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A GRADIENT PROJECTION METHOD FOR
SEMI-SUPERVISED EVEN ORDER HYPERGRAPH
CLUSTERING PROBLEMS*

Jingya Chang, Dongdong Liu and Min Xif

Abstract: Semi-supervised clustering problems focus on clustering data with labels. In this paper, we
consider the semi-supervised hypergraph problems. We use the hypergraph related tensor to construct an
orthogonal constrained optimization model. The optimization problem is solved by a retraction method,
which employs the polar decomposition to map the gradient direction in the tangent space to the Stefiel
manifold. A nonmonotone curvilinear search is implemented to guarantee reduction in the objective func-
tion value. Convergence analysis demonstrates that the first order optimality condition is satisfied at the
accumulation point. Experiments on synthetic hypergraph and hypergraph given by real data demonstrate
the effectivity of the proposed method.
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Introduction

Clustering and classification are two important tasks in machine learning. Clustering ap-
proaches aim to divide a number of items without labels into several groups, while classi-
fication methods provide a classifier with the help of labeled data and classify other data
by using the classifier. On the one hand data labeling in real life, such as getting labels in
computer-aided diagnosis or part-of-speech tagging, is usually time-consuming or difficult
[16]. On the other hand, sometimes in reality, few annotated points are melded in the unan-
notated data set in clustering problems and taking advantage of the priori label information
often enhances the clustering performances.

Semi-supervised learning is to complete the learning task based on both the labeled and
unlabeled data [21]. Semi-supervised clustering approach has wide applications in different
areas. In image processing, the semi-supervised clustering approach was employed for image
classification and segmentation [5]. A semi-supervised algorithm was proposed in [11] to solve
the data de-duplication problem. For microarray expression data analysis, the knowledge
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from gene ontology data set was well utilized to generate the clustering algorithm [4, 6]. An
active semi-supervised clustering method was applied to modeling the complex industrial
process [13].

Hypergraph is a useful tool to save and describe the high dimensional and complex
data arising from reality [17, 20]. Therefore, we consider the semi-clustering problems that
are modeled by hypergraphs. We employ the multi way array to generate the clustering
costs. By relaxing the label value and imposing the label matrix on the Stefiel manifold,
we construct a tensor related optimization model and utilize the projection operator as a
retraction to compute the feasible descent direction on the manifold. Numerical experiments
show that our method works well on synthetic and real data.

The outline of this paper is as follows. In Section 2, we introduce the preliminary knowl-
edge. The semi-clustering optimization model is given in Section 3, while the computing
algorithm and convergent result are presented in Section 4 and Section 5 respectively. The
numerical performance of our method is demonstrated in Section 6. Finally, we conclude
our work in Section 7.

Preliminaries

In this section we demonstrate some useful notions and results on hypergraphs and tensors.
Let RI™" be the rth order n-dimensional real-valued tensor space, i.e.,

r-times

—_——~
R[r,n]ERnX’I’LX-“Xn.

The tensor T = (t;,...;,) € RV with 4; = 1,...,n for j = 1,...,r, is said to be symmetric
if ¢;,...;, is unchanged under any permutation of indices [3]. Two operations between 7 and
any vector x € R™ are stipulated as

n n
TX = s til.“l‘rxil c Xy,
i1=1 ip=1

and
n

n
E E tiig.i, Xiy -+ X4., for i=1,... ,n.
ia=1  ip=1

Note that, 7x" € R and Tx"~! € R" are a scalar and a vector respectively, and 7x" =
x T (Tx"~1). The tensor outer product of A € RIP7 and B € Rl97 is given by

A oB = (ailiz“'ipbjljz...jq) c R[p‘H].,n].

Definition 2.1 (Hypergraph). A hypergraph is defined as G = (V,E), where V =
{1,2,...,n} is the vertex set and E = {e1,ea,...,e,} C 2V (the powerset of V) is the
edge set. We call G an r-uniform hypergraph when |e;| =r >2fort=1,...,m and e; # e,
in case of 7 # j.

