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Abstract: It is well known that Levenberg-Marquardt (LM) method is widely used for solving nonlinear
equations. In this paper, we give an extension of LM method and propose a nonmonotone LM method
with correction which produces the LM parameter according to the new nonmonotone strategy of Grippo,
Lampariello and Lucidi. Moreover, not only an LM step but also a correction step are computed at every
iteration in our proposed nonmonotone LM method with correction. The cubic convergence of the proposed
method is proved under the local error bound condition which is weaker than nonsingularity. Some numerical
results confirm the feasibility and effectiveness of the proposed algorithm.
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Introduction
In this paper, we consider the following system of nonlinear equations
F(z) =0, (1.1)

where F' : R — R" is a continuously differentiable mapping. Throughout this paper, we
assume that the solution set X* of (1.1) is nonempty since (1.1) may have no solutions
for the nonlinearity of F(z), and in all cases || - || stands for the 2-norm. A lot of efficient
iterative algorithms have been proposed for the nonlinear equations (1.1), including Newton
method, quasi-Newton method, Gauss-Newton method, trust region method, tensor method,
Levenberg-Marquardt method, and so on. One can refer to [1,2,4-7,9,11-15,18,20-22,24,
25,33-37].

The Levenberg-Marquardt (LM) method is one of the most popular methods for the
nonlinear equations (1.1), which computes the search direction by

dy = —(JL T + X)L F, (1.2)

where Fy, = F(x1), Jr = F'(xy) is the Jacobian of F at xzy, and Ay is a nonnegative
regularized parameter that is updated at each iteration. The LM step (1.2) is actually
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a modification of Gauss-Newton step dgN = —(J,{Jk)_lngk. The LM parameter Ay is
introduced to overcome the difficulty when JI Jj, is singular or nearly singular. It is easy to
see that the LM step dj reduces to the Newton step d}j = fl]k_le when Jj is nonsingular
and \p = 0.

There are many ways to select LM parameter Ay in (1.2). For instance, Yamashita and
Fukushima [34] adopted the LM parameter A\; = ||Fy||* and proved that the LM method
has quadratic convergence under the local error bound condition. Another LM parameter is
chosen as A\, = 0| Fy|| + (1 — 0)||J{ F|| with 6 being a constant in [0, 1], which is the convex
combination of ||F|| and ||JT Fx|| [27]. A more general choice of LM parameter is proposed
by Fan and Pan [16], which has the following form

Ak = pp(T), (1.3)

where pj is updated at each iteration by the trust region technique and

o(xy), if p(ag) <1, R
plan) = { 7o HRED= L with i) = O, (1.4

Another popular approach employed in the selection of the LM parameter is self-adaptive
technique, e.g., Fan and Pan [17] chose the following self-adaptive LM parameter

Mo = || Fill®, with peia = peg(ry), (1.5)

where ¢(r) is a continuous nonnegetive function of r and 6 € (0,2]. Here py, is updated at
a variable rate according to the ratio 7y, rather than by simply enlarging or reducing the
original one at a constant rate. It is well known that LM method is closely related to the
trust region method and LM parameter can be updated by using trust region techniques.
Recently, Esmaeili and Kimiaei [11,12] introduced a new adaptive trust region radius Ay
by using the following formula

Ay = P* max{Ag_1, Ar},

where pj is a nonnegative integer, and Ay is generated by the nonmonotone technique of
Grippo, Lampariello and Lucidiv [21,22] and will be introduced in Section 2. The interest-
ing question is whether we could employ the nonmonotone technique to produce the LM
parameter. This is one of our motivations.

We all know that the LM method achieves quadratic convergence when the Jacobian is
Lipschitz continuous and nonsingular at the solution. Fan and Yuan also proved in [18] that
the LM method preserves the quadratic convergence when A\, = ||Fy|° for any & € [1,2].
Obviously the cost of calculations will be expensive when the dimension of the nonlinear
equations (1.1) is large. To save calculations, Fan [35] proposed the modified LM method
(MLM) by computing an approximate LM step

Ay = —(JE T+ M D) T I F(y), (1.6)

where y, = x4+ dy, and set the trial step be s}XILM =di+ di/ILM. Later, Fan [14] introduced
an accelerated MLM method (AMLM) by using a line search strategy to generate a modified
LM step and showed that the convergence rate of the algorithm is min{1 + 26,3}, which
results the cubic convergence for 6 > 1. Following the idea of Shamanskii [31], Huang
and Ma [23] proposed a Shamanskii-like self-adaptive LM method (SALM) for nonlinear
equations, to avoid more Jacobian calculations and save the linear algebra work as well. The
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Shamanskii-like self-adaptive LM method in [23] employs the self-adaptive LM parameter
with the form of

e = prp(zk)
where p(zy) is defined as in (1.4) and py is updated by the following formula

1
fe1 = max {u,uk max{z,lf2(2rk - 1)3}} (1.7)

with 7, being the ratio of the actual reduction to the predicted reduction at the k-th iteration.
The Shamanskii-like self-adaptive LM method achieves the global convergence and has the
(m + 1)-order convergence rate under the error bound condition.

The MLM, AMLM and SALM methods modify the LM method by computing a few
approximate LM steps for nonlinear equations, to avoid more Jacobian calculations. Differ-
ent from the above methods, Fan and Zeng [19] gave another classical modification of LM
method by computing a correction LM step, called LM method with correction. At each
iteration, the algorithm in [19] firstly obtained dj, by solving the following linear equation

(JE T + MeD)dyy = —JFFry M = ]| Fie?, (1.8)

where ¢ € (0,2] and u; > 0 is updated by the trust region technique. Then they solve the
linear equation

(JE T + AeD)dy, = Ady, (1.9)

to get the correction step Jk = (J,Z“J;C + M D)7 Apdy and set sp = dyp + Jk as the search
direction. Under the local error bound condition, they proved that the convergence rate of
the correction LM method is min{2,1 + 26}. Now a natural question arises: Is it possible
to modify the LM method by computing both the approximate LM step and the correction
LM step for the nonlinear equations?

By these motivations, in this paper, we propose a new LM algorithm that produces the
LM parameter at each iteration by the nonmonotone technique of Grippo, Lampariello and
Lucidiv [21,22]. The new nonmonotone LM parameter is a modification of the adaptive
trust region radius with the nonmonotone technique in [11,12], and is different from the
self-adaptive LM parameter in [23]. Then we integrate the approximate LM step and the
correction LM step into the new LM algorithm for obtaining the better numerical perfor-
mance. In contrast to the LM method with correction of Fan and Zeng [19], our proposed
LM algorithm employs not only the correction LM step, but also the approximate LM step.
It is shown by Tables 1, 2 and 3 in Section 5 that the proposed new algorithm retains the
quick convergence of LM method, while significantly decreasing the computational costs of
the method due to improving the LM parameter and integrating the approximate LM step
and correction LM step.

