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Abstract: It is well-known that tensor eigenvalues have been widely used in signal processing, diffusion
tensor imaging, independent component analysis and other fields. Effective methods for solving Z-eigenvalues
of large-scale tensors tend to fall into a local optimal region. The feasible trust-region method is an effective
method for computing the extreme Z-eigenvalue of large-scale tensors, but it also tends to fall into the local
optimal. To overcome the problem, we propose three global optimization strategies based on the feasible
trust-region method to improve the success rate of computing the extreme Z-eigenvalue. The first one is
a multi-initial points algorithm. The second one is a simulated annealing algorithm. The third one is
an infeasible trust-region algorithm which constructs an infeasible trust-region subproblem, expanding the
search scope and expecting to improve the success rate. We prove the global convergence of the infeasible
trust-region algorithm. The numerical results show that the success rate of calculating the extreme Z-
eigenvalue is greatly increased with the help of the global optimization strategy.

Key words: tensor Z-eigenvalue, trust-region subproblem with constraints, feasible trust-region method,
global optimization strategy

Mathematics Subject Classification: 15A18, 15A69, 90C55

1 Introduction

Tensor is a multidimensional array. Let m and n be positive integers. An mth order n-
dimensional real tensor A can be expressed as

A = (ai1,i2,...,im), ai1,i2,...,im ∈ R, 1 ≤ i1, i2, . . . , im ≤ n.

For example, a first-order tensor is a vector, which has one subscript for each element (ai); a
tensor of second-order is a matrix, which has two subscripts for each element (aij); tensors
with order three or greater are called higher-order tensors, which have three or more sub-
scripts for each element. The tensor A is symmetric if each entry ai1,i2,...,im remains invariant
under every permutation of (i1, i2, . . . , im). Let Tm(Rn) represent the space encompassing
all mth order n-dimensional real tensors, while Sm(Rn) is the space of all symmetric tensors
within Tm(Rn). For A ∈ Sm(Rn), x ∈ Rn, we denote

Axm :=
∑

1≤i1,i2,...,im≤n

ai1,i2,...,imxi1xi2 . . . xim ,
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which is an m degree homogeneous polynomial. Let Axk be the symmetric tensor in
Sm−k(Rn), defined as

(Axk)i1,...,im−k
:=

∑
1≤j1,...,jk≤n

Ai1,...,im−k,j1,...,jkxj1 . . . xjk , k ≤ m.

Eigenvalues of tensors were suggested by Qi [20] and Lim [14] in 2005. Tensor eigenvalues,
similar to matrix eigenvalues, have wide significant application in practical problems. For
example, signal processing [21], imaging analysis [3, 22], automatic control [16] and so on.
Among them, Z-eigenvalues, especially those extreme ones, have many applications. The
largest Z-eigenvalue gives rise to the best rank-1 approximation [25], and the smallest Z-
eigenvalue can be applied to determine the positive definiteness of an even order symmetric
tensor [13], which holds a significant role in medical image noise reduction and the stability
of automatic control systems.

For tensor A, if there exists λ ∈ R and x ∈ Rn such that

Axm−1 = λx,

xTx = 1,
(1.1)

then λ is considered a Z-eigenvalue of A and x is the corresponding Z-eigenvector. Then,
any vector x satisfying (1.1) is a KKT point of the polynomial optimization problem

max
x∈Rn

Axm

s.t. xTx = 1
(1.2)

with (Axm, x) being a Z-eigenpair.
The methods to compute the largest (smallest) Z-eigenvalues of symmetric tensors can

be classified into the following types: the first type is the higher order power method
(HOPM) [9–11, 26]. For instance, Kofidis [9] proposed a symmetric higher-order power
method by extending the power method to higher-order supersymmetric tensor. Kolda and
Mayo [10] added an adaptive method for choosing shifts in the HOPM to obtain extreme Z-
eigenvalues. Zhou [26] drew inspiration from the inverse power method used for matrices and
presented the shifted inverse power method. The second type is the semidefinite program-
ming method [4,8,12,17,18]. Specifically, Lasserre [12] proposed the semidefinite relaxation
method to get the largest(smallest) eigenvalue. Hu [8] introduced a tensor conic linear pro-
gramming for calculating extreme Z-eigenvalues. Cui [4] applied Jacobian SDP relaxations
to accurately compute all real eigenvalues. Nie [17] presented semidefinite relaxations that
utilize sum-of-squares representations for tensors. The third type is the sequential subspace
projection method (SSPM) [5, 23]. Hao [5] formed a subspace and solved the original opti-
mization problem in the subspace for extreme Z-eigenvalues. Yu [23] devised an approach
of adaptive gradient for generalized tensor eigenpairs. The fourth type is the feasible trust-
region method (FTR) [1, 6]. In detail, Hao [6] presented a novel method for computing the
extreme Z-eigenvalues using trust-region subproblems. Cao [1] used the self-adaptive tech-
nique in trust region method for computing extreme B-eigenvalues. In addition, there are
alternative solutions, including the accelerated Levenberg-Marquardt method [2], the neu-
ral dynamical network [7], etc. The semidefinite programming method [4, 17] is often used
to solve small-scale problems. The sequential subspace projection method (SSPM) [5] and
the feasible trust-region method (FTR) [6] can be employed to handle large-scale problems,
but it is worth noting that achieving a high success rate in the computation of extreme
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Z-eigenvalues is often a challenging task. The success rate refers to the probability of ob-
taining the extreme Z-eigenvalues of tensors from any initial point. We have observed that
many researches can get the extreme Z-eigenvalues. However, their success rate in comput-
ing the extreme Z-eigenvalues is far from satisfactory. The solution quality of the algorithm
is greatly important, besides the number of iterations and the operation time. Inspired by
this, this paper studies from the perspective of the success rate of computing the extreme
Z-eigenvalues of symmetric tensors.

