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a modification of Gauss-Newton step dGN
k = −(JT

k Jk)
−1JT

k Fk. The LM parameter λk is
introduced to overcome the difficulty when JT

k Jk is singular or nearly singular. It is easy to
see that the LM step dk reduces to the Newton step dNk = −J−1

k Fk when Jk is nonsingular
and λk = 0.

There are many ways to select LM parameter λk in (1.2). For instance, Yamashita and
Fukushima [34] adopted the LM parameter λk = ‖Fk‖2 and proved that the LM method
has quadratic convergence under the local error bound condition. Another LM parameter is
chosen as λk = θ‖Fk‖+(1− θ)‖JT

k Fk‖ with θ being a constant in [0, 1], which is the convex
combination of ‖Fk‖ and ‖JT

k Fk‖ [27]. A more general choice of LM parameter is proposed
by Fan and Pan [16], which has the following form

λk = µkρ(xk), (1.3)

where µk is updated at each iteration by the trust region technique and

ρ(xk) =

{
ρ̃(xk), if ρ̃(xk) ≤ 1,
1, otherwise,

with ρ̃(xk) = O(‖Fk‖δ). (1.4)

Another popular approach employed in the selection of the LM parameter is self-adaptive
technique, e.g., Fan and Pan [17] chose the following self-adaptive LM parameter

λk = µk‖Fk‖δ, with µk+1 = µkq(rk), (1.5)

where q(r) is a continuous nonnegetive function of r and δ ∈ (0, 2]. Here µk is updated at
a variable rate according to the ratio rk, rather than by simply enlarging or reducing the
original one at a constant rate. It is well known that LM method is closely related to the
trust region method and LM parameter can be updated by using trust region techniques.
Recently, Esmaeili and Kimiaei [11, 12] introduced a new adaptive trust region radius ∆k

by using the following formula

∆k = cpk max{∆k−1,Λk},

where pk is a nonnegative integer, and Λk is generated by the nonmonotone technique of
Grippo, Lampariello and Lucidiv [21, 22] and will be introduced in Section 2. The interest-
ing question is whether we could employ the nonmonotone technique to produce the LM
parameter. This is one of our motivations.

We all know that the LM method achieves quadratic convergence when the Jacobian is
Lipschitz continuous and nonsingular at the solution. Fan and Yuan also proved in [18] that
the LM method preserves the quadratic convergence when λk = ‖Fk‖δ for any δ ∈ [1, 2].
Obviously the cost of calculations will be expensive when the dimension of the nonlinear
equations (1.1) is large. To save calculations, Fan [35] proposed the modified LM method
(MLM) by computing an approximate LM step

dMLM
k = −(JT

k Jk + λkI)
−1JT

k F (yk), (1.6)

where yk = xk+dk, and set the trial step be sMLM
k = dk+d

MLM
k . Later, Fan [14] introduced

an accelerated MLM method (AMLM) by using a line search strategy to generate a modified
LM step and showed that the convergence rate of the algorithm is min{1 + 2δ, 3}, which
results the cubic convergence for δ ≥ 1. Following the idea of Shamanskii [31], Huang
and Ma [23] proposed a Shamanskii-like self-adaptive LM method (SALM) for nonlinear
equations, to avoid more Jacobian calculations and save the linear algebra work as well. The
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Shamanskii-like self-adaptive LM method in [23] employs the self-adaptive LM parameter
with the form of

λk = µkρ(xk)

where ρ(xk) is defined as in (1.4) and µk is updated by the following formula

µk+1 = max
{
µ, µk max

{1

4
, 1− 2(2rk − 1)3

}}
(1.7)

with rk being the ratio of the actual reduction to the predicted reduction at the k-th iteration.
The Shamanskii-like self-adaptive LM method achieves the global convergence and has the
(m+ 1)-order convergence rate under the error bound condition.

The MLM, AMLM and SALM methods modify the LM method by computing a few
approximate LM steps for nonlinear equations, to avoid more Jacobian calculations. Differ-
ent from the above methods, Fan and Zeng [19] gave another classical modification of LM
method by computing a correction LM step, called LM method with correction. At each
iteration, the algorithm in [19] firstly obtained dk by solving the following linear equation

(JT
k Jk + λkI)dk = −JT

k Fk, λk = µk‖Fk‖δ, (1.8)

where δ ∈ (0, 2] and µk > 0 is updated by the trust region technique. Then they solve the
linear equation

(JT
k Jk + λkI)d̃k = λkdk (1.9)

to get the correction step d̃k = (JT
k Jk + λkI)

−1λkdk and set sk = dk + d̃k as the search
direction. Under the local error bound condition, they proved that the convergence rate of
the correction LM method is min{2, 1 + 2δ}. Now a natural question arises: Is it possible
to modify the LM method by computing both the approximate LM step and the correction
LM step for the nonlinear equations?

By these motivations, in this paper, we propose a new LM algorithm that produces the
LM parameter at each iteration by the nonmonotone technique of Grippo, Lampariello and
Lucidiv [21, 22]. The new nonmonotone LM parameter is a modification of the adaptive
trust region radius with the nonmonotone technique in [11, 12], and is different from the
self-adaptive LM parameter in [23]. Then we integrate the approximate LM step and the
correction LM step into the new LM algorithm for obtaining the better numerical perfor-
mance. In contrast to the LM method with correction of Fan and Zeng [19], our proposed
LM algorithm employs not only the correction LM step, but also the approximate LM step.
It is shown by Tables 1, 2 and 3 in Section 5 that the proposed new algorithm retains the
quick convergence of LM method, while significantly decreasing the computational costs of
the method due to improving the LM parameter and integrating the approximate LM step
and correction LM step.

The main contributions of this paper are given below.

• We propose a new LM algorithm by producing the LM parameter using the nonmono-
tone technique. The trial steps in our proposed LM algorithm consist of the classical
LM step dk in (1.2), the approximate LM step dMLM

k in (1.6) and an additional correc-
tion LM step ďk = (JT

k Jk + λkI)
−1λkd

MLM
k .

• We investigate the global convergence of the proposed LM algorithm and establish its
cubic convergence properties under the local error bound condition.
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The remainder of this paper is organized as follows. In Section 2, we propose a non-
monotone LM method with correction in which the LM parameter is generated by using the
nonmonotone technique and the trial step is produced by integrating the approximate LM
step and the correction LM step into the standard LM step. In Section 3, we give the global
convergence of the proposed algorithm under some suitable assumptions. In Section 4, we
obtain the convergence order of the new algorithm under the local error bound condition.
The numerical experiments of the proposed algorithm are shown and analyzed in Section 5.
The paper ends up with some conclusions in Section 6.

2 Nonmonotone Levenberg-Marquardt Method with Correction

It is known that LM method can achieve the global convergence by integrating the trust
region technique into the update of LM parameter. In [11, 12], Esmaeili and Kimiaei in-
troduced an adaptive trust region radius based on the nonmonotone technique of Grippo,
Lampariello and Lucidiv [21, 22]. Motivated by their work, we hope to produce the new
LM parameter by using the nonmonotone technique. More concretely, we modify the LM
parameter λk by constructing the following quantity

Λk =


‖Fk‖δ, if k = 0,∑m(k)−1

i=0 ηm(k)−iFk(i) + ‖Fk‖δ∑m(k)−1
i=0 ηm(k)−i + 1

, if k > 0,
(2.1)

where m(0) = 0, 0 ≤ m(k) ≤ min{m(k − 1) + 1, N}, η ∈ [ηmin, ηmax], ηmin ∈ [0, 1),
ηmax ∈ [ηmin, 1], δ ∈ [1, 2] and

Fk(i) =

{
‖Fk‖δ, if k < N,
‖Fk−N+i+1‖δ, if k ≥ N,

(2.2)

where

i ∈
{

[0, k], if k < N,
[0, N-1], if k ≥ N.