The main contributions of this paper are given below.

e We propose a new LM algorithm by producing the LM parameter using the nonmono-
tone technique. The trial steps in our proposed LM algorithm consist of the classical
LM step dj, in (1.2), the approximate LM step d¥™ in (1.6) and an additional correc-
tion LM step di, = (JI Jx + MpI) " ApdPM,

e We investigate the global convergence of the proposed LM algorithm and establish its
cubic convergence properties under the local error bound condition.
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The remainder of this paper is organized as follows. In Section 2, we propose a non-
monotone LM method with correction in which the LM parameter is generated by using the
nonmonotone technique and the trial step is produced by integrating the approximate LM
step and the correction LM step into the standard LM step. In Section 3, we give the global
convergence of the proposed algorithm under some suitable assumptions. In Section 4, we
obtain the convergence order of the new algorithm under the local error bound condition.
The numerical experiments of the proposed algorithm are shown and analyzed in Section 5.
The paper ends up with some conclusions in Section 6.

Nonmonotone Levenberg-Marquardt Method with Correction

It is known that LM method can achieve the global convergence by integrating the trust
region technique into the update of LM parameter. In [11,12], Esmaeili and Kimiaei in-
troduced an adaptive trust region radius based on the nonmonotone technique of Grippo,
Lampariello and Lucidiv [21,22]. Motivated by their work, we hope to produce the new
LM parameter by using the nonmonotone technique. More concretely, we modify the LM
parameter A\, by constructing the following quantity

| F]l?, i k=0,
Ap =14 PO ymE =i F () 4 || By
Z?;(éﬂ)*l k) —i 41

, if k>0, (2.1)

where m(0) = 0, 0 < m(k) < min{m(k — 1) + I, N}, 7 € [Dmin,Pmax), Mmin € [0,1),
1)

Nmax € [Mmin, 1], 0 € [1,2] and
A0 ={ R v, TSN 22)
where 0,k if k<N,
el 0N, res 23
For the convenience, we also denote
T = {lI1Fe—j[°Yo<j<mm), k € No=NU{0}. (2.4)
Now we produce the following nonmonotone LM parameter
Ak = bk, (2.5)

where pj is updated by simply enlarging or reducing the original one at a constant rate.
On the basis of the above discussion, the nonmonotone LM method with correction can
be outlined as follows.

Algorithm 2.1. (Nonmonotone LM method with correction)

Step 1 Choose the initial point zop € R™ and several constants € > 0, pg > pu > 0,
0 < Po Spl §p2 < 17 N > 07 ne [nminanmax]; d€ [172}

Step 2 Let Ag = ||Fy||® and \g = poAg. Set m(0) =0 and k = 0.

Step 3 Compute Fy = F(zy) and Ji, = J(zy). If ||JI Fg|| < €, then stop. Otherwise,
compute di by solving

(JE T + M\ d)d = —JL Fy, with A\, = ppAy. (2.6)
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Let yx = xp + di. Compute a?k by solving

(JE T + X\ D)d = =T F(yy). (2.7)
Then solve
(JE T + M\eD)d = =TI Fyr) + Apdy (2.8)
to obtain dj. Set
S = dy + dy,. (2.9)

Step 4 Compute rp = Aredy/Predy. Set

| i+ s, if T > Do,
S { Tk otherwise. (2.10)

Step 5 Choose m(k + 1) € [0, min{m(k) + 1, N}]. Compute Ay41 by using (2.1).
Step 6 Choose 41 by the following formula

Ay, if v <pa,
Pht1 = Hoks» if 7 € [p1,p2l, (2.11)
max{u, %}, if 7 > po.

Set K=k + 1, go to Step 3.

Remark 2.2. The given positive constant p in Algorithm 2.1 is the lower bound of the LM
parameter which prevents the step from being too large in the case that the sequence is near
the solution.

So far, the quantity rj in Step 4 of Algorithm 2.1 is still unclear. And for that, we are
going to give the definitions of Ared, and Predy.
First we take
U(z) = ||F(2)]? (2.12)
as the merit function for (1.1). The actual reduction of ¥(x) at the kth iteration is defined
by
Aredy, = ||Fi||* = |F(zx + si)||%, (2.13)
where sy, is the trial step defined as in (2.9).
Since || Fy||? — || Fx + Jksk||? can not be proved to be nonnegative, we can not define it as

the predicted reduction as usual. Hence a modified predicted reduction is need to be given.
Note that dj is not only the minimizer of the convex minimization problem

Jnin 1Fx + Jid||? + Arlldl® £ @r.1(d), (2.14)

but also a solution of the following trust region problem

min ||Fk + Jde2
deRn”

(2.15)
s.t. |||l < Ak,

where
A= || = (JF e + D)7 T F|| = | diel|.
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According to the result developed by Powell [29], it follows that

IIJkTFkII}

1Fell® = |1 Fr + Jrdil|® > ||Jf Fi|| min {||dk||7 7T

(2.16)
It is also easy to see that dy, is not only the minimizer of the convex minimization problem
(?61%{2 1 F (yi) + Jid|)® + Milld])* £ or,2(d), (2.17)

but also a solution of the following trust region problem

. F 2 é
min [[Fyx) + Jid® = ¢r(d)

(2.18)
st ||d|l < DAk,
where .
Dz = = T+ X D) T ICF (i)l = Nl (2.19)
So we also have
) . (s IJEF(Qy
010) = bulde) = [IF@OI? — 1) + Jedil = |77 F (o) min {1, ], 1LY,
15 Tl
(2.20)
In order to define the predicted reduction, we call
b= (TE T+ M) Aedy, (2.21)
the correction step. Then it follows from (2.7) and (2.8) that
di, = d + d§. (2.22)

By using the relations (2.7), (2.8), (2.18), (2.21) and (2.22), we obtain

Ur(de) = Yrl(dr) = |[F(yw) + Judell® = | F(yn) + Jnd|®
= 2d} JLF(yy) + dETL Jxdy, — 2dE TEF(yg) — df JE Tydy
= =2(dp)" T F(ye) — (dg)" L Tk(dg) — 2(dg)" T Jedy,
= 2(dg)" (JF T + NeD)di — (d§)T T To(d5) — 2(d) T T Tdy,
= 2X\(df)"dy, — ()T I Ti(dy)
= 2(d})" (JE Tk + M) (df) = (di)" T I (df)
= 20(dg) " (df) + (di)" T} T (df)
0. (2.23)

v

This together with (2.20) yields

IF(i)|? = 1 F(yx) + Jedi]*> = ¥x(0) — ¢r(dy)
[¥i(0) — Ve (di)] + [We(dr) — P (dr)]