Although there are many methods for large-scale problems, FTR [6] has global con-
vergence and local quadratic convergence. When calculating the extreme Z-eigenvalues of
symmetric tensors, the number of iterations and the operation time of FTR are less, es-
pecially in high-dimension. FTR has improved the phenomenon of falling into the local
optimal region, but it is far from satisfactory. Therefore, this paper studies the global opti-
mization strategy based on the feasible trust-region method (FTR) [6] from the success rate
of computing the extreme Z-eigenvalue of large-scale tensors.

In this paper, we shall propose three global optimization strategies based on FTR [6] to
calculate extreme Z-eigenvalues of symmetric tensors. They are respectively a multi-initial
points algorithm, a simulated annealing algorithm and an infeasible trust-region algorithm.
The multi-initial points algorithm and the simulated annealing algorithm are general heuris-
tic global optimization strategies. The infeasible trust-region algorithm constructs an infea-
sible trust-region subproblem. Specifically, the constraint on the subproblem is derived by
linearizing the constraint on eigenvalue problem, and each iteration point of the subproblem
is not feasible. In this manner, the above three strategies can provide a better initial point
for FTR, improving the success rate of computing the extreme Z-eigenvalues. The main
contributions of this paper are summarized as follows:

• We propose three global optimization strategies based on FTR. The three optimization
strategies are inspired by the lower success rate of computing the extreme Z-eigenvalues, and
can extend the search range, thus providing a better initial point for FTR.

• The experimental results confirm that, the proposed optimization strategies can sig-
nificantly improve the success rate of calculating the extreme Z-eigenvalues.

The rest of this paper is organized as follows. In section 2, we describe the three global
optimization strategies. The convergence of the infeasible trust-region algorithm is demon-
strated in Section 3. Numerical results are detailed in Section 4, which show that the success
rate of the algorithm is greatly increased with the help of the global optimization strategies.
The conclusions are drawn in the last section.

2 Global Optimization Strategy

In this section, we propose three global optimization strategies to provide a better initial
point for FTR. Specifically, the three optimization algorithms are the multi-initial points
algorithm, the simulated annealing algorithm, and the infeasible trust region algorithm. We
first introduce the motivation of the strategies, then describe the detailed contents of our
proposal, and finally give the algorithm procedure.

2.1 The Multi-initial Points Algorithm

Multi-initial points algorithm is a classical and easy method of global optimization. Many
current works do not mention this algorithm, as it is relatively simple. Thus, we consider it
as the preprocessing strategy based on FTR.
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The problem (1.2) can be rewritten as

max
x∈Rn

f(x) =
1

m
Axm

s.t.
1

2
(xTx− 1) = 0.

(2.1)

By this reformulation, the KKT point x∗ and the corresponding Lagrange multiplier λ∗ of
the problem (2.1) is a Z-eigenpair of tensor A.

Multi-initial points algorithm is to randomly generate multiple initial points xk(k =
1, 2, . . . , l) in the unit sphere and select the initial point xj(1 ≤ j ≤ l) with the largest
objective function. Specifically, the flowchart is listed in Algorithm 2.1.

Algorithm 2.1. (The multi-initial points algorithm)

Step 0. Generate multiple initial points x1, x2, . . . , xl in the unit sphere.

Step 1. Compute f(x1), f(x2), . . . , f(xl) .

Step 2. Let j = argmax
1≤k≤l

{f(xk)}, output xj .

Meanwhile, choosing the initial point with the smallest objective function in the above
algorithm can be used as a preprocessing algorithm for solving the smallest Z-eigenvalue of
tensors.

2.2 The Simulated Annealing Algorithm

The method is a representative global optimization algorithm. Meanwhile, it has the advan-
tages of easy implementation and strong robustness, then it is taken into account. Unlike
the multi-initial points algorithm, the simulated annealing algorithm accepts the points with
relatively poor target value with a certain probability, so it can escape from local maximum
and get the maximum value in the global range. The basic idea of the algorithm is to accept
the points with relatively poor target value in the neighborhood according to probability
in the process of algorithm iteration, but the probability of accepting the points with rela-
tively poor target value will gradually decrease. This method can avoid falling into the local
maximum in the early stage and accelerate the convergence speed in the later stage.

Specifically, the flowchart is listed in Algorithm 2.2.

Algorithm 2.2. (The simulated annealing algorithm 1)

Step 0. Given an initial point x0, set a large initial value parameter T , a lowest threshold
Tmin, the rate of descent α, number of iterations ζ, k := 0.

Step 1. If the stopping criterion is satisfied, terminate.

Step 2. Generate a random point xnew ∈ N (xk), Compute f = A( xk

∥xk∥2
)m, fnew =

A( xnew

∥xnew∥2
)m, Ω := fnew − f .

Step 3. If Ω ≥ 0, set xk+1 = xnew; if Ω < 0 and e−
Ω
T > κ ∈ (0, 1), set xk+1 = xnew;

otherwise, xk+1 = xk and go to Step 2, iterate ζ times.

Step 4. Let T = T ∗ α, k = k + 1, and go to Step 1.



SOME GLOBAL OPTIMIZATION STRATEGIES OF FEASIBLE TRUST-REGION METHOD35

Specifically, ‘κ’ represents a randomly generated number between (0,1) and we accept

xnew with the probability e−
Ω
T as a new iteration point. xnew ∈ N (xk) means xnew is

generated randomly in the neighborhood of the iteration point xk. In addition, we also can
consider generating xnew in the whole real field. Therefore, Algorithm 2.2 can be rewritten
as follows.

Algorithm 2.3. (The simulated annealing algorithm 2)

Step 0. Given an initial point x0, set T, Tmin, ζ, α, k := 0.