(2.3)

For the convenience, we also denote

Fk = {‖Fk−j‖δ}0≤j≤m(k), k ∈ N0 = N ∪ {0}. (2.4)

Now we produce the following nonmonotone LM parameter

λk = µkΛk, (2.5)

where µk is updated by simply enlarging or reducing the original one at a constant rate.
On the basis of the above discussion, the nonmonotone LM method with correction can

be outlined as follows.

Algorithm 2.1. (Nonmonotone LM method with correction)
Step 1 Choose the initial point x0 ∈ Rn and several constants ε ≥ 0, µ0 > µ > 0,

0 < p0 ≤ p1 ≤ p2 < 1, N > 0, η ∈ [ηmin, ηmax], δ ∈ [1, 2].
Step 2 Let Λ0 = ‖F0‖δ and λ0 = µ0Λ0. Set m(0) = 0 and k = 0.
Step 3 Compute Fk = F (xk) and Jk = J(xk). If ‖JT

k Fk‖ ≤ ε, then stop. Otherwise,
compute dk by solving

(JT
k Jk + λkI)d = −JT

k Fk with λk = µkΛk. (2.6)
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Let yk = xk + dk. Compute d̂k by solving

(JT
k Jk + λkI)d = −JT

k F (yk). (2.7)

Then solve

(JT
k Jk + λkI)d = −JT

k F (yk) + λkd̂k (2.8)

to obtain d̃k. Set

sk = dk + d̃k. (2.9)

Step 4 Compute rk = Aredk/Predk. Set

xk+1 =

{
xk + sk, if rk ≥ p0,
xk, otherwise.

(2.10)

Step 5 Choose m(k + 1) ∈
[
0,min{m(k) + 1, N}

]
. Compute Λk+1 by using (2.1).

Step 6 Choose µk+1 by the following formula

µk+1 =


4µk, if rk < p1,
µk, if rk ∈ [p1, p2],

max{µ, µk

4
}, if rk > p2.

(2.11)

Set k = k + 1, go to Step 3.

Remark 2.2. The given positive constant µ in Algorithm 2.1 is the lower bound of the LM
parameter which prevents the step from being too large in the case that the sequence is near
the solution.

So far, the quantity rk in Step 4 of Algorithm 2.1 is still unclear. And for that, we are
going to give the definitions of Aredk and Predk.

First we take

Ψ(x) = ‖F (x)‖2 (2.12)

as the merit function for (1.1). The actual reduction of Ψ(x) at the kth iteration is defined
by

Aredk = ‖Fk‖2 − ‖F (xk + sk)‖2, (2.13)

where sk is the trial step defined as in (2.9).
Since ‖Fk‖2−‖Fk +Jksk‖2 can not be proved to be nonnegative, we can not define it as

the predicted reduction as usual. Hence a modified predicted reduction is need to be given.
Note that dk is not only the minimizer of the convex minimization problem

min
d∈Rn

‖Fk + Jkd‖2 + λk‖d‖2 ≜ φk,1(d), (2.14)

but also a solution of the following trust region problem

min
d∈Rn

‖Fk + Jkd‖2

s.t. ‖d‖ ≤ 4k,1,
(2.15)

where

4k,1 = ‖ − (JT
k Jk + λkI)

−1JT
k Fk‖ = ‖dk‖.



68 B. HUANG AND C. MA

According to the result developed by Powell [29], it follows that

‖Fk‖2 − ‖Fk + Jkdk‖2 ≥ ‖JT
k Fk‖min

{
‖dk‖,

‖JT
k Fk‖

‖JT
k Jk‖

}
. (2.16)

It is also easy to see that d̂k is not only the minimizer of the convex minimization problem

min
d∈Rn

‖F (yk) + Jkd‖2 + λk‖d‖2 ≜ φk,2(d), (2.17)

but also a solution of the following trust region problem

min
d∈Rn

‖F (yk) + Jkd‖2 ≜ ψk(d)

s.t. ‖d‖ ≤ 4k,2,
(2.18)

where
4k,2 = ‖ − (JT

k Jk + λkI)
−1JT

k F (yk)‖ = ‖d̂k‖. (2.19)

So we also have

ψk(0)− ψk(d̂k) = ‖F (yk)‖2 − ‖F (yk) + Jkd̂k‖2 ≥ ‖JT
k F (yk)‖min

{
‖d̂k‖,

‖JT
k F (yk)‖
‖JT

k Jk‖

}
.

(2.20)
In order to define the predicted reduction, we call

dck = (JT
k Jk + λkI)

−1λkd̂k (2.21)

the correction step. Then it follows from (2.7) and (2.8) that

d̃k = d̂k + dck. (2.22)

By using the relations (2.7), (2.8), (2.18), (2.21) and (2.22), we obtain

ψk(d̂k)− ψk(d̃k) = ‖F (yk) + Jkd̂k‖2 − ‖F (yk) + Jkd̃k‖2

= 2d̂Tk J
T
k F (yk) + d̂Tk J

T
k Jkd̂k − 2d̃Tk J

T
k F (yk)− d̃Tk J

T
k Jkd̃k

= −2(dck)
TJT

k F (yk)− (dck)
TJT

k Jk(d
c
k)− 2(dck)

TJT
k Jkd̂k

= 2(dck)
T (JT

k Jk + λkI)d̂k − (dck)
TJT

k Jk(d
c
k)− 2(dck)

TJT
k Jkd̂k

= 2λk(d
c
k)

T d̂k − (dck)
TJT

k Jk(d
c
k)

= 2(dck)
T (JT

k Jk + λkI)(d
c
k)− (dck)

TJT
k Jk(d

c
k)

= 2λk(d
c
k)

T (dck) + (dck)
TJT

k Jk(d
c
k)

≥ 0. (2.23)

This together with (2.20) yields

‖F (yk)‖2 − ‖F (yk) + Jkd̃k‖2 = ψk(0)− ψk(d̃k)

= [ψk(0)− ψk(d̂k)] + [ψk(d̂k)− ψk(d̃k)]

≥ ψk(0)− ψk(d̂k)

≥ ‖JT
k F (yk)‖min

{
‖d̂k‖,

‖JT
k F (yk)‖
‖JT

k Jk‖

}
. (2.24)
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Hence the new predicted reduction can de specified by

Predk = ‖Fk‖2 − ‖Fk + Jkdk‖2 + ‖F (yk)‖2 − ‖F (yk) + Jkd̃k‖2. (2.25)

By (2.16), (2.24) and (2.25), it follows that

Predk = ‖Fk‖2 − ‖Fk + Jkdk‖2 + ‖F (yk)‖2 − ‖F (yk) + Jkd̃k‖2

≥ ‖JT
k Fk‖min

{
‖dk‖,

‖JT
k Fk‖

‖JT
k Jk‖

}
> 0. (2.26)

According to the relations (2.13) and (2.26), it is easy to see the following fact.

Remark 2.3. By Step 4 of Algorithm 2.1, it follows that

xk+1 =

{
xk + sk, if rk ≥ p0,
xk, otherwise,

This, together with (2.13) and (2.26), yields

‖Fk‖2 − ‖Fk+1‖2 =

{
Aredk = rk × Predk ≥ p0 × Predk > 0, if rk ≥ p0,
0, otherwise.