¥i(0) — Yr(d)
. o L1do EE @]
I8 F )i {575

v

v

(2.24)



A NONMONOTONE LEVENBERG-MARQUARDT METHOD 69

Hence the new predicted reduction can de specified by
Predy = [|Fg||* = [P + Jedi]|* + [|F (yr) 1> = | F (yx) + Judi]|*. (2.25)

By (2.16), (2.24) and (2.25), it follows that

Pred, = | Fel® = |Fr + Jedi|® + |1 F () I* = 1F () + Jrd||®
- | T F|
> ||JE Fy|| min { [|dg ], 0. (2.26)
¥ { IIJkTJkH}

According to the relations (2.13) and (2.26), it is easy to see the following fact.

Remark 2.3. By Step 4 of Algorithm 2.1, it follows that

pras — 1 Tk Sk, if r > po,
k+1 Ti, otherwise,

This, together with (2.13) and (2.26), yields

I1F ”2 _IF ”2 _ Aredy, = r, X Predy > pg X Predy, >0, if rp > pg,
k k1 0, otherwise.

Hence ||Fyy1]|? < ||F||?>. This implies that the sequence {||F}||} generated by Algorithm
2.1 is a nonincreasing sequence.

Global Convergence of Algorithm 2.1

In this section, we will give the global convergence of Algorithm 2.1. We need the following
assumptions.

Assumption 3.1. Let the level set L(xg) = {z € R™ : ||F(z)| < ||F(x0)||} be bounded for
any given xo € R™.

Assumption 3.2. Both F(z) and its Jacobian J(z) are Lipschitz continuous, i.e., there
exist positive constants Ly and Ly such that

17(z) = JW)| < Lillz — yll, Yo,y € R" (3.1)

and
| F(z) — F(y)l| < Laflz —y||, Va,y € R™. (3.2)

From (3.1) and (3.2), it is easy to check that
IF(y) = F(z) = J(x)(y — )| < Lally — 2, Yo,y € R" (3.3)

and
|J(z)|| < Lo, Yz € R". (3.4)

In order to obtain the global convergence of Algorithm 2.1, we need to prove the following
lemma.
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Lemma 3.1. Let Assumptions 3.1 and 3.2 hold and the sequence {xy} be generated by
Algorithm 2.1. Denote

NFy = max{Fi} = max {|Fes|}, k € No.

Then the following statements hold:

(1) {Ax}r>o0 is a decreasing sequence.

(2) xp € L(zo) for all k € Ny.

(3) {NFyy}r>0 is decreasing and hence converges.
(4) hm Ax = hm | F%ll°.

Proof. (1) From Remark 2.3, it follows that ||[Figi1| < ||Fk||. This, together with the
relations (2.1) and (2.2), yields

m(k)—1 _m(k)—i m(k)— nm —i
A — Sty Fi (@) + || Fyl® Zi:(o) LB+ (D —IEP. (3.5)
S 1nm(k) i1 - me Lymk)—i 41

i=0

Using the definition of Fj, gives
fk+1()<fk() :172a"'7N'

Combining this and (3.5) leads to

m(k m —q
T D i PR O |1 R
kol Zz_(k) m(k)—i+1 4 1
S L= LUE (6) 4+ nFe(m(k) + || Frga |)®

Zm(k) m(k)—i+1+1
nAk[Zm(k) 1 m(k) 1]+||Fk+1||5

S (0)77 m(k)—i+1 4 1
A S =it |y |9
S =it

IN

IN

< Ayg.

This implies that the sequence {Ay}r>0 is decreasing.
(2) We prove this result by induction. For k& = 0, the result is trivial. Suppose that
x; € L(xg) fori =1,2,-- k, ie.,
IE]° < |[Foll’, Yi=1,2,--- k.
According to Step 4 of Algorithm 2.1 and the relations (2.26) and (3.5), it follows that

2/6
A N Fna | 2 | Fl? = | Fin ||
= Aredy, > poPredy,

: 175 Fell
> polJF Fi | min {1 di }
; 175 Tkl
This implies that
|Fesal® < A (3.6)
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From the first claim of this lemma, we immediately have
[Friill® <Ay S Apey <o < Ag = || Fo°.

Thus zy+1 € L(xo) and consequently, the sequence {zy}r>0 is contained in L(zo) by the
induction principle.
(3) By the definition of N Fj,), we have

SO O R G) + B S T T NFgy + NFg,
Z;’;(éﬂfl) pmk)—i 4 1 - Z:f;(écfl) pm(R)=i 4 1

Combining (3.6) with (3.7) yields ||Fj11° < Ay < NFy,) < [|Fo||° and

Ay =

= NFy. (3.7)

_ 61 0 §
NFyprn) = max ([P |°) = max{_mae (1P 1%}, [P )
< max{ max {|F—s|1°}, 1P |7} = max{ N Fig), Ae} < NFigr-
This implies that { N Fj)}r>o is decreasing and bounded, and hence converges.
(4) Taking the limit on both sides of (3.6) and (3.7) yields
lim ||Fy)® < lim Ay and lim Ay < lim NF,. (3.8)
k—o0 k—o0 k— o0 k—o0
According to Lemma 3.2 [1], it follows that klim NF(x :klim | F%||° This, together with the
—00 —00
relation (3.8), yields the desired result. O
Now we discuss the global convergence of Algorithm 2.1.

Theorem 3.2. Let Assumptions 3.1 and 3.2 hold. Then the sequence {xy} generated by
Algorithm 2.1 will terminate in finite iterations or satisfy

lim ||.J; Fe = 0. (3.9)
k—o0

Proof. We prove this result by contradiction. If the result is not true, then there exist a
positive constant € > 0 and infinite many %k such that

I JE Pl > e (3.10)
This together with (3.4) implies that

| Fel > Ly'e. (3.11)
Let

€
Ty ={k: ||JIF| > e} and Tp = {k:||J} Fx| > 3 and @j11 # Tp ).

