤ dλ(r(x

(k)), q(x(k)))− dλ(r(x
(k)), q(x(k+1))).

Proof. Using the same notations as Lemma 4.2, we only have to prove

dλ(S
k
j x

(k)
j , x

(k)
j ) ≤ dλ(r

k+1
j , qkj )− dλ(r

k+1
j , Sk

j q
k
j ) (4.24)

for those x
(k)
j > 0. With simple calculation, inequality (4.24) is equivalent to

m∑
i=1

aij{[λT k
i + (1− λ)Sk

j ] log[λT
k
i + (1− λ)Sk

j ]− [λT k
i + (1− λ)] log[λT k

i + (1− λ)]}

≥ Sk
j logSk

j − [λSk
j + (1− λ)] log[λSk

j + (1− λ)]. (4.25)

In the following, we use three cases to prove the above inequality.

If Sk
j =

∏m
i=1(λT

k
i + (1− λ))aij = 1, (4.25) is obviously true.
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If Sk
j =

∏m
i=1(λT

k
i + (1− λ))aij > 1, consider the function

Ui(t) = [λT k
i + (1− λ)t] log[λT k

i + (1− λ)t], (4.26)

and we can obtain that the left-hand-side of inequality (4.25) equals to
∑m

i=1 aij [Ui(S
k
j )−

Ui(1)]. Applying the Lagrange mean value theorem to the function (4.26) we get

m∑
i=1

aij [Ui(S
k
j )− Ui(1)] =

m∑
i=1

aijU
′
i(ξi)(S

k
j − 1) (1 ≤ ξi ≤ Sk

j )

=

m∑
i=1

aij(1− λ)(Sk
j − 1)[log(λT k

i + (1− λ)ξi) + 1]

= (1− λ)(Sk
j − 1)

{
log

m∏
i=1

[
(λT k

i + (1− λ)ξi)
aij

]
+ 1

}
≥ (1− λ)(Sk

j − 1)(logSk
j + 1). (4.27)

On the other hand, consider the function

V (t) = [λSk
j + (1− λ)t] log[λSk

j + (1− λ)t]. (4.28)

Then the right-hand-side of inequality equals to V (Sk
j )− V (1) and

V (Sk
j )− V (1) = V ′(η)(Sk

j − 1) (1 ≤ η ≤ Sk
j )

= (1− λ)(Sk
j − 1){log[λSk

j + (1− λ)η] + 1}
≤ (1− λ)(Sk

j − 1)(logSk
j + 1). (4.29)

Thus, the inequality (4.25) can be derived by combining inequalities (4.27) and (4.29).

If 0 < Sk
j < 1, we can use the same strategy in the above case and get the conclusion

(4.25).

Theorem 4.4. lim
k→∞

dλ(x
(k+1), x(k)) = 0.

Proof. According to Lemma 4.1, we can conclude that

dλ(r(x
(k+1)), q(x(k+1))) ≤ dλ(r(x

(k)), q(x(k+1))). (4.30)

Using Lemma 4.3 and Eq. (4.30),

0 ≤ dλ(x
(k+1), x(k)) ≤ dλ(r(x

(k)), q(x(k)))− dλ(r(x
(k)), q(x(k+1)))

≤ dλ(r(x
(k)), q(x(k)))− dλ(r(x

(k+1)), q(x(k+1))). (4.31)

Thus {dλ(r(x(k)), q(x(k)))} is a decreasing sequence with nonnegative quantities. Conse-
quently, the difference dλ(r(x

(k)), q(x(k))) − dλ(r(x
(k+1)), q(x(k+1))) → 0 as k → ∞. This

means dλ(x
(k), x(k+1)) → 0 as k → ∞.

Theorem 4.5. The sequence {x(k)} generated by Eq. (3.2) is convergent.
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Proof. According to Proposition 3.2, we know that the sequence is contained in a bounded

set. Thus the nonnegative sequence {x(k)
j } is bounded for j = 1, 2, . . . , n. Besides, {x(k)} has

subsequential limit points. Let {x(ks)} be a subsequence of {x(k)} such that lim
ks→∞

x(ks) = x∗.