Step 1. If the stopping criterion is satisfied, terminate.

Step 2. Randomly generate a point xnew, Compute f = A( xk

∥xk∥2
)m, fnew = A( xnew

∥xnew∥2
)m,

Ω := fnew − f .

Step 3. If Ω ≥ 0, set xk+1 = xnew; if Ω < 0 and e−
Ω
T > κ ∈ (0, 1), set xk+1 = xnew;

otherwise, xk+1 = xk and go to Step 2, iterate ζ times.

Step 4. Let T = T ∗ α, k = k + 1, and go to Step 1.

The difference between Algorithm 2.2 and Algorithm 2.3 lies in the different ways of
generating new iteration points. After the processing of Algorithm 2.3, the numerical effect
of some test cases is better than that of Algorithm 2.2, as can be seen in section 4.

2.3 The Infeasible Trust-Region Algorithm

Since the previous methods were carried out under the constraints feasible. For instance,
FTR takes advantage of the projection operation and introduces a trust-region subproblem.
The specific optimization problem is

max
d∈Rn

mk(d) = fk + gTk d+
1

2
dTWkd,

s.t. xT
k d = 0,

∥d∥2 ≤ ∆k,

(2.2)

It is obvious that all iteration points xk+1 are feasible. Now we consider whether we can
jump out of the local optimal region if the constraints are not feasible. Thus, we construct
an infeasible subproblem to expand the search scope and expect to improve the success rate.
We propose the infeasible trust-region algorithm to solve (1.2).

Since the problem (1.2) can be reformulated as problem (2.1), we consider the following
trust-region subproblem with linear constraint at the current iteration point xk,

max
d∈Rn

mk(d) = fk + gTk d+
1

2
dTWkd,

s.t. xT
k d =

1

2
(1− xT

k xk),

∥d∥2 ≤ δk,

(2.3)

where
fk = f(xk), gk = g(xk) = ∇f(xk)− λkxk,

Wk =W (xk) = ∇2f(xk)− λkI.
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are the function value, gradient and Hessian of Lagrange function

L(λ, x) = f(x)− λ

2
(xTx− 1),

at (xk, λk), respectively. We prescribe

λk = ∇f(xk)
Txk = Axm

k , (2.4)

δk is the trust-region radius. The constraint on subproblem (2.3) is derived by linearizing
the constraint of problem (2.1). Meanwhile, each iteration point of the subproblem (2.3)
may not be feasible (xT

k xk ̸= 1).
We consider the constraints consistency of subproblem (2.3). If the constraints on this

subproblem are consistent, the trial steps dk is solved by interior-point method. Otherwise,
if the constraints are inconsistent, a mechanism is introduced into the algorithm which com-
putes the step in two stages. Gradually augmenting δk until the set of steps dk that adhere
to the linear constraints intersects the trust region for inconsistent cases is not advisable.
Thus we consider to enhance the feasibility of constraints at each step and to satisfy them
exactly in the limit. Therefore, we introduce a two-stage approach to solve the problem. In
the first stage, we try to satisfy the linearized constraints within a good trust region, that
is, solve the following subproblem

min
dn
k∈Rn

1

2

∣∣∣∣xT
k d

n
k +

xT
k xk − 1

2

∣∣∣∣2 ,
s.t. ∥dnk∥2 ≤ ξδk, ξ ∈ (0, 1).

(2.5)

here ξ = 0.8. Then the total trial step dk can be accepted by solving

max
dk∈Rn

mk(dk) = gTk dk +
1

2
dTkWkdk,

s.t. xT
k dk = xT

k d
n
k ,

∥dk∥2 ≤ δk.

(2.6)

Therefore, for inconsistent case, we solve (2.5) and (2.6) to get the trial step dk. Specifically,
(2.5) and (2.6) are solved by conjugate gradient method.

Choosing the trust-region radius and judging whether to accept the trial step are two
critical components in a trust-region algorithm. We define the ratio

ρk =
f(xk + dk)− f(xk)

mk(dk)−mk(0)
(2.7)

where f(xk + dk) − f(xk) is the actual increase of f(x), mk(dk) − mk(0) is the predicted
increase. If the predicted increase ∆m := mk(dk)−mk(0) > 0, it indicates that a direction
d can be found to rise the function mk(d). If the predicted increase ∆m ≤ 0, it shows that
the function mk(d) cannot be increased along any direction d, then we accept the current
trial step dk and perform a unit projection

xk+1 =
xk + dk

∥xk + dk∥2
.

The idea behind the algorithm is to allow the the algorithm exploring points that violate
the constraints. Therefore, the decline of the objective function f is acceptable, but it
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may further lead to a decrease in the objective function and a deviation from the sphere
constraint. To address this issue, the constraints must remain feasible when accepting a
decrease in the objective function. Hence, we employ the trial step and project xk +dk onto
the unit sphere. To be specific, the next iteration xk+1 is defined as

xk+1 =


xk + dk

∥xk + dk∥2
, ∆m ≤ 0;

xk, ∆m > 0, ρk ≤ σ0;

xk + dk, else.

(2.8)

where σ0 is a constant. If ρk is close to 1, there is a good agreement between the model mk

and the function f over this step, we expand the trust-region radius δk at the next iteration
so that the objective function can rise sufficiently. If ρk is near zero or negative, we reduce
δk in the next iteration. If ρk is belong to (σ1, σ2), we do not alter δk. Specifically, δk+1 is
updated as follows

δk+1 =


1

2
δk, ρk ≤ σ1;

min(2, 2δk), ρk ≥ σ2;

δk, σ1 < ρk < σ2.

(2.9)

where σ1, σ2 are constants with 0 < σ0 < σ1 < σ2, σ2 < 1.
As described above, the flowchart are summarized in Algorithm 2.4.