Obviously 7T is infinite, here we consider T, in two cases.
Case 1: Ty is infinite. According to Remark 2.3 and the relations (2.26) and (3.4), it
follows that

IR > D IEP = Feal® = Y I Fl® = [1Fesall® = ) poPreds
k keT> keT>

. |7 Fi £ e
> 3 pollE Fillmin { g, 5= = 3 pos min {ldkll, 555 - (3.12)
= I = &7 213
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This means that

> lldill < +o0, (3.13)
keTs
and then
ldll — 0, k € T5. (3.14)
By the definition of dj, we obtain
A — +o0o, ke Ty, (3.15)

Using the relations (3.3) and (3.4) yields

ldkll = | = (J& T + MeD) 2 TEF ()|
= = (ST + M) T T (F k) — Fio — Ty — @) + Fre + Ji(yre — @) ||
< Lall (5 T+ MeD)THIE il + 1T T+ M) TH T F |
+ (1TE T+ M) ™I Tedie|
< L;fQ
< ci||dk, (3.16)

]l + i || + [l

where ¢ is a positive number.
On the other hand, from the definition of the correction step dj,, we have

I < Ml (T Tk + X D)l < il (3.17)
and then R A .
| di|| = [|di + di]| < 2[|d]|- (3.18)
Thus - - .
skl = lldx + dill < [|dill + lldrll < llde |l + 2[ldx]| < (14 2¢1)][dx]- (3.19)

It then follows from (3.1), (3.2), (3.13) and (3.19) that

> I E = 1T Faall] = Y [ Fell = 1 B ) = (11 Pl = 1178 Feia )]
keT> keT>

< D (Lallswll + Lol Exrallllsel)
keTy

< > (14 2e)(L3 + La|| Foll)lld|
k€eTs

< +o. (3.20)

Since (3.10) holds for infinitely many k, there exists a sufficiently large k € T such that
[|JIFr|l > € and

g
> BN = 17 Fenll| < 5. (3.21)
k€T, k>k

By the induction principle, we obtain that ||.J{ F)| > % and k € Ty or zy41 = xy holds for
all k> k. Thus we have from (3.14) and (3.15) that

ldi|l = 0, and A — 4o0. (3.22)



A NONMONOTONE LEVENBERG-MARQUARDT METHOD 73

Now it follows from Lemma 3.3 that

Ak Ak Ak
/“Lk‘ = — = 5 Z 5
Ax O(IE:°) — O([Foll°)

— +o0. (3.23)

By the relations (2.13), (2.25) and (2.26), we immediately have

Aredk—Predk
m—1| = [Aredi= Prede

Pred,
Tk Sk - Yk k~k Yk - k kUE
I @i+ si) 17 = 1F () + Tedill® + 1 F )12 — | Fe + il
5 TR (824
JTFy || min { ||dg ||, ok =F
I Filfmin {5}

Now we turn our attention to the estimation of the numerator of (3.24). Since

1F (yx) = Fi = Jdie]| < Lalldil|*, | F(zx + si) = Fyx) = Jedi]| < L || dl|? (3.25)
and
1F(yk) + Jrdil| = || [F(yr) — Fr — Judi| + Fi + Jisi|| < Lu||dil® + || Fx + Jisell, (3.26)
we have

E)l? = 1 Fx + Jrdel®| = [I1F (i)l = 1 Fx + Judill| (1 (i) || + |1 Fx + Trdil])
< IF @)l = 1Fx + Jedell| [”F(yk)” — | Fy + Jrdy|| + 2| Fr + Jkdk“]
< L|ldg |1 [Lalldill* + 2/ Fr + Jrdi ]
< O(|ldr]I?) (3.27)
and
IF(zr+si) 1> = 1 F(yw)+ Jrdi||
= [I1F(zx + si)ll = 1F (yw) + Jidic || (| F (@ + si)|| +1F (yr) +Tndil)
< I1F(k + si)ll = I1F (yx) + Jrdill {HF(CEk + se)ll = [1F () + Judill + 2] F (yr) + Jrdy]|
< Ly||di || (Lo lldill® + 2| F(yw) + Jedi) ]
< La||dg|* [Lalldi||* + 2La || |* + 2[| Fx + Jisil]
< O(|ldx|1?). (3.28)

Substituting (3.27) and (3.28) into (3.24) yields

Aredy, — Predy, O(||dx]1?)
e =1 = ‘ Predy, ‘ = 17 Fy | mi {Hd I ||J£Fk|\}
min ,
BR TE R
2 2
< o) o) (3.20)

A S U7 O(lldell)
Qmm{Hd’“H’ng}
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This implies that r, — 1. Hence there exists a positive constant i > p such that up < i
holds for sufficiently large k, which contradicts to (3.23).
Case 2: Ty is finite. Then the set

T3 = {k : HJI?F]?H 2 ¢ and Tk+1 7é l’k}

is also finite. Denote k be the largest index in T5. We see that as long as k € Ty and k > £k,
then z;4+1 = z. Define the set

Ty = {k: | JEFy|| > ¢ and xp11 = 2% }.

If k € Ty, we can check that || J,,Fi1]| > ¢ and 42 = @41, This means that

k+1 e Ty. Now we deduce that ||JFFy| > ¢ and ), = ay, for all k > k. By Step 4 of
Algorithm 2.1, it gives that 7, < pg < p1. According to the updating rule of uy, we have

[ — +00. (3.30)
Since Ay, = pr Ay, it follows from (3.6) and (3.11) that
Mo = Ak 2 gl B |® 2 g (La/e)’ — oo,

This means that
di|| = || = (JiF T + M) LI Fy || — 0. (3.31)

From (3.16)-(3.19), we have 7, — 1 by using the same analysis as in (3.24)-(3.29). Hence
there exists a positive constant g > p such that p, < @ holds for sufficiently large k, which
is in contradiction with (3.30). This obtains the desired result. O

Local Convergence Rate of Algorithm 2.1

In this section, we will analyze the convergence rate of Algorithm 2.1 by using the singular
value decomposition (SVD) technique. We assume that the sequence generated by Algorithm
2.1 converges to the solution set X™* and lies in some neighbourhood of z* € X*.

We first give the following assumptions for obtaining the cubic convergence of Algorithm
2.1.