According to Theorem 4.4, we have

dλ(x
(ks+1), x(ks)) =

n∑
j=1

[
λ(Sks

j x
(ks)
j ) log(Sks

j x
(ks)
j ) + (1− λ)x

(ks)
j log x

(ks)
j −(

λ(Sks
j x

(ks)
j ) + (1− λ)x

(ks)
j

)
log

(
λ(Sks

j x
(ks)
j ) + (1− λ)x

(ks)
j

)]
→ 0, (4.32)

as ks → ∞. Using the convexity of function φ(t) = t log t, we have Sks
j → 1 if x∗

j ̸= 0, or

Sk
j x

(ks)
j → 0 if x∗

j = 0. Thus x
(ks+1)
j = Sks

j x
(ks)
j → x∗

j for j = 1, 2, . . . , n. Consequently, x∗

is the limit point of the sequence {x(k)}.

5 Numerical Test

In this section, we use a fan-beam X-ray CT reconstruction problem of low-contract Shepp-
Logan phantom to test the performance of the iteration formula (3.2). The details of nu-
merical phantom and imaging system are shown in Table 1.

Table 1: Numerical phantom and imaging system

The system matrix Ã and right-hand side b̃ of the reconstruction problem do not have
the property of normalization. By simple variables substitution, the iterative formula for
attenuation x̃(k+1) can be expressed as

x̃
(k+1)
j = x̃

(k)
j

m∏
i=1

[
λ

b̃i∑n
j=1 ãij x̃

(k)
j

+ (1− λ)

]ãij/
∑m

i=1 ãij

, (5.1)

for j = 1, 2, . . . , N .



26 C. WANG, X. XIA AND D. GAO

,

Figure 1: Reconstructed images of different iterations

The deviation between reconstructed image x̃(k) and phantom x̃ can be represented by
the root mean squared error (RMSE) of the iteration sequence

RMSE =

√√√√ 1

n

n∑
j=1

(x̃
(k)
j − x̃j)2. (5.2)

The first experiment verifies whether the iterative formula can run correctly. The re-
constructed images of traditional EM algorithm and our method are shown in Figure 1.
Here λ = 0.3, 0.5, 0.7. From left to right are the iterative results of steps 10, 20, 30, 40 and
50, respectively. The results show that all the sequences converge to phantom successfully.
However, with the continuous iteration, the smoothness of the reconstructed image slightly
decreases.

The second experiment is taken to test the reconstruction efficiency. Let λ be 0.3, 0.5, 0.7
and 0.9 respectively. We compared our iteration method with traditional EM algorithm and
provide the RMSEs of different iterations in Figure 2. The figure shows that when λ ≥ 0.5,
the RMSEs of the iterative sequences generated by our algorithm decrease faster than the
RMSE of traditional EM algorithm. However, the phenomenon of semi convergence appears
with the increase of iteration steps. The larger the λ, the more obvious this phenomenon is.
Thus the problem of stopping criterion needs further study. Besides, for different imaging
systems, the impact of λ on the convergence will be further carried out in the future work.
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Figure 2: RMSEs plotted against iterations

6 Conclusion

In this paper, we focus on an iterative reconstruction method for image reconstruction
problem Ax = b. Based on the Kullback-Leibler divergence, we introduce a parameter
λ and use the λ-Kullback-Leibler divergence dλ(b, Ax) to measure the similarity between
the observed data b and forward data Ax. We solve the linear reconstruction problem
through a new iterated method which is derived using Karush-Kuhn-Tucker condition of
the optimization problem. Afterward, we define two mn-dimensional hidden vectors and
split the original optimization problem into two subproblems. The convergent property
of the iteration sequence is proved based on the subproblems. To verify the convergence
performance of the iteration formula, we reconstruct the Shepp-Logan model of fan-beam
X-ray CT problem. Reconstructed images as well as the RMSEs of the derived method are
compared with those of traditional EM algorithm. Preliminary numerical experiments show
that our iterative formula is feasible and effective.
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