Algorithm 2.4. (The infeasible trust-region algorithm for solving (2.3))

Step 0. Given an initial point x0, set the parameters σ0, σ1, σ2, δ0. Let k := 0.

Step 1. Compute gk, Wk, then solve (2.3) to obtain dk.

Step 2. If ∥dk∥ satisfies the stop criterion, terminate and output (λk, xk). Otherwise, go
to Step 3.

Step 3. Compute ρk by (2.7).

Step 4. Update δk by (2.9).

Step 5. Update the next iteration xk,
If ∆m = mk(dk)−mk(0) ≤ 0, set

xk+1 =
xk + dk

∥xk + dk∥2
, λk+1 = Axm

k+1;

else if ∆m > 0 and ρk ≤ σ0, set

xk+1 = xk, λk+1 = λk;

else if ∆m > 0 and ρk > σ0, set

xk+1 = xk + dk, λk+1 = Axm
k+1;

end
Let k := k + 1, and go to Step 1.
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If the maximization subproblem (2.3) in the above algorithm is changed to the mini-
mization, it can be used as a preprocessing algorithm for solving the smallest Z-eigenvalue
of tensors.

In some senses, the above three methods can be viewed as a plug-and-play module, which
can be combined with existing tensor Z-eigenvalue solution methods. The general framework
is to use the global optimization strategy to select better points and then employ methods
to solve Z-eigenvalues.

3 Convergence Analysis

This section provides a proof of convergence for Algorithm 2.4 with respect to the problem
(1.2).

Definition 3.1. x is called a strong stationary point of (1.2) if x is feasible and there exists
a λ such that

∇f(x)− λx = 0,

The concept on strong stationary point is originated from nonlinear programming [24].

Lemma 3.2. For all x, y satisfying 1 ≤ ∥x∥2 ≤ 3, 1 ≤ ∥y∥2 ≤ 3, then

∥W (x)∥2 ≤ M,

∥g(x)− g(y)∥2 ≤ L0∥x− y∥2,
∥∇2f(x)−∇2f(y)∥2 ≤ L1∥x− y∥2,

hold, where M , L0, L1 are positive constants [6].

Assumption 3.1. (1). The set of all trial points x in the algorithm is given by a non-empty,
bounded and compact set D.

(2). There exists a subsequence {fkj
} of the sequence {fk}, where the subsequence {fkj

}
is monotonically increasing.

Lemma 3.3. Suppose the first assumption of the standard assumptions holds. If there exists
an infinite index set {ki} such that ∆m < 0, then Φ(xki

) → 0 as i → +∞.

Proof. We define Φ(xki
) = max{0, ∥xki

∥2 − δki
} +

∣∣xT
ki
xki

− 1
∣∣. Now assume that there

exists a subsequence {kj} ⊂ {ki} and a constant ε1 such that

Φ(xkj
) ≥ ε1.

Since the first assumption of the standard assumptions holds, {Φ(xkj
)} is bounded. Thus,

there exists a further subsequence {kl} ⊂ {kj} such that

lim
l→+∞

Φ(xkl
) = Φ(x̄) and Φ(x̄) ≥ ε1,

where x̄ is an accumulation point of {xkl
}. According to the hypothesis of the lemma and

Algorithm 2.4, for each l, Φ(xkl
) = 0 holds. It is contrary to the hypothesis Φ(xkl

) ≥ ε1.
Hence, Φ(xki) → 0 as i → +∞.

Lemma 3.4. Suppose the first assumption of the standard assumptions holds. If the main
sequence {xk} only contains a limited number of ∆m < 0, then there exists an infinite index
set {ks} such that Φ(xks) → 0 as s → +∞.
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Proof. If the main sequence {xk} only contains a limited number of ∆m < 0, then there
exists constants j1, ε2 > 0 such that ∆m ≥ ε2 for all k > j1. If there exists ρk > σ0 for any
k > j1, then xk+1 = xk + dk and ∆f ≥ σ0∆m ≥ σ0ε2, that is,

f(xk+1)− f(xk) = ∆f ≥ σ0ε2, ∀k > j1.

Obviously, {f(xk)k>j1} is monotonically increasing and bounded. As k → +∞, f(xk+1) −
f(xk) → 0. This contradicts the assumption stated above. Therefore, ρk > σ0 can only
occur a finite number of times for any k > j1. Further, there exists an infinite index set
{ks} such that

ρks
≤ σ0 < σ1, ∀ks > j1.

According to Algorithm 2.4, we have δks+1 = 1
2δks . As ks → +∞, δks → 0. From the

hypothesis of this lemma,
∆m ≥ ε2, ∀k > j1.

This implies that the subproblem (2.3) remains consistent. Then dks
→ 0, as ks → +∞.

Hence, Φ(xks
) → 0, s → +∞.

Lemma 3.5. The condition ϕ′(0)+ϕ′′ ≤ 0 is necessary and sufficient for ϕ(α) to achieve a
minimum at α = 1, where ϕ(α) is a quadratic function over the interval α ∈ [0, 1], ϕ′(0) < 0.
Thus, ϕ(0)− ϕ(1) ≥ − 1

2ϕ
′(0).

Lemma 3.6. Let standard assumptions hold, and let d ̸= 0 be a feasible point of the sub-
problem (2.3). Then it follows that ∆f ≥ min(0, σ0ε3),

∣∣ 1
2 [(xk + d)T (xk + d)− 1]

∣∣ ≤ 1
2δ

2,
where δ refers to the trust-region radius in the trust-region constraint.

Proof. Given that d ̸= 0 is a feasible point for the subproblem (2.3) and according to the
Algorithm 2.4, then there exists constants k > 0, ε3 > 0 such that

∆m ≥ ε3.