Assumption 4.1. (1) F(z) is continuously differentiable, and both F(z) and J(x) are

Lipschitz continuous on N(x*,b1) = {z : [z — 2*|| < b1} with b; € (0,1), i.e., there exist
positive constants L; and Lo such that

17(z) = JW)Il < Lallz —yll, Yo,y € N(z",b1) (4.1)

and
|F(z) — F(y)ll < Laflx —yll, Yo,y € N(z",b1). (4.2)

(2) ||F(z)|| provide a local error bound on N(x*,by) for (1.1), i.e., there exists a positive
constant ¢ > 0 such that

|F(z)|| > edist(z, X*), Va € N(x*, by). (4.3)
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By (4.1) and (4.2), we obtain
IF(y) = F(z) = J(2)(y — )| < Lilly — @l*, Yo,y € N(z*,by). (4.4)

According to the result derived by Behling and Tusem [5], there exists a positive number
w > 0 such that
rank(J(Z)) = rank(J(z")), VZ € N(z*,w) N X" (4.5)

when F(z) provides a local error bound. Let b € (0,1) and b; = min{w, b}. Without loss of
generality, we further assume that x,yr € N(a*,b1/2). In the sequel, we let Ty, be a vector
in X* such that ||z — x| = dist(xg, X*). Direct calculations give

[Zh — 2| < |2k — 2kl + lox — 27| < 2[|zp — 27| < by

Thus Zp, € N(z*,by).

Properties of steps dj, and dj,

In this subsection, we investigate the property of dr, (or Jk) and give the relationship between
the norm of dj, (or dj) and the distance from zj, to the solution set.

Lemma 4.1. Let Assumptions 3.1 and 4.1 hold. Then
lde || < O(|@x — xall) and |ldi|| < O(||Zx — @) (4.6)
hold for sufficiently large k.

Proof. Since § € [1,2] and dj is the minimizer of g 1(d) = ||F) + Jxd||* + Ag||d||?, by the
relations (2.5) and (3.3), it follows that

Pra(dr) _ e (T — k)

di|? <
jaf? < Ll o Pl
_ 1 F Jo (7 2 Az 2
= s 1Fx + Ji(Zk — z) 1?4 prdil|Ze — 2%
1
= r’cAk |E: + Ji (T — xk)||2 + ||zx — :vk||2
1
< || Fy + T (T — 2 Tr — 2
< NO(HFkHé)” i+ Je (@ — xp)||* + |2k — el
L3z, — @||* 2 2
< AR TRE Tr — < O(||lzg — . 4.7
< O(”:Ek_ka(;)_'_ka zl|* < O([|zk — zxl]”) (4.7)

By using the same method as in (3.16), we have
ldil| < Lal|(TE T+ M)~ T Ikl + 21|l (4.8)

Now we turn our attention to the calculation of ||(JI Jj + ApI) "t JI||. According to the
relation (4.5), we assume that rank(J(Z)) = r for all T € N(a*,b1) N X*. Correspondingly,
the SVD of J(Z) has the following form

e (S TN
J(z) = UsSk Vil = (Uk1, Uk 2) ( i 0 ) ( V:Tl ) = Up 1S Vi,
2
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where Y 1 = diag(6x,1,0%2,  + ,0kr) and Gp1 > Gg2 > -+ > Gk, > 0. Then the SVD of
J(xy) is given by
Xk Vk;l
J(zk) = UsSkVy = (Uk1, Uk.2, Ur.3) Sk2 v,
T
0 Vis
= Uk,lzk,lngjl + Uk,zxk,QV;gz,
where £ 1 = diag(ox.1,0%,2," * 10k,r)s 2k,2 = diag(ok ry1, Ok rt2, = - aak,r+q)a and 03,1 >

Ok2 > 2 0y >0, Okpy1 = Okpg2 = -+ 2> O ryq > 0. We will neglect the subscript k
if the context is clear in the sequel. Obviously the above formulas can be written as

T = U Vi + U BV
Direct calculations give

(T Te + D)L

(22 4+ \)712y ur
= (V17 V27 ‘/3) (E% + >\k:-[)7122 U2T
0 vl

<S4+ M) TS|+ [ A S]] (4.9)

According to the Lipschitzness of Jj and matrix perturbation theory [32], it follows that
[diag(X1 — X1, X2, 0)[| < [[Jk = Jull < L[|z — zx]-
This means that
IZ1 =S4l < Lyllze — @]l and [|1So]] < L [|2) — . (4.10)
Correspondingly

19l _ el USel Ll -l _
wid = phi ~ pO(E) ~ 0@, — wul)

H)\,;lEgH = O(|Z — zx||*7%).  (4.11)

Note that
g; g; 1

< =
o2+ X T 200V A 2V
for ; >0 and ¢ = 1,2,--- ,r. This gives that
1 1 5
< <Ok — zxll"2). (4.12)
2Vl = 23/uO([ELIP)

Combining (4.9), (4.11) and (4.12), we have

(B2 + M) 7134 <

I T+ 2D T < SR+ MD) TS + [N S| < Ol — 2l 72).
This together with (4.7) and (4.8), yields
ldi | < LiO(|2x — xal|~2) llde 1> + 2/l x|l < O(l175 — ). (4.13)
It then follows from (3.18) that
ldll < 2lldi]l < O(l — zxll).- (4.14)
This gives the desired result. O
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Boundedness of the LM parameter

From the updating rule of {p}, it follows that {ux} is bounded below. In this subsection,
we prove that {u} is bounded above.

Lemma 4.2. Let Assumptions 3.1 and 4.1 hold. Then py, < fi holds for all sufficiently large
k, where i is a positive number such that i > p.

Proof. We first show that the following two inequalities
1F%l? = || E% + Jdl|* = &l| Fi || min {[|di ], |2 — x|} (4.15)

and
IE i) I* = 1F (yk) + Jrdil|* > el F(ys) | min {||dill, 175 — yx ]l } (4.16)
hold for sufficiently large k, where ¢ and ¢ are positive constants.
For proving (4.15), we divide two cases. For the case that ||Zy — zx|| < ||dk||. Since d is
the minimizer of ¢y, 1, it follows from the relations (4.3) and (4.4) that

1F5ll = 1B+ Tedi || > | Eell = | Fr + Ji (@ —2p)l| > ell@r —anl = Lal| 2, — i ]|* > éllar — -

(4.17)
For the case that ||Z; — x| > ||dg|]. Similar to above, we have
d
1Bl = 1B+ el > 1Bl = || B+ A )|
2k — k|
2 7||fk_xk”(” kll = 1Fy + Ji (T — )]

Ml iz — 2l — Lallze — ze]?) > @lld 4.18
||£k—xk||(cuxk ol = Lallzk — 2z [) = élldil]. (4.18)

Combining (4.17) with (4.18) gives

IFell® = |1 Fr + Jidie|? (1Fell + [1Fe + Jedi ) Fell = [[Fr + Jedi]l)

>
> ¢||Fllmin {||dk]|, [|Z% — @]},
which yields (4.15).