Hence ‖Fk+1‖2 ≤ ‖Fk‖2. This implies that the sequence {‖Fk‖} generated by Algorithm
2.1 is a nonincreasing sequence.

3 Global Convergence of Algorithm 2.1

In this section, we will give the global convergence of Algorithm 2.1. We need the following
assumptions.

Assumption 3.1. Let the level set L(x0) = {x ∈ Rn : ‖F (x)‖ ≤ ‖F (x0)‖} be bounded for
any given x0 ∈ Rn.

Assumption 3.2. Both F (x) and its Jacobian J(x) are Lipschitz continuous, i.e., there
exist positive constants L1 and L2 such that

‖J(x)− J(y)‖ ≤ L1‖x− y‖, ∀x, y ∈ Rn (3.1)

and

‖F (x)− F (y)‖ ≤ L2‖x− y‖, ∀x, y ∈ Rn. (3.2)

From (3.1) and (3.2), it is easy to check that

‖F (y)− F (x)− J(x)(y − x)‖ ≤ L1‖y − x‖2, ∀x, y ∈ Rn (3.3)

and

‖J(x)‖ ≤ L2, ∀x ∈ Rn. (3.4)

In order to obtain the global convergence of Algorithm 2.1, we need to prove the following
lemma.
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Lemma 3.1. Let Assumptions 3.1 and 3.2 hold and the sequence {xk} be generated by
Algorithm 2.1. Denote

NFl(k) = max{Fk} = max
0≤j≤N

{‖Fk−j‖δ}, k ∈ N0.

Then the following statements hold:
(1) {Λk}k≥0 is a decreasing sequence.
(2) xk ∈ L(x0) for all k ∈ N0.
(3) {NFl(k)}k≥0 is decreasing and hence converges.

(4) lim
k→∞

Λk = lim
k→∞

‖Fk‖δ.

Proof. (1) From Remark 2.3, it follows that ‖Fk+1‖ ≤ ‖Fk‖. This, together with the
relations (2.1) and (2.2), yields

Λk =

∑m(k)−1
i=0 ηm(k)−iFk(i) + ‖Fk‖δ∑m(k)−1

i=0 ηm(k)−i + 1
≥

∑m(k)−1
i=0 ηm(k)−i‖Fk‖δ + ‖Fk‖δ∑m(k)−1

i=0 ηm(k)−i + 1
= ‖Fk‖δ. (3.5)

Using the definition of Fk gives

Fk+1(i) ≤ Fk(i), ∀i = 1, 2, · · · , N.

Combining this and (3.5) leads to

Λk+1 =

∑m(k)
i=0 ηm(k)−i+1Fk+1(i) + ‖Fk+1‖δ∑m(k)

i=0 ηm(k)−i+1 + 1

≤
∑m(k)−1

i=0 ηm(k)−i+1Fk(i) + ηFk(m(k)) + ‖Fk+1‖δ∑m(k)
i=0 ηm(k)−i+1 + 1

≤
ηΛk

[∑m(k)−1
i=0 ηm(k)−i + 1

]
+ ‖Fk+1‖δ∑m(k)

i=0 ηm(k)−i+1 + 1

≤
Λk

∑m(k)
i=0 ηm(k)−i+1 + ‖Fk‖δ∑m(k)
i=0 ηm(k)−i+1 + 1

≤ Λk.

This implies that the sequence {Λk}k≥0 is decreasing.
(2) We prove this result by induction. For k = 0, the result is trivial. Suppose that

xi ∈ L(x0) for i = 1, 2, · · · , k, i.e.,

‖Fi‖δ ≤ ‖F0‖δ, ∀i = 1, 2, · · · , k.

According to Step 4 of Algorithm 2.1 and the relations (2.26) and (3.5), it follows that

Λ
2/δ
k − ‖Fk+1‖2 ≥ ‖Fk‖2 − ‖Fk+1‖2

= Aredk ≥ p0Predk

≥ p0‖JT
k Fk‖min

{
‖dk‖,

‖JT
k Fk‖

‖JT
k Jk‖

}
> 0.

This implies that
‖Fk+1‖δ ≤ Λk. (3.6)
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From the first claim of this lemma, we immediately have

‖Fk+1‖δ ≤ Λk ≤ Λk−1 ≤ · · · ≤ Λ0 = ‖F0‖δ.

Thus xk+1 ∈ L(x0) and consequently, the sequence {xk}k≥0 is contained in L(x0) by the
induction principle.

(3) By the definition of NFl(k), we have

Λk =

∑m(k)−1
i=0 ηm(k)−iFk(i) + ‖Fk‖δ∑m(k−1)

i=0 ηm(k)−i + 1
≤

∑m(k)−1
i=0 ηm(k)−iNFl(k) +NFl(k)∑m(k−1)

i=0 ηm(k)−i + 1
= NFl(k). (3.7)

Combining (3.6) with (3.7) yields ‖Fk+1‖δ ≤ Λk ≤ NFl(k) ≤ ‖F0‖δ and

NFl(k+1) = max
0≤j≤N

{‖Fk+1−j‖δ} = max{ max
0≤j≤N−1

{‖Fk−j‖δ}, ‖Fk+1‖δ}

≤ max{ max
0≤j≤N

{‖Fk−j‖δ}, ‖Fk+1‖δ} = max{NFl(k),Λk} ≤ NFl(k).

This implies that {NFl(k)}k≥0 is decreasing and bounded, and hence converges.
(4) Taking the limit on both sides of (3.6) and (3.7) yields

lim
k→∞

‖Fk‖δ ≤ lim
k→∞

Λk and lim
k→∞

Λk ≤ lim
k→∞

NFl(k). (3.8)

According to Lemma 3.2 [1], it follows that lim
k→∞

NFl(k)= lim
k→∞

‖Fk‖δ. This, together with the

relation (3.8), yields the desired result.

Now we discuss the global convergence of Algorithm 2.1.

Theorem 3.2. Let Assumptions 3.1 and 3.2 hold. Then the sequence {xk} generated by
Algorithm 2.1 will terminate in finite iterations or satisfy

lim
k→∞

‖JT
k Fk‖ = 0. (3.9)

Proof. We prove this result by contradiction. If the result is not true, then there exist a
positive constant ε > 0 and infinite many k such that

‖JT
k Fk‖ ≥ ε. (3.10)

This together with (3.4) implies that

‖Fk‖ ≥ L−1
2 ε. (3.11)

Let

T1 =
{
k : ‖JT

k Fk‖ ≥ ε
}

and T2 =
{
k : ‖JT

k Fk‖ ≥ ε

2
and xk+1 6= xk

}
.