If each edge of a hypergraph is linked with a positive number s(e), then this hyperpragh is
called a weighted hypergraph and s(e) is the weight associated with the edge e. An ordinary
hypergraph can be regarded as a weighted hypergraph with the weight of each edge being
1. The degree of a vertex i is denoted as d; = ), s(e).

The Stiefel manifold is MP := {X : XTX = [, X € R"P}. We take the Euclidean
metric as the Riemann metric on the Stiefel manifold and its tangent space. In this paper,
we focus on the clustering problems of even order hypergraphs.

(Tx" 1)
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Semi-supervised Clustering Model

Consider the hypergraph semi-supervised clustering problem. Our task is to cluster the n
vertices of the hypergraph into k groups according to the hypergraph structure, while few
categorization labels are given. Here k is the number of clusters and is usually much less
than n.

Denote an indicator matrix X € R"*P as

1, the ith vertex is in the jth cluster;

Xij :{ 0, otherwise. (3.1)

X is a matrix with 0-1 elements and its columns are orthogonal to each other. Consider the
two vertices i1 and o that are contained in the same edge e. If these two vertices are divided
in the same cluster, then the cluster cost is 0. Otherwise, a positive cluster cost arises, which

can be calculated as .
p
> ( ij Xm‘)
j=1 \/ 7/1 \/T diz

where r is even. The symbols d;, and d;, are degrees of vertices ¢; and %o respectively, and
r is the order of the hypergraph. Therefore, the total cutting cost of the hypergraph is

Kisg ——Xizj T. 3.2

It is shown in [2] that the cost function can be rewritten as sum of products of a tensor and
vectors.

Proposition 3.1 ([2]). For an even uniform weighted hypergraph G = (V, E,s), we define
the normalized Laplacian tensor

E:ZSeZuijouijo~~ouij, (33)

eeE i,j€e

r times

where u;; = e—d - = Q , €; and e; are column vectors with all elements being zero except
i i

the ith and jth entries are one respectively. Then, the cutting cost in (3.2) can be rewritten

as
p
= Lx], (3.4)
j=1

where x; = X (3, 7).

Next, we take into account the vertices labeled. Denote

Y, = { 1, the ith item is known in the jth cluster; (3.5)

0, otherwise.

to save the labels. We call the matrix Y the label matrix herein. It is natural that we try
best to retain the labeled vertex in its predetermined cluster during the clustering process.

Define

X

ij, if Y55 #0
(XY)ij:{ 0 ’ i7

otherwise.
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Hence, we solve the semi-supervised hypergraph clustering problem by

X(,j)=x;, forj=1,...,p,

X(i,7)=0,0r 1, fori=1,....,n,j=1,...,p.

This is a 0-1 integer programming. To make the optimization model easy, we penalize the
constraint Xy —Y = 0 and add a regularization term \|| Xy —Y||% to the objective function.
The A here is a parameter. In terms of the discrete 0-1 constraint, it can be deduced from
(3.1) that the column vectors of X are unit vectors and orthogonal to each other. Thus, we
relax it to the continuous constraint X7 X = I. The optimization model is then transformed
from discrete to continuous. Finally we get our orthogonal constrained model

p
min f(X) =Y Lx] + M| Xy - Y%

=t (3.7)
st. X(5,j)=xj, for j=1,...,p,

XTX =1.

for the semi-supervised clustering problem.

E Computation

In this section, we first review the gradient of a function on the tangent space, and then we
introduce the algorithm based on this gradient direction.

For optimization models constrained on the Steifel manifold, there are two threads to fol-
low [9, 10, 1]. One way is transforming the constrained optimization problem into an uncon-
strained one by using mathematical programming techniques such as the penalty method,
the augmented Lagrangian method [19] and then solve it by unconstrained optimization
methods. The other way is first finding a descent direction in the tangent space from the
current point, then mapping an appropriate point in the descent direction to the Stiefel
manifold.

We adopt the second route to compute the orthogonal constrained problem (3.7). The
tangent space at a point X € MP is

Tx ={Z:XTZ+ 77X =0}.