If ρk > σ0, then ∆f ≥ σ0∆m ≥ σ0ε3. Otherwise, ∆f = 0. Since ∥d∥22 ≤ δ2, thus∣∣∣∣12 [(xk + d)T (xk + d)− 1]

∣∣∣∣ = ∣∣∣∣12(xT
k xk − 1) + xT

k d+
1

2
dT d

∣∣∣∣ ≤ 1

2
dT d =

1

2
δ2.

Lemma 3.7. Under the standard assumptions, suppose x∗ is a feasible point of (1.2) but
not an optimal one, the MFCQ holds at x∗, then there exist a neighborhood N of x∗ and
a constant ε4 such that, for ∀x ∈ N ∩ D, the subproblem (2.3) has a feasible solution d,
which d satisfies ∆m ≥ 1

2δε4, ∆f ≥ 1
2δε4σ0, where ∀δ < τ , τ = min( 3

√
ε
M , δ̄) and δ̄ satisfies

M
2 δ̄ + C1(δ̄) ≤ (1−σ0)ε4

2 .

Proof. Due to x∗ is a feasible point of (1.2) and is not optimal, at which MFCQ holds, there
exist d with ∥d∥ = 1, and a neighborhood N of x∗ and ε4 > 0 such that

∇f(x)T d > ε4,

xT d = 0,

where ∇f(x) is the gradient for ∀x ∈ N ∩ {x| 12 (x
Tx− 1) = 0}.

Part A: Let dα = αδd, α ∈ [0, 1]. Then we have ∥dα∥2 ≤ δ, which means dα satisfies the trust
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region constraint of the subproblem (2.3). Since x ∈ N∩{x| 12 (x
Tx−1) = 0}, 1

2 (x
Tx−1) = 0,

1
2 (x

Tx − 1) + αδdTx = 0. So dα satisfies the equality constraint of the subproblem (2.3),
thus the subproblem (2.3) is consistent.
Part B: We consider the predicted increasement ∆m. Define ϕ(α) = −m(dα), then ϕ′(α) =
−δgT d − αδ2dTWd, ϕ′(0) = −δdT g = −δdT∇f(x) − λxT d < −δε4, ϕ

′′(α) = −δ2dTWd ≤
δ2∥d∥2∥W∥ ≤ δ4M . Thus,

ϕ′(0) + ϕ′′ < −δε4 + δ4M ≤ 0, if δ ≤ 3

√
ε4
M

.

Based on Lemma 3.5 and Lemma 3.6, it can be concluded that the minimum value of ϕ(α)
is achieved at α = 1 and ϕ(0) − ϕ(1) ≥ − 1

2ϕ
′(0), that is ∆m := m(δd) −m(0). Therefore,

∆m ≥ 1
2δε4. Since

|ρk − 1| =
∣∣∣∣f(xk + d)−mk(d)

mk(d)−mk(0)

∣∣∣∣ ,
thus,

|ρ− 1| =

∣∣∣∣∣
∫ 1

0
dTα [∇f(x+ tdα)−∇f(x)]dt+ λxT dα − 1

2d
T
αWdα

mk(dα)−mk(0)

∣∣∣∣∣
=

∣∣∣∣∣
∫ 1

0
dTα [∇f(x+ tdα)−∇f(x)]dt− 1

2d
T
αWdα

mk(dα)−mk(0)

∣∣∣∣∣
=

M
2 ∥dα∥2 + C1(dα)∥dα∥

mk(dα)−mk(0)
,

where we can achieve an arbitrarily small value for the scalar C1(dα) by limiting the size of
dα. If we set α = 1, the above proof still holds and we have

|ρ− 1| ≤
M
2 δ2 + C1(δ)δ

1
2δε4

.

It can be observed that the right-hand-side is bounded for all sufficiently small values of δ.
By choosing δ̄ to be small enough and δ ≤ δ̄, we can ensure

M

2
δ + C1(δ) ≤

(1− σ0)ε4
2

.

Therefore, we have

|ρ− 1| ≤ 1− σ0,

that is, ρ > σ0. According to Algorithm 2.4, we have ∆f
∆m > σ0. Hence,

∆f ≥ 1

2
δε4σ0, if δ ≤ δ̄.

In brief, for δ ≤ τ , δd is a feasible point of the subproblem (2.3) and ∆f ≥ 1
2δε4σ0, where

τ = min( 3
√

ε
M , δ̄).

Lemma 3.8. Under the standard assumptions, then the iteration loop (Step 1→ Step 2→
Step 3→ Step 4→ Step 5→ Step 1) terminates in a finite number of iterations.
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Proof. If xk is a KKT point of the problem (1.2), then d = 0 is the solution of the subproblem
(2.3) and the algorithm is terminated. Otherwise, there are two cases to consider.

Case(i): If d ̸= 0 solves the subproblem (2.3), but λxk+d ≥ η according to different
examples adjust η, then the algorithm is terminated.

Case(ii): If the iteration loop does not conclude within a finite number of steps, then
δk → 0, thus d → 0, and the algorithm is terminated.

Theorem 3.9. The algorithm yields one of the following outcomes:
(1).A better point of the problem (1.2) that can jump out of the local area is found.
(2).A KKT point of the problem (1.2) is founded.
(3).Let x∗ be an accumulation point of the sequence {xk}. If the MFCQ holds at x∗, and

the algorithm terminates within a finite number of iterations, then x∗ is a strong stationary
point of the problem (1.2).

Proof. We only need to consider the case (1) and case (3).
(1).Based on the process of Algorithm 2.4, if the third termination condition (λk ≥ η) is

satisfied, a superior point that jumps out of the local optimal area can be found.
(3).By Lemma 3.8, the iteration loop is always terminated within a finite number of

iterations. As all iteration points x belong to a bounded set D, the sequence will have one
or more accumulation points.