Obviously T1 is infinite, here we consider T2 in two cases.
Case 1: T2 is infinite. According to Remark 2.3 and the relations (2.26) and (3.4), it

follows that

‖F1‖2 ≥
∑
k

‖Fk‖2 − ‖Fk+1‖2 ≥
∑
k∈T2

‖Fk‖2 − ‖Fk+1‖2 ≥
∑
k∈T2

p0Predk

≥
∑
k∈T2

p0‖JT
k Fk‖min

{
‖dk‖,

‖JT
k Fk‖

‖JT
k Jk‖

}
≥

∑
k∈T2

p0
ε

2
min

{
‖dk‖,

ε

2L2
2

}
. (3.12)



72 B. HUANG AND C. MA

This means that ∑
k∈T2

‖dk‖ < +∞, (3.13)

and then
‖dk‖ → 0, k ∈ T2. (3.14)

By the definition of dk, we obtain

λk → +∞, k ∈ T2. (3.15)

Using the relations (3.3) and (3.4) yields

‖d̂k‖ = ‖ − (JT
k Jk + λkI)

−1JT
k F (yk)‖

=
∥∥− (JT

k Jk + λkI)
−1JT

k

[(
F (yk)− Fk − Jk(yk − xk)

)
+ Fk + Jk(yk − xk)

]∥∥
≤ L1‖(JT

k Jk + λkI)
−1JT

k ‖‖dk‖2 + ‖(JT
k Jk + λkI)

−1JT
k Fk‖

+ ‖(JT
k Jk + λkI)

−1JT
k Jkdk‖

≤ L1L2

λk
‖dk‖2 + ‖dk‖+ ‖dk‖

≤ c1‖dk‖, (3.16)

where c1 is a positive number.
On the other hand, from the definition of the correction step dck, we have

‖dck‖ ≤ λk‖(JT
k Jk + λkI)

−1‖‖d̂k‖ ≤ ‖d̂k‖, (3.17)

and then
‖d̃k‖ = ‖d̂k + dck‖ ≤ 2‖d̂k‖. (3.18)

Thus
‖sk‖ = ‖dk + d̃k‖ ≤ ‖dk‖+ ‖d̃k‖ ≤ ‖dk‖+ 2‖d̂k‖ ≤ (1 + 2c1)‖dk‖. (3.19)

It then follows from (3.1), (3.2), (3.13) and (3.19) that∑
k∈T2

∣∣‖JT
k Fk‖ − ‖JT

k+1Fk+1‖
∣∣ = ∑

k∈T2

∣∣(‖JT
k Fk‖ − ‖JT

k Fk+1‖)− (‖JT
k+1Fk+1‖ − ‖JT

k Fk+1‖)
∣∣

≤
∑
k∈T2

(L2
2‖sk‖+ L1‖Fk+1‖‖sk‖)

≤
∑
k∈T2

(1 + 2c1)(L
2
2 + L1‖F0‖)‖dk‖

< +∞. (3.20)

Since (3.10) holds for infinitely many k, there exists a sufficiently large k̄ ∈ T2 such that
‖JT

k̄
Fk̄‖ ≥ ε and ∑

k∈T2,k≥k̄

∣∣‖JT
k Fk‖ − ‖JT

k+1Fk+1‖
∣∣ < ε

2
. (3.21)

By the induction principle, we obtain that ‖JT
k Fk‖ ≥ ε

2
and k ∈ T2 or xk+1 = xk holds for

all k ≥ k̄. Thus we have from (3.14) and (3.15) that

‖dk‖ → 0, and λk → +∞. (3.22)
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Now it follows from Lemma 3.3 that

µk =
λk
Λk

=
λk

O(‖Fk‖δ)
≥ λk
O(‖F0‖δ)

→ +∞. (3.23)

By the relations (2.13), (2.25) and (2.26), we immediately have

|rk − 1| =
∣∣∣Aredk − Predk

Predk

∣∣∣
≤

∣∣∣‖F (xk + sk)‖2 − ‖F (yk) + Jkd̃k‖2 + ‖F (yk)‖2 − ‖Fk + Jkdk‖2
∣∣∣

‖JT
k Fk‖min

{
‖dk‖,

‖JT
k Fk‖

‖JT
k Jk‖

} . (3.24)

Now we turn our attention to the estimation of the numerator of (3.24). Since

‖F (yk)− Fk − Jkdk‖ ≤ L1‖dk‖2, ‖F (xk + sk)− F (yk)− Jkd̃k‖ ≤ L1‖d̃k‖2 (3.25)

and

‖F (yk) + Jkd̃k‖ =
∥∥[F (yk)− Fk − Jkdk

]
+ Fk + Jksk

∥∥ ≤ L1‖dk‖2 + ‖Fk + Jksk‖, (3.26)

we have∣∣‖F (yk)‖2 − ‖Fk + Jkdk‖2
∣∣ = ∣∣‖F (yk)‖ − ‖Fk + Jkdk‖

∣∣(‖F (yk)‖+ ‖Fk + Jkdk‖
)

≤
∣∣‖F (yk)‖ − ‖Fk + Jkdk‖

∣∣[‖F (yk)‖ − ‖Fk + Jkdk‖+ 2‖Fk + Jkdk‖
]

≤ L1‖dk‖2
[
L1‖dk‖2 + 2‖Fk + Jkdk‖

]
≤ O(‖dk‖2) (3.27)

and∣∣‖F (xk+sk)‖2 − ‖F (yk)+Jkd̃k‖2
∣∣

=
∣∣‖F (xk + sk)‖ − ‖F (yk) + Jkd̃k‖

∣∣(‖F (xk + sk)‖+‖F (yk) +Jkd̃k‖
)

≤
∣∣‖F (xk + sk)‖ − ‖F (yk) + Jkd̃k‖

∣∣[‖F (xk + sk)‖ − ‖F (yk) + Jkd̃k‖+ 2‖F (yk) + Jkd̃k‖
]

≤ L1‖d̃k‖2
[
L1‖d̃k‖2 + 2

∥∥F (yk) + Jkd̃k
)∥∥]

≤ L1‖d̃k‖2
[
L1‖d̃k‖2 + 2L1‖dk‖2 + 2‖Fk + Jksk‖

]
≤ O(‖dk‖2). (3.28)

Substituting (3.27) and (3.28) into (3.24) yields

|rk − 1| =
∣∣∣Aredk − Predk

Predk

∣∣∣ ≤ O(‖dk‖2)

‖JT
k Fk‖min

{
‖dk‖,

‖JT
k Fk‖

‖JT
k Jk‖

}
≤ O(‖dk‖2)

ε

2
min

{
‖dk‖,

ε

2L2
2

} ≤ O(‖dk‖2)
O(‖dk‖)

→ 0. (3.29)
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This implies that rk → 1. Hence there exists a positive constant µ̄ > µ such that µk < µ̄
holds for sufficiently large k, which contradicts to (3.23).

Case 2: T2 is finite. Then the set

T3 =
{
k : ‖JT

k Fk‖ ≥ ε and xk+1 6= xk
}

is also finite. Denote k̃ be the largest index in T3. We see that as long as k ∈ T1 and k > k̃,
then xk+1 = xk. Define the set

T4 =
{
k : ‖JT

k Fk‖ ≥ ε and xk+1 = xk
}
.

If k ∈ T4, we can check that ‖JT
k+1Fk+1‖ ≥ ε and xk+2 = xk+1. This means that

k + 1 ∈ T4. Now we deduce that ‖JT
k Fk‖ ≥ ε and xk+1 = xk for all k > k̃. By Step 4 of

Algorithm 2.1, it gives that rk < p0 ≤ p1. According to the updating rule of µk, we have

µk → +∞. (3.30)

Since λk = µkΛk, it follows from (3.6) and (3.11) that

λk = µkΛk ≥ µk‖Fk+1‖δ ≥ µk(L2/ε)
δ → +∞.

This means that

‖dk‖ = ‖ − (JT
k Jk + λkI)

−1JT
k Fk‖ → 0. (3.31)

From (3.16)-(3.19), we have rk → 1 by using the same analysis as in (3.24)-(3.29). Hence
there exists a positive constant µ̄ > µ such that µk < µ̄ holds for sufficiently large k, which
is in contradiction with (3.30). This obtains the desired result.