Now we prove (4.16). If || — yx|| < ||dk||, by the relations (4.2)-(4.4) and the fact that
dy, is the minimizer of ¢y, 2, we have

I (i)l = I1F (yi) + Tl = 1 F )l = 1 F(w) + Jr (G — i)
> [ F ()| = 1F'(yw) + I (yr) (G — yi) |
= e = J () Jx — vl
> cllge — yell — Lallge — yell” — Lallde|l |5k — vkl

> |k — yill- (4.19)
If (|5 — yil > ||k, we get
) d )
1@l = 1P @) + Jdell = 1P = || P + MJk<yk )

¥ )

> H”’“”(HF(yk)n CE) + TG — vl

Uk — Ykl

Al

———C||Yr —Yk|| = C (jk . (4.20
Ly ) )
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Combining (4.19) with (4.20) gives

IE()ll® = 1F (i) + Tedill* = (LE i)l + 1F Cye) + Trdel) (F i) | = 1 () + T
&l F (ye)llmin {[[de]l, 17 — will},

which yields (4.16).
Next we show 7, — 1. Since dj, is the minimizer of ¢y, 1, by the relations (4.2) and (4.13),
we have
[ F + Jidill < [[Fll < LollZk — 2|

and

1y + Tisill < 1Fx + Jidill + [ Trdi]l < Lol — @il + Lalldil| < &llzx — ax].
It then follows from (3.18), (3.27), (3.28), (4.13) and Lemma 4.1 that
E @I = 1 + Tudiel)?| < Lalldil* [Lalldill* + 211 F + Jrdll] < O(lldi|* 2% — zxl])
and

1P (i + su)l* = 1F (yr) + Jrdil|?| < Lulldel® [Lalldl® + 2| F (yx) + Jedi||]
La||d|l? [Lalldill® + 2L1 || di||* + 2[| Fi + Jesill]
OlldwI? |2 — i)

IN A

The above two inequalities imply that
|A7“edk — P’I“ed/g‘ < O(HdkHQ”i‘k — xk”) (4.21)
From (2.23), (2.25), (4.15) and (4.16), we obtain
Predy = || Full* = |1 Fx + Jediell* + [ F(we) 1> = 1 F (yr) + Jrdi|?
= || F&l|* = 1B + Jrdil* + |1 F () 1> = 1P (y) + Judil|?
+ | F(ye) + Tadi||” = 1F (yw) + Jndi|)?
> || Fill* = 1Pk + Jidll* + | (i) I* = [1F (yw) + Jrdi >
> O(|ldll[|Zx — zxll), (4.22)
which, together with (4.21), yields

Aredy, — Pred, O(”dk”z”ik*xk”)
r.—1| = < — 0. 4.23
Ire =11 Preds | = Ol — ] (4.23)

Thus r, — 1, and then there exists a positive constant g such that pur < @ holds for
sufficiently large k. This gives the desired result. O

Convergence order of Algorithm 2.1
To obtain the convergence order of Algorithm 2.1, we need the following two lemmas.

Lemma 4.3 ( [13]). Let Assumptions 3.1 and 4.1 hold. If xj, € N(z*,b1/2), then
(1) [0 UL |l < La|| 2 — kll;

(2) |U2U3 Fi|l < BLa |2k — 1%

(3) UsU5 Fie|l < L2k — k.
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Lemma 4.4 ( [6]). Let Assumptions 3.1 and 4.1 hold. If z, € N(x*,b1/2), then
(1) |U:UL F ()|l < Ol|ze — zx]1?)
(2) |U2U3 F(yi)ll < Ol 21 — @i ]|*);
(3) |UsU3 F(yw)ll < Ollz — zll*)-

In what follows, we will show the cubic convergence of Algorithm 2.1.

Theorem 4.5. The convergence rate of Algorithm 2.1 is of order 3 under the conditions of
Assumptions 3.1 and 4.1.

Proof. Since x € N(z*,b1/2), we may assume that L1||Z — x| < 7,./2 for sufficiently
large k. According to (4.10), it follows that

6, — 0] < Lyl|Tn — xi]) < 60/2.

Correspondingly
15+ MeD) ) < 27 = || < | = <2 (4.24)
or or — L1 T — x| o7
and - . Ry
153 + D)2 < 277 < ’;r’ B Gr — L1||Zk — x| ‘ = 51 (4.25)

hold for sufficiently large k. Since § € [1, 2], we have from (4.11), (4.12), (4.24) and Lemma
4.4 that

|| | = VA(ST 4+ Ned) 'S0 UT Fyr) — Va(E3 + Med) ' S2UF F ()|
ISTHNUEF (i) | + A S2llllUS F (i)
O(||z — xl?) + O(|| T — 2|*°)

O(||zx — m|?). (4.26)

INIAIA

This together with (3.18) yields
ldi || < 2lldill < Ok — i) (4.27)
By (2.8), (2.21) and some direct calculations, we have

F(yr) + Judi

= F(yx) + Ju(dp +d5) = Fy) + Jrdr + Je O (JE T + M) "Ly

= F(yr) — Je(JE T+ M) T T F(yi) = M (T T + Med) 72T F (yk)
= I = Ju(JE Tk + M D)7 TE = Moo (T Th + M) 72T F (yg)

X2(2 4 A2 o
- ( U17 U23 U3 ) )\%(Z% + )\k‘[)72 UQT F(yk)
I Ul
= N2UL (24 M) 2U L Fyp) + N2U (B2 4+ M D) ~2UL F(yr) +UsUS F(yy). (4.28)

Notice that LM parameter satisfies

Ak = mihr = pO(| Fel°) < RO Fell’) < O(||zk — 2ill’), 6 € [1,2] (4.29)
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and L
1035 + M) 72 < e (4.30)
k

By using (4.25), (4.28)-(4.30) and Lemma 4.4, we immediately have
IE(e) + Jrdiell - < Oz — 2| )OIz — zxl|*) + Ol — 2il®) + O Tk — ?)
= O(|lzx — z|?). (4.31)
According to the relations (4.1), (4.3) and (4.4), we obtain

1E (@)l = [1F (2 + sie)l| = I1F (ye + di)l

cllZr1 — Tpa | +
IF (yw) + J (yi)diel| + Ll ?
)
)

1F (yw) + Jidil| + 11(I () = Jie)diell + La|die]|?
1F (yx) + Jedil| + Lalldi|l[1dicll + Lo | de|*.