Suppose the function f(X): MP — R is differentiable. A retraction is a smooth mapping
from the tangent bundle to the manifold [1, 18, 2]. Then for any X € MZE the retraction
hx(Z) is a mapping from Tx € R™*P to MP with hx(0) = X. The function f(hx(2)) :
Tx — R is also differentiable. Denote the gradient of function f at the current point X
as G. Because the objective function f(X) is separable, we can compute the gradient G
in parallel. Take the inner product of two matrices (A, B) as (A, B) = tr(ATB). For any
vector ¢ in the tangent space of T'x the gradient of f at X projected onto the tangent space
satisfies

(Vf(X), &) = Df(x)[¢].
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In this paper, we take the direction V f(X) as G—XW. Next we show that V f(X) =
0 for XT X = I is equivalent to the first order optimality condition of the constrained model
(3.7).

Proposition 4.1. Assume X € MP. Let Vf(X) = G — X%. The first order
optimality conditions of (3.7) hold if and only if

VF(X) =0, (4.1)
with XTX = 1.

Proof. Let the symmetric matrix A be the Lagrangian multiplier of the constraint X ' X = I.
The Lagrangian function is L = f(X) + 3tr(AT(X"X — I)). The linear independence
constraint qualification is satisfied and the Karush-Kuhn-Tucker Conditions

Viyx = G+XA=0 (4.2)
XX = 1

hold.

Similar to the proof in [18, Lemma 1], we multiply both sides of equation (4.2) by X T and
obtain A = —X " G, which is symmetric. Then we get the first order optimality condition of
(3.7)

G-XG'X=0, X'X=1I (4.4)

Furthermore,
XTG+GTX
Vi=G-X"—T1E S G- XGTX =0,
On the other hand if Vf =0 and X "X = I, we get X 'G = G'T X by multiplying both
sides of Vf by X . Then
X'(G-XG"x)=o.

Because X is full column rank, the above equation indicates that G — XGTX = 0. The first
optimality conditions (4.4) hold. O

The direction —V f is employed to find a new point in the tangent space. In the iteration
process, we find B
X = Xk - OéVf

in the tangent space from Xj. The next step is to map X to the manifold by using a
retraction. We project X to the manifold by utilizing the polar decomposition [1, 14]. The
projection of any matrix Z onto the Stefiel manifold is defined as

h(Z) = argmin||Z — Q|3
QeM?b

If the SVD of Z is Z = UX VT, then the optimal solution of h(Z) can be computed by UVT
[8]. Also, h(Z) can be expressed as Z(ZT Z)~2 equivalently.

Proposition 4.2. Suppose X € MP and Z is a vector in the tangent space Tx. Consider
the univariate function
W (1) = argmin|Q — (X +12)[%
QEMT,
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with its domain t € R, which is the projection of X + tZ onto the Stiefel manifold. The
derivative of h%(t) att =0 is

(h%)'(0) = Z. (4.5)
When Z = —V f(X), the derivative of f(h%(t)) att =0 is
Fi(h%(0) = =V F(X)]*. (4.6)

Proof. For any arbitrary matrix Z € R™*?, it can be decomposed as Z = XA+ X | B+ XC,
in which A € RP*P is skew-symmetric and C' € RP*P is symmetric. It is proved in [14,
Lemma 8] that,

hZ(t) = X +t(XA+ X, B) + O(2). (4.7)

On the other hand, the tangent vector space at X is Tx = {XQ+ X, K,Q = —-Q K €
R(™=P)xP} [1]. Therefore, for Z € Tx

4 (t) = X +tZ + O(t?). (4.8)

Since h%(0) = X, we get (h%)'(0) = Z.
By the chain rule, when Z = —V f(X) the derivative of f(h%(t)) with respect to ¢ at
t=0is
(f(X), (h%)'(0)) = (G, =V (X))
= (VI(X), V(X)) - 5 (VI(X), X(XTG + GTX))

_ %[(XTVf(X), XTG+GTX)]

f(h%(0))

= —(Vf(X), V(X))
— (VAX), V(X)) — i[oﬂ’c _GTX, XTG4 GT X))
= —[IVF(X)|*

O

Based on the above analysis, we employ a nonmonotone line search method to find a
proper step size along —V f(Xj). Given Xj and the descent direction Z = —V f(X}), by
using the adaptive feasible BB-like method proposed in [10], we find a step size ¢ such that