4 Local Convergence Rate of Algorithm 2.1

In this section, we will analyze the convergence rate of Algorithm 2.1 by using the singular
value decomposition (SVD) technique. We assume that the sequence generated by Algorithm
2.1 converges to the solution set X∗ and lies in some neighbourhood of x∗ ∈ X∗.

We first give the following assumptions for obtaining the cubic convergence of Algorithm
2.1.

Assumption 4.1. (1) F (x) is continuously differentiable, and both F (x) and J(x) are
Lipschitz continuous on N(x∗, b1) = {x : ‖x − x∗‖ ≤ b1} with b1 ∈ (0, 1), i.e., there exist
positive constants L1 and L2 such that

‖J(x)− J(y)‖ ≤ L1‖x− y‖, ∀x, y ∈ N(x∗, b1) (4.1)

and

‖F (x)− F (y)‖ ≤ L2‖x− y‖, ∀x, y ∈ N(x∗, b1). (4.2)

(2) ‖F (x)‖ provide a local error bound on N(x∗, b1) for (1.1), i.e., there exists a positive
constant c > 0 such that

‖F (x)‖ ≥ cdist(x,X∗), ∀x ∈ N(x∗, b1). (4.3)
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By (4.1) and (4.2), we obtain

‖F (y)− F (x)− J(x)(y − x)‖ ≤ L1‖y − x‖2, ∀x, y ∈ N(x∗, b1). (4.4)

According to the result derived by Behling and Iusem [5], there exists a positive number
ω > 0 such that

rank(J(x̄)) = rank(J(x∗)), ∀x̄ ∈ N(x∗, ω) ∩X∗ (4.5)

when F (x) provides a local error bound. Let b ∈ (0, 1) and b1 = min{ω, b}. Without loss of
generality, we further assume that xk, yk ∈ N(x∗, b1/2). In the sequel, we let x̄k be a vector
in X∗ such that ‖x̄k − xk‖ = dist(xk, X

∗). Direct calculations give

‖x̄k − x∗‖ ≤ ‖x̄k − xk‖+ ‖xk − x∗‖ ≤ 2‖xk − x∗‖ ≤ b1.

Thus x̄k ∈ N(x∗, b1).

4.1 Properties of steps d̂k and d̃k

In this subsection, we investigate the property of d̂k (or d̃k) and give the relationship between

the norm of d̂k (or d̃k) and the distance from xk to the solution set.

Lemma 4.1. Let Assumptions 3.1 and 4.1 hold. Then

‖d̂k‖ ≤ O
(
‖x̄k − xk‖

)
and ‖d̃k‖ ≤ O

(
‖x̄k − xk‖

)
(4.6)

hold for sufficiently large k.

Proof. Since δ ∈ [1, 2] and dk is the minimizer of φk,1(d) = ‖Fk + Jkd‖2 + λk‖d‖2, by the
relations (2.5) and (3.3), it follows that

‖dk‖2 ≤ φk,1(dk)

λk
≤ φk,1(x̄k − xk)

λk

=
1

µkΛk

[
‖Fk + Jk(x̄k − xk)‖2 + µkΛk‖x̄k − xk‖2

]
=

1

µkΛk
‖Fk + Jk(x̄k − xk)‖2 + ‖x̄k − xk‖2

≤ 1

µO(‖Fk‖δ)
‖Fk + Jk(x̄k − xk)‖2 + ‖x̄k − xk‖2

≤ L2
1‖x̄k − xk‖4

O(‖x̄k − xk‖δ)
+ ‖x̄k − xk‖2 ≤ O(‖x̄k − xk‖2). (4.7)

By using the same method as in (3.16), we have

‖d̂k‖ ≤ L1‖(JT
k Jk + λkI)

−1JT
k ‖‖dk‖2 + 2‖dk‖. (4.8)

Now we turn our attention to the calculation of ‖(JT
k Jk + λkI)

−1JT
k ‖. According to the

relation (4.5), we assume that rank(J(x̄)) = r for all x̄ ∈ N(x∗, b1) ∩X∗. Correspondingly,
the SVD of J(x̄k) has the following form

J(x̄k) = ŪkΣ̄kV̄
T
k = (Ūk,1, Ūk,2)

(
Σ̄k,1

0

)(
V̄ T
k,1

V̄ T
k,2

)
= Ūk,1Σ̄k,1V̄

T
k,1,
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where Σ̄k,1 = diag(σ̄k,1, σ̄k,2, · · · , σ̄k,r) and σ̄k,1 ≥ σ̄k,2 ≥ · · · ≥ σ̄k,r > 0. Then the SVD of
J(xk) is given by

J(xk) = UkΣkV
T
k = (Uk,1, Uk,2, Uk,3)

 Σk,1

Σk,2

0

 V T
k,1

V T
k,2

V T
k,3


= Uk,1Σk,1V

T
k,1 + Uk,2Σk,2V

T
k,2,

where Σk,1 = diag(σk,1, σk,2,· · · ,σk,r), Σk,2 = diag(σk,r+1, σk,r+2, · · · , σk,r+q), and σk,1 ≥
σk,2 ≥ · · · ≥ σk,r > 0, σk,r+1 ≥ σk,r+2 ≥ · · · ≥ σk,r+q > 0. We will neglect the subscript k
if the context is clear in the sequel. Obviously the above formulas can be written as

Jk = U1Σ1V
T
1 + U2Σ2V

T
2 .

Direct calculations give

‖(JT
k Jk + λkI)

−1JT
k ‖

=

∥∥∥∥∥∥(V1, V2, V3)
 (Σ2

1 + λkI)
−1Σ1

(Σ2
2 + λkI)

−1Σ2

0

 UT
1

UT
2

UT
3

∥∥∥∥∥∥
≤

∥∥(Σ2
1 + λkI)

−1Σ1

∥∥+
∥∥λ−1

k Σ2

∥∥ . (4.9)

According to the Lipschitzness of Jk and matrix perturbation theory [32], it follows that

‖diag(Σ1 − Σ̄1,Σ2, 0)‖ ≤ ‖Jk − J̄k‖ ≤ L1‖x̄k − xk‖.

This means that

‖Σ1 − Σ̄1‖ ≤ L1‖x̄k − xk‖ and ‖Σ2‖ ≤ L1‖x̄k − xk‖. (4.10)

Correspondingly∥∥λ−1
k Σ2

∥∥ =
‖Σ2‖
µkΛk

≤ ‖Σ2‖
µΛk

=
‖Σ2‖

µO(‖Fk‖δ)
=

L1‖x̄k − xk‖
O(‖x̄k − xk‖δ)

= O(‖x̄k − xk‖1−δ). (4.11)

Note that
σi

σ2
i + λk

≤ σi

2σi
√
λk

=
1

2
√
λk

for σi > 0 and i = 1, 2, · · · , r. This gives that∥∥(Σ2
1 + λkI)

−1Σ1

∥∥ ≤ 1

2
√
µkΛk

≤ 1

2
√
µO(‖Fk‖δ)

≤ O(‖x̄k − xk‖−
δ
2 ). (4.12)

Combining (4.9), (4.11) and (4.12), we have

‖(JT
k Jk + λkI)

−1JT
k ‖ ≤

∥∥(Σ2
1 + λkI)

−1Σ1

∥∥+
∥∥λ−1

k Σ2

∥∥ ≤ O(‖x̄k − xk‖−
δ
2 ).