VANVARN VAN VAN

It then follows from the relations (4.27) and (4.31) and Lemma 4.1 that
cllZnsr = rarll < OlTk — 2al’) + Ol 7% — 2l*) + Ol 7r — wel|*) < O(ll7k — zl). (4.32)

This means that the sequence {z;} generated by Algorithm 2.1 converges to the solution
set X* with 3th order.
Since

12k — k|| = dist(zr, X*) < [ Ze41 — 2l < [1Zpg1 — zgall + [k,
we have from the relation (4.32) that
12—zl < 2|5kl
hold for sufficiently large k. By the relation (4.32) and Lemma 4.1, we have

Ist41ll < OCllsil®).

This means that the sequence {z} converges to some solution z* € X* with 3th order.
This proves the desired result. O

Numerical Experiments

In this section, we conduct several experiments to verify the effectiveness of Algorithm 2.1.
All of the tests are run in MATLAB R2015a with the machine precision 1076 on a personal
computer (Intel (R) Core (TM)i7-5500U), where the CPU is 2.40 GHz and the memory is
8.0 GB.

We compare our proposed algorithm with the modified two steps LM method (denoted
by MTLM method) developed by Amini and Rostami [3], the accelerated modified LM
method (denoted by AMLM method) developed by Fan [14], and the LM algorithm with
correction (denoted by LMC method) developed by Fan and Zeng [19]. Algorithm 2.1 is
divided to NLMC1 and NLMC2 with § = 1 and § = 2, respectively. In addition, if we
delete the correction step df, i.e., sp = dj + cZk, which results the nonmonotone LM method
without correction, abbreviated as NLM1 for § = 1 and NLM2 for § = 2. Similarly, we test
LMC (AMLM) algorithm with § = 1 and § = 2, denoted by LMC1 (AMLM1) and LMC2
(AMLM?2), respectively.
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The above mentioned algorithms are terminated when the norm of JEF k, i.e., the deriva-

1
tive of 5 |F(z)]|? at the kth iteration, is less than ¢ = 107° or k reaches the maximum number

of iterations, e.g., 500.

We measure the effectiveness of the above mentioned iterative algorithms by the number
of function calculations (NF) and the number of Jacobian calculations (NJ). We usually em-
ploy “NT=NF+n*NJ"to measure the total computation since the Jacobian calculation typ-
ically requires n times as much computations as function. In addition, the sign “-”indicates
that the algorithms can not converge to a solution within 500 iterations.

Performance profile

In this subsection, we apply the performance profile of Dolan and Mofe [10] to demon-
strate the overall behaviour of the considered algorithms and obtain more insight about the
performance of the considered algorithms. For the algorithm implementation, we choose
po = 0.0001, p; = 0.25, ps = 0.75, u = 107% and pp = 1074 We also let n = 0.75 and
N = 10.

We select test problems from a wide range of literatures with dimensions ranging from
10 to 1000. More concretely, the first four problems are selected from [28], the last five
problems are chosen from [8] and the others are discussed in [26]. For all these algorithms,
the Jacobian matrix Jj can be either computed analytically by a user-supplied function or
approximated by using finite differences formula in the form of

1
[Jk].j ~ 5 (Flzk + hye;) = Fi),
J

where e; denotes the jth column of the identity matrix, [Ji].; is the jth column of J; and

v/ €Emy if l'kj :0,
hj =

. Lk
‘/ems1gn(:ckj)max{|:ck].|,” I

n
Here ¢, is the machine epsilon specified by the Matlab function “eps”.

For the sake of completeness, we now give the notion of a performance profile as a means
to evaluate and compare the performance of the solvers on a test set P. Assume that we
have ng solvers and n, problems. For each test problem p and solver s, we define

}, otherwise.

kp,s = iteration number required to solve problem p by solver s

and
cp,s = total calculations required to solve problem p by solver s.

Following the idea of Dolan and Mofe [10], we compare the performance on problem p
by solver s with the best performance by any solver on this problem; that is, we use the
performance ratios

kp.s
min{k, s : 1 <s<n,}

Cp,s
min{c,s:1<s<ng}

k
pp,s = and p;,s =
When the solver s has failed on problem p, we set /)];75 = rfaﬂ and pj, ¢ = 7,;, where rfail
and ¢ are strictly larger than any performance ratio. For any factor 7 > 1, the overall
performance of solver s is specified by

1
pf(T) = n—size{p ceP: p’;’S <7}
P
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and 1
pi(r) = n—psme{p €EP:p, ST}

Hence performance profiles, for every 7 > 1, produce the proportions p¥(7) and p$(7) of test
problems on which each solver has a performance within a factor 7 of the best. That is, we
plot

T nlpsize{p eP: p’;’s <7t}orTm nlpsize{p €P:p, <7}
to measure the performance on problem p by solver s. It is easy to see that p¥(1) (or p¢(1))
is the probability in which the solver s is the best and lim__, . p¥(7) (or lim,. Sk (7))
gives the ratio of test problems of P for which the algorithm s succeeded. Consequently, the
values on the left side of the figures give the information about the efficiency of each solver
and the values on the right side represent the robustness of the solvers. This implies that
the best solver is the highest on the figures.

The performance of all algorithms, based on both the iteration number and total calcula-
tions (NT), have been, respectively, assessed in Figure 1 and Figure 2. It is seen from Figure
1 that NLMC1, NLM1, LMC1 [19], AMLM1 [14], NLMC2, NLM2, LMC2 [19], AMLM2 [14]
and MTLM [3] are all feasible while NLMC1, NLM1 and LMCI are better than NLMC2,
NLM2 and LMC2. We clearly see from Figure 1 that NLMC1 win in nearly 76% of the
test problems with the greatest efficiency. Furthermore, we see from Figure 2 that NLMC1
is better than others where it has most won in approximately 56% of the test problems
concerning the total number of calculations.

We also report the NJ, NF and NT for each algorithm in Table 1. From Table 1, we
find that in most cases the iteration number, i.e., the number of Jacobian calculations, of
our proposed algorithm is less than the one in MTLM method [3]. It is known that our
proposed nonmonotone LM method with correction (NLMC) is superior to the accelerated
modified LM method (AMLM) in [14] and the LM method with correction (LMC) in [19]
since it requires fewer computations for most test problems. We also observe from Table
1 that the correction technique is quite efficient and the NLMC algorithm outperforms the
NLM algorithm for most of the test set problems.