FRZ (1) < fr+ 0t f'(h5(0)), (4.9)
where f,. is a reference objective function value. The new iteration point
X1 = h% () (4.10)

is obtained. Let Sip_1 = X — Xp—1,Ye—1 = =V (X)) + Vf(Xk—1). The parameter ¢; takes
the following BB stepsizes alternately:

- (Sk—1,Sk-1) 2 _ |(Sk—1,Yi—1)|

P S, YT (Yo, Yan)
Let L be a preassigned positive integer and fp.s+ be the current best function value. Denote
by fc the maximum objective function value after fy.s is found. The reference function
value f, is updated only when the best function value is not improved in L iterations. The
detailed steps are shown below.




A GRADIENT PROJECTION METHOD 57

if fk+1<fbest
fbest = fk+17fc = fk+1al =0

else
(4.11)
fC = max{fk+17f€}al = l + ]-7
ifl=0L,f = fc,fe = frr1,1 =0end
end
The proposed method is shown in Algorithm 1.
Algorithm 1 SSHC: Semi-supervised Hypergraph Clustering Algorithm
Require: 0 < p<1,Xge MP 0< B <1,e>0,L be a positive integer.
1: while do
2: Compute G at the point X} in parallel.
3: Compute Vf(Xy), Z = =V f(Xy).
4: Find the smallest nonnegative integer m, such that
F(Z (B™) < fr+ 8™ f' (1%, (0)). (4.12)

holds and set ¢ = ﬁmfk with t = t,lc or t% alternately.
5: Update X1 and fr, foest, fe by (4.10) and (4.11) respectively.
6: end while

Convergence Analysis

The sequence {V f(Xx)} generated from Algorithm 1 either terminates with Vf(Xj) = 0
or is infinite. By reductio and absurdum, we prove that when the iteration is infinite, a
subsequence of {V f(X})} converges to 0, which means

lim inf][ V£ (X, = 0.
Lemma 5.1. Assume there ezists a constant ¢ > 0 such that
VA > <. (5.1)
Under this assumption, the step size ty, generated by (4.12) satisfies
tr > c, (5.2)
where ¢ is a constant.

Proof. Suppose the conclusion does not hold. Then we can find a subsequence {k;} satisfies
that
t, >0 as k; = oo.

We use the symbol k instead of k; for simplicity. According to Proposition 4.2, when
Z = —V f(X}) the Taylor expansion of f(h% (t)) at the point ¢ = 0 is

F(h%, () = f(h%,(0)) +tfi(h%, (0)) +o(t)
F(X) = tIVF(XR)IP + oft). (5-3)
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If £}, is not accepted in the Armijo-type search (4.12), then we have f;, > 3=t and
FZ (B ) > fr+ 087 [ (h%, (0)
> (X)) =087 k| VF(X)|1%. (5-4)

Substituting 371¢; for t in (5.3), we have

F(h%, (B~ 1)) = f(Xk) = B |V (Xi)II* + o(tr)- (5:5)
Since t;, — 0 as k — oo, by combining (5.4) and (5.5), we obtain

(1= 8)[VF(Xp)[I* +o(1) < 0.

This inequity is impossible, when |V f(Xg)|| > €. The proof is then completed. |

Theorem 5.2. If the sequence { X} given by Algorithm 1 is infinite, then we have

lim inf||V £(X})]| = 0. (5.6)
k—o0

Proof. Suppose this conclusion is not true, then the assumption (5.1) holds. We save all
values of f, in (4.11) in the sequence {f/"}, where the index m means the mth value of f,.
Denote the index of the first iteration that is produced from the line search (4.9) related
with f* as k. Let ,,, be the index number that satisfies f(X;,,) = max  f(X;). From

km§j<km+1
(4.12), we have
f(Xu,) < = ot IV F(X0,))1P (5.7)
Also from the updating process we have
< f(X,,). (5.8)
By (5.7), (5.8) and (5.2), we obtain
frEE < BT = oV (X)) (5.9)

If {f™} is finite, the sequence of { fpest } is infinite which contradicts with the fact that f(X)
is bounded below. Therefore, {f/"} is an infinite sequence. Then based on Lemma 5.1 and
(5.9) we get