This together with (4.7) and (4.8), yields

‖d̂k‖ ≤ L1O
(
‖x̄k − xk‖−

δ
2

)
‖dk‖2 + 2‖dk‖ ≤ O

(
‖x̄k − xk‖

)
. (4.13)

It then follows from (3.18) that

‖d̃k‖ ≤ 2‖d̂k‖ ≤ O
(
‖x̄k − xk‖

)
. (4.14)

This gives the desired result.
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4.2 Boundedness of the LM parameter

From the updating rule of {µk}, it follows that {µk} is bounded below. In this subsection,
we prove that {µk} is bounded above.

Lemma 4.2. Let Assumptions 3.1 and 4.1 hold. Then µk ≤ µ̄ holds for all sufficiently large
k, where µ̄ is a positive number such that µ̄ > µ.

Proof. We first show that the following two inequalities

‖Fk‖2 − ‖Fk + Jkdk‖2 ≥ č‖Fk‖min
{
‖dk‖, ‖x̄k − xk‖

}
(4.15)

and
‖F (yk)‖2 − ‖F (yk) + Jkd̂k‖2 ≥ c̃‖F (yk)‖min

{
‖d̂k‖, ‖ȳk − yk‖

}
(4.16)

hold for sufficiently large k, where č and c̃ are positive constants.
For proving (4.15), we divide two cases. For the case that ‖x̄k − xk‖ ≤ ‖dk‖. Since dk is

the minimizer of φk,1, it follows from the relations (4.3) and (4.4) that

‖Fk‖−‖Fk+Jkdk‖ ≥ ‖Fk‖−‖Fk+Jk(x̄k−xk)‖ ≥ c‖x̄k−xk‖−L1‖x̄k−xk‖2 ≥ č‖x̄k−xk‖.
(4.17)

For the case that ‖x̄k − xk‖ > ‖dk‖. Similar to above, we have

‖Fk‖ − ‖Fk + Jkdk‖ ≥ ‖Fk‖ −
∥∥∥Fk +

‖dk‖
‖x̄k − xk‖

Jk(x̄k − xk)
∥∥∥

≥ ‖dk‖
‖x̄k − xk‖

(‖Fk‖ − ‖Fk + Jk(x̄k − xk)‖)

≥ ‖dk‖
‖x̄k − xk‖

(c‖x̄k − xk‖ − L1‖x̄k − xk‖2) ≥ č‖dk‖. (4.18)

Combining (4.17) with (4.18) gives

‖Fk‖2 − ‖Fk + Jkdk‖2 ≥ (‖Fk‖+ ‖Fk + Jkdk‖)(‖Fk‖ − ‖Fk + Jkdk‖)
≥ č‖Fk‖min

{
‖dk‖, ‖x̄k − xk‖

}
,

which yields (4.15).

Now we prove (4.16). If ‖ȳk − yk‖ ≤ ‖d̂k‖, by the relations (4.2)-(4.4) and the fact that

d̂k is the minimizer of φk,2, we have

‖F (yk)‖ − ‖F (yk) + Jkd̂k‖ ≥ ‖F (yk)‖ − ‖F (yk) + Jk(ȳk − yk)‖
≥ ‖F (yk)‖ − ‖F (yk) + J(yk)(ȳk − yk)‖
− ‖Jk − J(yk)‖‖ȳk − yk‖

≥ c‖ȳk − yk‖ − L1‖ȳk − yk‖2 − L1‖dk‖‖ȳk − yk‖
≥ c̃‖ȳk − yk‖. (4.19)

If ‖ȳk − yk‖ > ‖d̂k‖, we get

‖F (yk)‖ − ‖F (yk) + Jkd̂k‖ ≥ ‖F (yk)‖ −
∥∥∥F (yk) + ‖d̂k‖

‖ȳk − yk‖
Jk(ȳk − yk)

∥∥∥
≥ ‖d̂k‖

‖ȳk − yk‖
(‖F (yk)‖ − ‖F (yk) + Jk(ȳk − yk)‖)

≥ ‖d̂k‖
‖ȳk − yk‖

c̄‖ȳk − yk‖ ≥ c̃‖d̂k‖. (4.20)
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Combining (4.19) with (4.20) gives

‖F (yk)‖2 − ‖F (yk) + Jkd̂k‖2 ≥ (‖F (yk)‖+ ‖F (yk) + Jkd̂k‖)(‖F (yk)‖ − ‖F (yk) + Jkd̂k‖)

≥ c̃‖F (yk)‖min
{
‖d̂k‖, ‖ȳk − yk‖

}
,

which yields (4.16).
Next we show rk → 1. Since dk is the minimizer of φk,1, by the relations (4.2) and (4.13),

we have
‖Fk + Jkdk‖ ≤ ‖Fk‖ ≤ L2‖x̄k − xk‖

and

‖Fk + Jksk‖ ≤ ‖Fk + Jkdk‖+ ‖Jkd̂k‖ ≤ L2‖x̄k − xk‖+ L2‖d̂k‖ ≤ č2‖x̄k − xk‖.

It then follows from (3.18), (3.27), (3.28), (4.13) and Lemma 4.1 that∣∣‖F (yk)‖2 − ‖Fk + Jkdk‖2
∣∣ ≤ L1‖dk‖2

[
L1‖dk‖2 + 2‖Fk + Jkdk‖

]
≤ O(‖dk‖2‖x̄k − xk‖)

and ∣∣‖F (xk + sk)‖2 − ‖F (yk) + Jkd̃k‖2
∣∣ ≤ L1‖d̃k‖2

[
L1‖d̃k‖2 + 2

∥∥F (yk) + Jkd̃k
∥∥]

≤ L1‖d̃k‖2
[
L1‖d̃k‖2 + 2L1‖dk‖2 + 2‖Fk + Jksk‖

]
≤ O(‖dk‖2‖x̄k − xk‖).

The above two inequalities imply that

|Aredk − Predk| ≤ O(‖dk‖2‖x̄k − xk‖). (4.21)

From (2.23), (2.25), (4.15) and (4.16), we obtain

Predk = ‖Fk‖2 − ‖Fk + Jkdk‖2 + ‖F (yk)‖2 − ‖F (yk) + Jkd̃k‖2

= ‖Fk‖2 − ‖Fk + Jkdk‖2 + ‖F (yk)‖2 − ‖F (yk) + Jkd̂k‖2

+ ‖F (yk) + Jkd̂k‖2 − ‖F (yk) + Jkd̃k‖2

≥ ‖Fk‖2 − ‖Fk + Jkdk‖2 + ‖F (yk)‖2 − ‖F (yk) + Jkd̂k‖2

≥ O(‖dk‖‖x̄k − xk‖), (4.22)

which, together with (4.21), yields

|rk − 1| =
∣∣∣Aredk − Predk

Predk

∣∣∣ ≤ O(‖dk‖2‖x̄k − xk‖)
O(‖dk‖‖x̄k − xk‖)

→ 0. (4.23)

Thus rk → 1, and then there exists a positive constant µ̄ such that µk < µ̄ holds for
sufficiently large k. This gives the desired result.

4.3 Convergence order of Algorithm 2.1

To obtain the convergence order of Algorithm 2.1, we need the following two lemmas.