We consider the sequence {xk}. Because D is bounded, then there exist an accumulation
point x∗ and a subsequence {xkj} of {xk}, where {xkj} → x∗.

• If {xkj} is feasible, then x∗ is a feasible point.
• If {xkj} is infeasible, then x∗ is an infeasible point.
There exists an index k0 such that all iterations satisfies fk+1 ≥ fk for all k ≥ k0. By

assumptions 3.1, the subsequence {fkj
} of the sequence {fk} is monotonically increasing for

kj > k0. Due to f(x) is bounded on D, Σk∆fk is convergent and xk → x∗. For sufficient
large k > k0, x

∗ ∈ N ∩ D. As assumed in Lemma 3.6, if x∗ is not a KKT point of the
problem (1.2) and the MFCQ holds at x∗. By Lemma 3.7, there exists a problem (2.3)
which can generate a feasible step d and ∆f ≥ 1

2δε4σ0. It contradicts with the fact that
Σk∆fk is convergent. It follows from Lemma 3.3 and Lemma 3.4 that x∗ is a feasible point.
By the definition 3.1, when x∗ is feasible, x∗ is a strong stationary point of the problem
(1.2).

4 Numerical Experiments

In this section, we verify the performance of the proposed global optimization strategies.
Specifically, TFTR uses the infeasible trust-region algorithm for preprocessing and then
enters FTR for calculation. RFTR is preprocessed by the multi-initial points algorithm
and then enters FTR for calculation. MFTR is preprocessed by the simulated annealing
algorithm and then enters FTR for calculation. We verify the effectiveness of the proposed
optimization strategies by comparing them.

All the experiments are preformed on a Lenovo desktop with Intel(R)Core(TM)i5-3470
CPU at 3.20 GHz, OS 32-bit. Our codes are implemented in MATLAB R2014a. The
parameters of the infeasible trust-region algorithm are set to be

σ0 = 0.1, σ1 = 0.25, σ2 = 0.75, ϵ = 1e−6, δ0 = 2, (4.1)

where ϵ is the tolerance of the stopping criterion. η, itermax are constants which refer to the
threshold and maximum number of iterations, respectively. Their values depend on different
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situations and examples. The stopping criterion of the infeasible trust-region algorithm is

k ≥ itermax (4.2)

or
∥dk∥2 ≤ ϵ (4.3)

or
λk ≥ η (4.4)

or ∣∣∣∣(xT
k dk − 1

2
(1− xT

k xk)

∣∣∣∣ ≥ ϵ, ∥dk∥2 − δk ≥ ϵ (4.5)

If one of the four stop criteria is satisfied, the algorithm will be stopped. If the condition (4.2)
is satisfied, the maximum number of iterations is exceeded. If the condition (4.3) is satisfied,
the solution dk → 0 of the subproblem (2.3). If the condition (4.4) is satisfied, λk ≥ η is
found in the process of pretreatment, where η is obtained based on the λ found by FTR. For
example, η = 0.8λ. If the condition (4.5) is satisfied, the solution of the subproblem (2.3) is
infeasible. The number of initial points in the multi-initial points algorithm is set to be

l = 10. (4.6)

The parameters of the simulated annealing algorithm are set to be

T = 1000, Tmin = 1e−2, α = 0.5, γ = 10, ζ, (4.7)

where ζ is a constant depending on different situations and examples and γ is the maximum
number of iterations. The stopping criterion of the simulated annealing algorithm is

T ≤ Tmin or k > γ. (4.8)

After the above global optimization strategies, we use FTR to solve the subproblem (2.1).
The parameters of FTR are

σ0 = 0.1, σ1 = 0.25, σ2 = 0.75, ϵ = 1e−6, ∆0 = 2. (4.9)

The stopping criterion for FTR is
∥dk∥2 ≤ ϵ. (4.10)

The initial points in the four models (TFTR, RFTR, MFTR, FTR) are randomly chosen.
We tested the four models for the following examples. For some testing examples, the
accurate extreme Z-eigenvalues can be analytically computed.

In the infeasible trust-region algorithm, when the trust-region constraint and the linear
constraint on the subproblem (2.3) is consistent, we use the interior-point method combined
with the Global function in MATLAB to solve the trial steps dk. If the constraints are
inconsistent, we use the conjugate gradient method from Numerical Optimization to obtain
dk [19].

The numerical results of four examples are given below.

Example 4.1. Calculate the largest Z-eigenvalue of the 4th order n-dimensional diagonal
tensor A.

Ai1=i2=i3=i4 = 10n
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Table 1: The comparison of the four algorithms results for example 4.1

TFTR FTR

n λmax ratio iter time ratio iter time

3 30 97% 3.98 1.25e+1 45% 4.47 2.50e-2

4 40 71% 3.93 3.12e+1 40% 4.25 2.51e-2

5 50 65% 3.97 3.66e+1 35% 4.15 2.41e-2

6 60 58% 3.68 1.88e+1 30% 4.21 2.52e-2

7 70 59% 3.43 5.02e+1 27% 4.03 2.66e-2

8 80 48% 3.56 3.48e+1 23% 3.90 3.54e-1

RFTR MFTR

n λmax ratio iter time ratio iter time

3 30 100% 2.50 2.61e-2 100% 4 3.30e-1

4 40 100% 2.45 2.43e-2 99% 4.02 3.31e-1

5 50 100% 3.01 2.71e-2 96% 3.95 3.34e-1

6 60 98% 4.48 3.07e-2 92% 4.21 6.43e-1

7 70 97% 3.27 3.12e-2 89% 3.95 6.49e-1

8 80 92% 5.33 3.62e-2 85% 4.10 3.35e-1

Figure 1: Z-eigenvalues obtained by each iteration under a random initial point when m = 4,
n = 3 : 1 : 8

Figure 1 depicts the Z-eigenvalues (n = 3, 4, 5, 6, 7, 8) obtained at each iteration for the
three algorithms (TFTR, MFTR, FTR) in a group of experiments, all implemented from
the same initial point.