400 +o00
+oo > N [fi" = [T = Y e V(XL (5.10)
m=1

m=1

which indicates that the assumption (5.1) is impossible. The conclusion (5.6) is finally
proved. O

@ Numerical Experiments

In this section, we demonstrate the numerical performance of SSHC method for clustering
synthetic and real data. For each problem, we run 200 times and report the average values
of different evaluation indices produced by the 200 runs. The stopping criteria is set as

[V f(z)|| <107% or TterNum > 1000,

where “IterNum” means the total iteration number in each run.
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Figure 1: The 4-uniform hyerpgraph

Table 1: The clustering results with different proportions of labels

Error . .
Methods Max Min Average  Median
SHC 0.125000 0.125000 0.125000 0.125000
SSHC 0.145833 0.041667 0.098125 0.104167

Semi-supervised and supervised clustering of artificial hypergraphs

In this subsection, we employ the proposed SSHC method to cluster an artificial hypergraph.
We compare the clustering results of SSHC method and the SHC method, which is in fact
the unsupervised model by replacing the objective function in (3.7) as

fX) =) £x].

j=1

In order to construct the 4-uniform hyerpgraph, we first generate three 4-uniform sub-
hypergraphs. Each of the sub-hypergraph has 12 edges which share two common vertices.
The three sub-hypergraphs are shown in Figure 1 with different colors. Next, we produce
4 more edges by choosing two vertices from the sub-hypergraphs and putting two pairs of
the two vertices into one edge. These 4 edges are marked in green. The weight of this
hypergraph is an all one vector. The final hypergraph is shown in Figure 1. Thus, the
construction of the hypergraph in Figure 1 implies that its vertices can be divided into three
clusters with the vertices in each sub-hypergraph belonging to the same cluster. Next we use
SSHC and SHC method to cluster the given hypergraph. For the semi-supervised problem,
10 percent of the vertices are labeled. We report the maximum, minimum, average and
median clustering errors in Table 1. It can be seen that the clustering accuracy is promoted
by the proposed SSHC method.

Yale face data clustering

The extended Yale face data base B contains 600 face images of 30 persons under 20 lighting
conditions [7, 12]. Figure 2 displays 8 images of 4 persons as an example. Our task is to
group the images of each person into a cluster. Before computation, each image is resized into
48 x 42 pixels and expressed as a vector. Regard each image as a vertex in the hypergraph.
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Figure 2: 8 images of 4 person from the Yale data set

Table 2: The clustering results with different proportions of labels

Ratio Error Iteration number CPU time
0 0.06250 79 0.04115
0.1 0.05984 179 0.06804
0.2 0.05563 146 0.04886
0.3 0.04813 93 0.03542

For each vertex, we utilize the Nearest Subspace Neighbor (NSN) approach [15] to put the
vertices that are closest to it into one edge. The weight of an edge are given based on the
pairwise similarities of vertices that belong to this edge.

We cluster the images for 200 times and record the average clustering error, iteration
numbers and runtime. The ratio of labeled images is shown in the Ratio column. The
initial point is randomly chosen. In each trail, SSHC method computing the optimization
problem with different ratios from the same initial point. Since the subsequence of SSHC
method is guaranteed to converge to a stationary point theoretically, the average clustering
accuracy, iteration number and computing time may vary slightly when the initial point
changes. However, the consistent observation from our experiment is that the average values
of clustering error, the iteration number as well as the computing time decrease when the
ratio of labels increases from 0.1 to 0.3. Table 2 shows the numerical results of SSHC method
for clustering the images in Figure 2.

Conclusion

In this paper, we give a tensor related optimization model to compute the hypergraph
clustering problems with little part of labels provided. We use the polar decomposition as
a retraction on the Stiefel manifold. The convergence analysis shows that an accumulation
point of the iteration sequence is a stationary point. Numerical experiments indicate that
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the method improves the computation accuracy when compared to the unsupervised model.
However, the effectiveness of the hypregraph clustering method relies on an appropriate
hypergraph of the data. The construction of a hypergraph that reasonably reflects the data
structure and relationship is a meaningful topic in our future research.
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