Lemma 4.3 ( [13]). Let Assumptions 3.1 and 4.1 hold. If xk ∈ N(x∗, b1/2), then
(1) ‖U1U

T
1 Fk‖ ≤ L2‖x̄k − xk‖;

(2) ‖U2U
T
2 Fk‖ ≤ 3L1‖x̄k − xk‖2;

(3) ‖U3U
T
3 Fk‖ ≤ L1‖x̄k − xk‖2.
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Lemma 4.4 ( [6]). Let Assumptions 3.1 and 4.1 hold. If xk ∈ N(x∗, b1/2), then
(1) ‖U1U

T
1 F (yk)‖ ≤ O(‖x̄k − xk‖2);

(2) ‖U2U
T
2 F (yk)‖ ≤ O(‖x̄k − xk‖3);

(3) ‖U3U
T
3 F (yk)‖ ≤ O(‖x̄k − xk‖3).

In what follows, we will show the cubic convergence of Algorithm 2.1.

Theorem 4.5. The convergence rate of Algorithm 2.1 is of order 3 under the conditions of
Assumptions 3.1 and 4.1.

Proof. Since xk ∈ N(x∗, b1/2), we may assume that L1‖x̄k − xk‖ ≤ σ̄r/2 for sufficiently
large k. According to (4.10), it follows that

|σ̄r − σr| ≤ L1‖x̄k − xk‖ ≤ σ̄r/2.

Correspondingly

‖(Σ2
1 + λkI)

−1‖ ≤ ‖Σ−2
1 ‖ =

∣∣∣ 1
σr

∣∣∣2 ≤
∣∣∣ 1

σ̄r − L1‖x̄k − xk‖

∣∣∣2 ≤ 4

σ̄2
r

(4.24)

and

‖(Σ2
1 + λkI)

−2‖ ≤ ‖Σ−4
1 ‖ ≤

∣∣∣ 1
σr

∣∣∣4 ≤
∣∣∣ 1

σ̄r − L1‖x̄k − xk‖

∣∣∣4 ≤ 16

σ̄4
r

(4.25)

hold for sufficiently large k. Since δ ∈ [1, 2], we have from (4.11), (4.12), (4.24) and Lemma
4.4 that

‖d̂k‖ = ‖ − V1(Σ
2
1 + λkI)

−1Σ1U
T
1 F (yk)− V2(Σ

2
2 + λkI)

−1Σ2U
T
2 F (yk)‖

≤ ‖Σ−1
1 ‖‖UT

1 F (yk)‖+ ‖λ−1
k Σ2‖‖UT

2 F (yk)‖
≤ O(‖x̄k − xk‖2) +O(‖x̄k − xk‖4−δ)

≤ O(‖x̄k − xk‖2). (4.26)

This together with (3.18) yields

‖d̃k‖ ≤ 2‖d̂k‖ ≤ O(‖x̄k − xk‖2). (4.27)

By (2.8), (2.21) and some direct calculations, we have

F (yk) + Jkd̃k

= F (yk) + Jk(d̂k + dck) = F (yk) + Jkd̂k + Jk(λk(J
T
k Jk + λkI)

−1d̂k)

= F (yk)− Jk(J
T
k Jk + λkI)

−1JT
k F (yk)− λkJk(J

T
k Jk + λkI)

−2JT
k F (yk)

= [I − Jk(J
T
k Jk + λkI)

−1JT
k − λkJk(J

T
k Jk + λkI)

−2JT
k ]F (yk)

=
(
U1, U2, U3

) λ2k(Σ
2
1 + λkI)

−2

λ2k(Σ
2
2 + λkI)

−2

I

 UT
1

UT
2

UT
3

F (yk)

= λ2kU1(Σ
2
1+λkI)

−2UT
1 F (yk)+λ

2
kU2(Σ

2
2+λkI)

−2UT
2 F (yk)+U3U

T
3 F (yk). (4.28)

Notice that LM parameter satisfies

λk = µkΛk = µkO(‖Fk‖δ) ≤ µ̄O(‖Fk‖δ) ≤ O(‖x̄k − xk‖δ), δ ∈ [1, 2] (4.29)
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and

‖(Σ2
2 + λkI)

−2‖ ≤ 1

λ2k
. (4.30)

By using (4.25), (4.28)-(4.30) and Lemma 4.4, we immediately have

‖F (yk) + Jkd̃k‖ ≤ O(‖x̄k − xk‖2δ)O(‖x̄k − xk‖2) +O(‖x̄k − xk‖3) +O(‖x̄k − xk‖3)
= O(‖x̄k − xk‖3). (4.31)

According to the relations (4.1), (4.3) and (4.4), we obtain

c‖x̄k+1 − xk+1‖ ≤ ‖F (xk+1)‖ = ‖F (xk + sk)‖ = ‖F (yk + d̃k)‖
≤ ‖F (yk) + J(yk)d̃k‖+ L1‖d̃k‖2

≤ ‖F (yk) + Jkd̃k‖+ ‖(J(yk)− Jk)d̃k‖+ L1‖d̃k‖2

≤ ‖F (yk) + Jkd̃k‖+ L1‖dk‖‖d̃k‖+ L1‖d̃k‖2.

It then follows from the relations (4.27) and (4.31) and Lemma 4.1 that

c‖x̄k+1−xk+1‖ ≤ O(‖x̄k−xk‖3)+O(‖x̄k−xk‖3)+O(‖x̄k−xk‖4) ≤ O(‖x̄k−xk‖3). (4.32)

This means that the sequence {xk} generated by Algorithm 2.1 converges to the solution
set X∗ with 3th order.

Since

‖x̄k − xk‖ = dist(xk, X
∗) ≤ ‖x̄k+1 − xk‖ ≤ ‖x̄k+1 − xk+1‖+ ‖sk‖,

we have from the relation (4.32) that

‖x̄k − xk‖ ≤ 2‖sk‖

hold for sufficiently large k. By the relation (4.32) and Lemma 4.1, we have

‖sk+1‖ ≤ O(‖sk‖3).

This means that the sequence {xk} converges to some solution x∗ ∈ X∗ with 3th order.
This proves the desired result.

5 Numerical Experiments

In this section, we conduct several experiments to verify the effectiveness of Algorithm 2.1.
All of the tests are run in MATLAB R2015a with the machine precision 10−16 on a personal
computer (Intel (R) Core (TM)i7-5500U), where the CPU is 2.40 GHz and the memory is
8.0 GB.

We compare our proposed algorithm with the modified two steps LM method (denoted
by MTLM method) developed by Amini and Rostami [3], the accelerated modified LM
method (denoted by AMLM method) developed by Fan [14], and the LM algorithm with
correction (denoted by LMC method) developed by Fan and Zeng [19]. Algorithm 2.1 is
divided to NLMC1 and NLMC2 with δ = 1 and δ = 2, respectively. In addition, if we
delete the correction step dck, i.e., sk = dk + d̂k, which results the nonmonotone LM method
without correction, abbreviated as NLM1 for δ = 1 and NLM2 for δ = 2. Similarly, we test
LMC (AMLM) algorithm with δ = 1 and δ = 2, denoted by LMC1 (AMLM1) and LMC2
(AMLM2), respectively.
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The above mentioned algorithms are terminated when the norm of JT
k Fk, i.e., the deriva-

tive of
1

2
‖F (x)‖2 at the kth iteration, is less than ε = 10−6 or k reaches the maximum number

of iterations, e.g., 500.
We measure the effectiveness of the above mentioned iterative algorithms by the number

of function calculations (NF) and the number of Jacobian calculations (NJ). We usually em-
ploy “NT=NF+n*NJ”to measure the total computation since the Jacobian calculation typ-
ically requires n times as much computations as function. In addition, the sign “-”indicates
that the algorithms can not converge to a solution within 500 iterations.