In the Table 1-4, ‘n’ is the dimension, ‘λmax’ is the largest Z-eigenvalue of the example
by current algorithms, ‘ratio’ is the probability of obtaining the largest Z-eigenvalue in 1000
experiments, ‘iter’ stands for the average iteration numbers of the feasible trust region part,
‘time’ means the average CPU time of preprocessing stage plus the feasible trust region stage
in seconds. In the Figure 1-4, the horizontal axis represents the iterative steps, whereas the
vertical axis represents the corresponding Z-eigenvalues.
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For diagonal tensors, the maximum value of the elements along the superdiagonal is
equal to the largest Z-eigenvalue of the tensor. We can observe from the Table 1 that
TFTR, RFTR and MFTR have a significantly higher success rate in obtaining the largest
Z-eigenvalue compared to FTR. Except for a few cases, the iteration for TFTR, RFTR,
MFTR is less than that of FTR; the CPU time for RFTR is slightly slower than that of
FTR; TFTR and MFTR require more time than that of FTR.

Since the multi-initial points algorithm cannot guarantee the same initial point, we com-
pare the Z-eigenvalues obtained by each iteration of TFTR, MFTR and FTR at the same
initial point. From Figure 1, it is evident that TFTR and MFTR are more likely to obtain
the largest Z-eigenvalue. When n = 7, 8, only MFTR can obtain the largest Z-eigenvalue,
which is also consistent with the data in Table 1, that is, the success rate of TFTR and
MFTR is often higher than that of FTR, but with the increase of dimension, the success
rate of MFTR is higher than that of TFTR. In this case, the constraints on the subproblem
(2.3) are consistent in the preprocessing of the TFTR.

The following examples are different from the diagonal tensor. For the following tensors,
the largest Z-eigenvalue of the tensor cannot be determined. The success rate below refers to
the success rate of obtaining the largest Z-eigenvalue that can be calculated by the current
algorithms.

Example 4.2. Calculate the largest Z-eigenvalue of the 3th order n-dimensional symmetric
tensor A.

Ai1,i2,i3 =
(−1)i1

i1
+

(−1)i2

i2
+

(−1)i3

i3

Table 2: The comparison of the four algorithms results for example 4.2

TFTR FTR

n λmax ratio iter time ratio iter time

10 1.7800e+01 100% 3.60 5.03 55% 3.93 3.17e-2

20 3.4159e+01 100% 3.40 1.28e+1 54% 4.25 4.00e-2

30 5.0138e+01 93% 3.47 4.48e+1 54% 4.45 2.77e-1

40 6.5926e+01 76% 3.62 8.53e+1 52% 4.66 9.78e-1

50 8.1593e+01 74% 3.58 1.42e+1 54% 4.59 9.84e-1

60 9.7177e+01 81% 3.68 2.39e+1 51% 4.51 1.21

70 1.1270e+02 85% 3.64 3.87e+1 52% 4.50 1.00

80 1.2817e+02 84% 3.71 6.45e+1 50% 4.62 1.08

RFTR MFTR

n λmax ratio iter time ratio iter time

10 1.7800e+01 100% 4.63 3.88e-2 100% 5 3.25e-1

20 3.4159e+01 97% 3.62 4.86e-2 100% 5 3.31e-1

30 5.0138e+01 98% 3.02 3.90e-2 100% 5 3.80e-1

40 6.5926e+01 90% 3.05 4.46e-2 100% 5 3.62e-1

50 8.1593e+01 79% 3.11 4.05e-2 100% 5 3.63e-1

60 9.7177e+01 82% 3.21 4.06e-2 100% 5 3.72e-1

70 1.1270e+02 80% 3.04 4.30e-2 100% 5 3.88e-1

80 1.2817e+02 79% 3.56 5.93e-2 100% 5 4.47e-1
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Figure 2: Z-eigenvalues obtained by each iteration under a random initial point m = 3,
n = 10 : 10 : 80

Select a group of experiments, and use the same initial point for the three algorithms
(TFTR, MFTR, FTR) to compare the Z-eigenvalues obtained in each iteration (n =
10, 20, 30, 40, 50, 60, 70, 80). Please refer to Figure 2.

Table 2 suggests that the success rate of TFTR, RFTR and MFTR for computing the
largest Z-eigenvalue is also much higher than that of FTR. The number of iterations required
for TFTR and RFTR is often lower than that of FTR. TFTR requires more time than that
of FTR; the CPU time of both RFTR and MFTR is slightly slower than that of FTR when
n ≤ 30; the CPU time of RFTR and MFTR is quicker than that of FTR when n ≥ 30. It
is clear that the success rate of MFTR is reached 100%, whereas the success rates of TFTR
and RFTR are not as high as that of MFTR. They are still significantly higher than that
of FTR.

As illustrated in Figure 2, both TFTR and MFTR have a higher success rate than FTR
when it comes to obtaining the largest Z-eigenvalue. TFTR performs much faster than
MFTR when n = 20, 30, 50, 60, 70, 80. Similarly, the constraints on the subproblem remain
consistent during the preprocessing of the TFTR.

Example 4.3. Calculate the largest Z-eigenvalue of the 4th order n-dimensional symmetric
tensor A.

Ai1,i2,i3,i4 = sin(i1 + i2 + i3 + i4)

Figure 3 depicts the Z-eigenvalues (n = 10, 20, 30, 40, 50, 60) obtained at each iteration
for the three algorithms (TFTR, MFTR, FTR) in a group of experiments, all implemented
from the same initial point.