5.1 Performance profile

In this subsection, we apply the performance profile of Dolan and Moŕe [10] to demon-
strate the overall behaviour of the considered algorithms and obtain more insight about the
performance of the considered algorithms. For the algorithm implementation, we choose
p0 = 0.0001, p1 = 0.25, p2 = 0.75, µ = 10−8 and µ0 = 10−4. We also let η = 0.75 and
N = 10.

We select test problems from a wide range of literatures with dimensions ranging from
10 to 1000. More concretely, the first four problems are selected from [28], the last five
problems are chosen from [8] and the others are discussed in [26]. For all these algorithms,
the Jacobian matrix Jk can be either computed analytically by a user-supplied function or
approximated by using finite differences formula in the form of

[Jk]·j ∼
1

hj
(F (xk + hjej)− Fk),

where ej denotes the jth column of the identity matrix, [Jk]·j is the jth column of Jk and

hj =

{ √
ϵm, if xkj = 0,

√
ϵmsign(xkj

)max{|xkj
|, ‖xk‖1

n
}, otherwise.

Here ϵm is the machine epsilon specified by the Matlab function “eps”.
For the sake of completeness, we now give the notion of a performance profile as a means

to evaluate and compare the performance of the solvers on a test set P. Assume that we
have ns solvers and np problems. For each test problem p and solver s, we define

kp,s = iteration number required to solve problem p by solver s

and
cp,s = total calculations required to solve problem p by solver s.

Following the idea of Dolan and Moŕe [10], we compare the performance on problem p
by solver s with the best performance by any solver on this problem; that is, we use the
performance ratios

ρkp,s =
kp,s

min{kp,s : 1 ≤ s ≤ ns}
and ρcp,s =

cp,s
min{cp,s : 1 ≤ s ≤ ns}

.

When the solver s has failed on problem p, we set ρkp,s = rkfail and ρcp,s = rcfail, where r
k
fail

and c
fail are strictly larger than any performance ratio. For any factor τ ≥ 1, the overall

performance of solver s is specified by

pks(τ) =
1

np
size{p ∈ P : ρkp,s ≤ τ}
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and

pcs(τ) =
1

np
size{p ∈ P : ρcp,s ≤ τ}.

Hence performance profiles, for every τ ≥ 1, produce the proportions pks(τ) and p
c
s(τ) of test

problems on which each solver has a performance within a factor τ of the best. That is, we
plot

τ 7→ 1

np
size{p ∈ P : ρkp,s ≤ τ} or τ 7→ 1

np
size{p ∈ P : ρcp,s ≤ τ}

to measure the performance on problem p by solver s. It is easy to see that pks(1) (or p
c
s(1))

is the probability in which the solver s is the best and limτ→rkfail
pks(τ) (or limτ→rkfail

pks(τ))
gives the ratio of test problems of P for which the algorithm s succeeded. Consequently, the
values on the left side of the figures give the information about the efficiency of each solver
and the values on the right side represent the robustness of the solvers. This implies that
the best solver is the highest on the figures.

The performance of all algorithms, based on both the iteration number and total calcula-
tions (NT), have been, respectively, assessed in Figure 1 and Figure 2. It is seen from Figure
1 that NLMC1, NLM1, LMC1 [19], AMLM1 [14], NLMC2, NLM2, LMC2 [19], AMLM2 [14]
and MTLM [3] are all feasible while NLMC1, NLM1 and LMC1 are better than NLMC2,
NLM2 and LMC2. We clearly see from Figure 1 that NLMC1 win in nearly 76% of the
test problems with the greatest efficiency. Furthermore, we see from Figure 2 that NLMC1
is better than others where it has most won in approximately 56% of the test problems
concerning the total number of calculations.

We also report the NJ, NF and NT for each algorithm in Table 1. From Table 1, we
find that in most cases the iteration number, i.e., the number of Jacobian calculations, of
our proposed algorithm is less than the one in MTLM method [3]. It is known that our
proposed nonmonotone LM method with correction (NLMC) is superior to the accelerated
modified LM method (AMLM) in [14] and the LM method with correction (LMC) in [19]
since it requires fewer computations for most test problems. We also observe from Table
1 that the correction technique is quite efficient and the NLMC algorithm outperforms the
NLM algorithm for most of the test set problems.

Table 1: Numerical results for the test set
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Figure 1: Performance profile for the number of iterations
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Figure 2: Performance profile for the total number of calculations

5.2 Singular problem

In this subsection, we test the algorithm on some singular problems, which were generated
by modifying the nonsingular problems given by Moré et al. in [28], and have the same form
as in [30]

F̂ (x) = F (x)− J(x∗)A(ATA)−1AT (x− x∗), (5.1)
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where F (x) is the standard nonsingular test function, A ∈ Rn−k (1 ≤ k ≤ n) is a full column
rank matrix, and x∗ is the root of F (x). It is easy to check that F̂ (x∗) = 0 and

Ĵ(x∗) = J(x∗)(I −A(ATA)−1AT )

has rank n − k. More concretely, we choose the rank of Ĵ(x∗) to be n − 1 and n − 2
respectively, by using

A ∈ Rn×1, AT = (1, 1, · · · , 1)

and

A ∈ Rn×2, AT =

(
1 1 1 1 · · · 1
1 −1 1 −1 · · · ±1

)
,

respectively.
The results for the first set of problems of rank(F ′(x∗)) = n−1 are summarized in Table

2, and the second set of problems of rank(F ′(x∗)) = n − 2 are listed in Table 3. With
regard to Tables 2 and 3, the second column of the table indicates that the start point is
0.01x0, 0.1x0, x0, 10x0, 100x0, where x0 is the initial value suggested by Moré et. al [28];
“Label” denotes the problem number in Moré et. al [28]; “n” indicates the dimension of test
functions; “F” indicates a final value of the norm of JT

k Fk.

Table 2: Numerical results on the first singular test set with rank(F ′(x∗)) = n− 1.

From Tables 2 and 3, we see that the nonmonotone LM method with δ = 1 always
outperforms the nonmonotone LM method with δ = 2 in terms of the number of iterations
and the total number of calculations. We observe from Tables 2 and 3 that our proposed
nonmonotone LM method with correction (NLMC) is superior to the LMC method [19] and
MTLM method [3] since it requires fewer numbers of Jacobian calculations and function
calculations for almost all test problems. From the results showed in Tables 2 and 3, we find
that the nonmonotone LM method with correction (NLMC) achieves nearly the same numer-
ical results as AMLM method [14], and in some cases even better. In a word, our proposed
nonmonotone LM method is efficient in both the first set problems with rank(F ′(x)) = n−1
and the second set problems with rank(F ′(x)) = n− 2. This means that our new choice of
the nonmonotone LM parameter is satisfactory for the singular nonlinear equations. Hence
our new Algorithm 2.1 is promising and efficient.
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Table 3: Numerical results on the second singular test set with rank(F ′(x∗)) = n− 2.

6 Conclusions

In this paper, we propose a nonmonotone LM method with correction to solve systems of
nonlinear equations for which its global convergence and cubic convergence rate, under mild
assumptions, are established. Preliminary numerical results illustrate that the proposed
algorithm is efficient and robust.
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[26] L. Lukšan and J. Vlček, Sparse and partially separable test problems for unconstrained and
equality constrained optimization, Techical Report, No. 767, January 1999.



A NONMONOTONE LEVENBERG-MARQUARDT METHOD 87

[27] C.F. Ma and L.H. Jiang, Some research on Levenberg-Marquardt method for the nonlinear
equations, Appl. Math. Comput. 184 (2007) 1032–1040.
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