For this example, it is found that the simulated annealing algorithm 2.2 performs bad
at the cases of n = 10, 30, 60. The simulated annealing algorithm 2.3 has better numerical
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Table 3: The comparison of the four algorithms results for example 4.3

TFTR FTR

n λmax ratio iter time ratio iter time

10 2.7243e+01 56% 6.00 1.03e+2 51% 6.89 4.19e-2

20 1.0180e+02 51% 6.73 4.86e+1 50% 7.80 5.93e-2

30 2.3095e+02 56% 5.65 5.47e+1 49% 7.16 7.28e-2

40 4.1438e+02 54% 6.10 1.64e+2 52% 7.66 1.57e-1

50 6.3281e+02 53% 7.68 1.43e+2 50% 7.51 2.42e-1

60 9.0942e+02 55% 7.82 2.13e+2 51% 8.26 4.22e-1

RFTR MFTR

n λmax ratio iter time ratio iter time

10 2.7243e+01 90% 5.36 4.32e-2 53% 6.00 1.14

20 1.0180e+02 86% 4.70 4.60e-2 79% 11.14 7.47e-1

30 2.3095e+02 90% 3.34 5.50e-2 51% 6.86 2.15

40 4.1438e+02 78% 3.73 1.01e-1 100% 7.14 1.26

50 6.3281e+02 55% 4.02 2.14e-1 32% 7.59 7.22

60 9.0942e+02 46% 4.00 3.74e-1 49% 7.33 8.31

Figure 3: Z-eigenvalues obtained by each iteration under a random initial point m = 4,
n = 10 : 10 : 60

results, thus we use the algorithm 2.3 for the cases of n = 10, 30, 60. As shown in Table 3,
the success rate of TFTR is slightly higher than that of FTR. Except for n = 50, 60, the
success rate of both RFTR and MFTR is higher than that of FTR. With the exception of
some cases of MFTR (n = 20, 50), the iteration for all TFTR, MFTR and RFTR is lower
than that of FTR; the CPU time of RFTR is slightly quicker than that of FTR, the time of
TFTR and MFTR is slower than that of FTR.

It can be seen from Figure 3 that TFTR and MFTR are often easier to obtain the
largest Z-eigenvalue than FTR. The number of iterations of TFTR is less than that of FTR
when n = 30, 50, 60, the number of iterations of MFTR is more than that of FTR when
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n = 20, 30, 40, MFTR takes less iterations than FTR when n = 50, 60. The above conforms
to the data in Table 3. Unlike the previous examples, the subproblem (2.3) is occasionally
inconsistent during the preprocessing of the TFTR, but this is not a common occurrence.
We solve this problem using the conjugate gradient method [19].

Example 4.4. Calculate the largest Z-eigenvalue of the 5th order n-dimensional symmetric
tensor A.

Ai1,i2,i3,i4,i5 = (−1)i1 ln(i1) + (−1)i2 ln(i2) + (−1)i3 ln(i3) + (−1)i4 ln(i4) + (−1)i5 ln(i5)

Table 4: The comparison of the four algorithms results for example 4.4

TFTR FTR

n λmax ratio iter time ratio iter time

5 1.1001e+02 99% 5.44 3.74e+1 55% 5.33 3.10e-2

10 8.8328e+02 79% 4.04 3.29e+1 54% 5.26 3.47e-2

20 6.2367e+03 58% 4.79 1.18e+1 51% 5.12 1.07e-1

30 1.9439e+04 51% 4.62 5.52 49% 5.10 1.65

RFTR MFTR

n λmax ratio iter time ratio iter time

5 1.1001e+02 100% 3.84 3.10e-2 100% 5.26 3.57e-1

10 8.8328e+02 87% 5.00 3.93e-2 100% 5.07 7.84e-1

20 6.2367e+03 81% 4.02 1.40e-1 100% 4.07 3.08

30 1.9439e+04 71% 4.01 1.38 52% 3.89 1.10e+1

Select a group of experiments, and use the same initial point for the three algorithms
(TFTR, MFTR, FTR) to compare the Z-eigenvalues obtained in each iteration (n =
5, 10, 20, 30). Please refer to Figure 4.

From Table 4, we can see that iteration of TFTR is less than that of FTR besides n = 5,
the time of all TFTR, MFTR and RFTR is generally slower than that of FTR. In this
example, the subproblem constraints are still consistent during the preprocessing of TFTR.
It can be seen from Figure 4 that TFTR and MFTR are easier than FTR to obtain the
largest Z-eigenvalue. In particular, when n = 20, 30, MFTR is much easier to obtain the
largest Z-eigenvalue, which is consistent with the data in Table 4.

Based on the test cases above, it can be found that TFTR, MFTR and RFTR are all
capable of computing the largest Z-eigenvalue. Moreover, these methods generally exhibit a
higher success rate for obtaining the largest Z-eigenvalue compared to FTR. Except example
4.2, the three algorithms generally take less iterations than that of FTR, and the CPU time
of all RFTR, TFTR and MFTR is generally slower than that of FTR algorithm.

5 Conclusions

We have proposed three global optimizations preprocessing strategies based on the feasible
trust-region method, which improves the success rate of the largest (smallest) Z-eigenvalue.
It can offer a greater likelihood of evading saddle points and local maxima/minima during
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Figure 4: Z-eigenvalues obtained by each iteration under a random initial point m = 5,
n = 5, 10 : 10 : 30

the optimization process. Under certain assumptions, we prove the convergence of the
infeasible trust-region algorithm. In our numerical experiments, it is found that TFTR,
RFTR, and MFTR generally exhibit a higher success rate than FTR for obtaining the
largest Z-eigenvalue. This is a clear indication that our strategies are highly effective. Our
results demonstrate a significant improvement in the success rate of FTR by employing the
global optimization strategy.
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