Table 1: Numerical results for the test set

Problem name(Dim) NLMC1 NLM1 LMCI [19] AMLMI [14] NLMC2 NLM2 LMC2 [19] AMLM2 [14]  MTLM [3]
NF/NJ/NT NF/NJ/NT ~ NF/NJ/NT  NF/NJ/NT  NF/NJ/NT NF/NJ/NT ~ NF/NJ/NT  NE/NJ/NT NF/NJ/NT
Extend-Rosenbrock(40) 5/3/125 7/4/167 5/5/205 5/3/125 7/4/167 7/4/167 5/5/205 5/3/125 9/5/209
Distrete boundary(300) 7/4/1207 7/4/1207 3/3/903 9/5/1509 7/4/1207 7/4/1207 3/3/903 7/4/1207 11/6/1811
Discrete integral(1000) 7/4/4007 7/4/4007 5/5/5005 7/4/4007 7/4/4007 7/4/4007 5/5/5005 7/4/4007 7/4/4007
Watson(1000) 5/3/3005 5/3/3005 4/4/4004 5/3/3005 5/3/3005 7/4/4007 4/4/4004 5/3/3005 9/5/5009
Trigonometric function(1000) | 77/20/20077 77/22/22077 70/48/48070 - 125/35/35125 111/31/31111 79/48/48079 65/16/16065 79/28/28079
Triexp function(10) 27/7/97 15/7/85 7/7/77 13/6/73 25/7/95 27/7/97 7/7/77 17/7/87 13/6/73
Chandrasekhar’s-H(100) 17/9/917 17/9/917  16/16/1616  17/9/917 17/9/917 17/9/917  16/16/1616  17/9/917 17/9/917
Tridiagonal system(300) 113/34/10313 113/35/10613 87/48/14487 - 109/34/10309 125/43/13025 94/48/14494 115/36/10915 123/47/14223

Five-diagonal system(300) 103/26/7903 121/31/9421 60/35/10560 113/30/9113 101/29/8801 105/30/9105 58/35/10558 105/29/8805 117/33/10017
Seven-diagonal system(300) | 21/7/2121 23/8/2423  19/13/3919  27/8/2427  17/7/2117  29/11/3329 16/13/3916  23/8/2423 21/9/2721

Exponential(300) 15/8/2415 15/8/2415 11/11/3311 21/11/3321  15/8/2415 15/8/2415 11/11/3311 21/11/3321  15/8/2415
Exponential 1(1000) 21/11/11021 21/11/11021 14/14/14014 23/12/12023 21/11/11021 21/11/11021 14/14/14014 23/12/12023 21/11/11021
Exponential 2(300) 9/5/1509 9/5/1509 6/6/1806 7/4/1207 11/6/1811 11/6/1811 6/6/1806 9/5/1509 11/6/1811
Function 18(300) 19/6/1819 19/6/1819  13/8/2413 19/6/1819  15/7/2115 15/7/2115 9/7/2109 17/7/2117 11/6/1811
Function 21(1000) 17/6/6017 17/6/6017  11/7/7011  17/6/6017  13/6/6013 13/6/6013 8/7/7008 15/6/6015 11/6/6011
Function 27(1000) 17/9/9017 13/7/7013 15/14/14015 31/12/12031 21/10/10021  19/9/9019 18/13/13018 23/12/12023 23/10/10023
Logarithmic(1000) 7/4/4007 7/4/4007 5/5/5005 7/4/4007 7/4/4007 7/4/4007 5/5/5005 7/4/4007 7/4/4007
Strictly convex 1(1000) 7/4/4007 7/4/4007 5/5/5005 7/4/4007 7/4/4007 7/4/4007 5/5/5005 7/4/4007 7/4/4007
Strictly convex 2(1000) 15/8/8015 15/8/8015 10/10/10010 - 17/9/9017 15/8/8015 10/10/10010 17/9/9017 15/8/8015
Complementarity(1000) 43/14/14043 31/13/13031 28/24/24028 29/12/12029 27/13/13027 27/14/14027 26/24/24026 27/13/13027 23/12/12023
Extend-Gragg-Levy(10) 13/7/83 13/7/83 9/9/99 19/10/119 13/7/83 13/7/83 9/9/99 19/10/119 13/7/83
Variably-dimension(30) 3/2/63 3/2/63 2/2/62 3/2/63 3/2/63 5/3/95 3/3/93 3/2/63 3/2/63
Zero Jacobian(1000) 5/3/3005 5/3/3005 5/5/5005 5/3/3005 5/3/3005 5/3/3005 7/7/7007 5/3/3005 5/3/3005

Generalized-broyden(1000) | 23/12/12023 23/12/12023 22/22/22022 21/11/11021 23/12/12023 23/12/12023 22/22/22022 21/11/11021 23/12/12023
Extend-Powell-singular(1000)| 15/8/8015 15/8/8015 10/10/10010 19/10/10019 17/9/9017 17/9/9017 10/10/10010 19/10/10019  15/8/8015
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Figure 2: Performance profile for the total number of calculations

Singular problem

In this subsection, we test the algorithm on some singular problems, which were generated
by modifying the nonsingular problems given by Moré et al. in [28], and have the same form
as in [30]

F(z) = F(z) — J(&*)A(ATA) AT (z — 2*), (5.1)
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where F(z) is the standard nonsingular test function, A € R"~* ( 1 <k <n)is a full column
rank matrix, and x* is the root of F(x). It is easy to check that F'(z*) = 0 and

J(x*) = J(z*) (I — A(ATA)~1AT)
has rank n — k. More concretely, we choose the rank of j(w*) to ben —1and n —2
respectively, by using
AeR™ AT =(1,1,---,1)
and
11 1 1 - 1

nx?2 T _
AR5 AT=11 41 +1 )

respectively.

The results for the first set of problems of rank(F’(z*)) = n — 1 are summarized in Table
2, and the second set of problems of rank(F’(z*)) = n — 2 are listed in Table 3. With
regard to Tables 2 and 3, the second column of the table indicates that the start point is
0.01zg, 0.1z, o, 10z0, 100xo, where ¢ is the initial value suggested by Moré et. al [28];
“Label” denotes the problem number in Moré et. al [28]; “n” indicates the dimension of test

functions; “F” indicates a final value of the norm of J} F}.

Table 2: Numerical results on the first singular test set with rank(F’(z*)) =n — 1.

Tabel(n) o NIMCI IMCI[19] AMIMI[14] NIMCZ IMC2 [19] AMIM2[14] MTIM (2]
NJ/NE/NT/F NJ/NE/NT/F NJ/NF/NT/F NJ/NE/NT/F NJ/NF/NT/F NJ/NF/NT/F NJ/NE/NT/F
202) 1 11/21/43/75367e:07  15/15/45/9.5515¢07  11/21/43/7.5041e-07 15/15/45/9.5515¢-07 11/21/43/9.1716e-07 11/21/43/83307e07  15/15/45/9.6037e-07
10 17/33/67/15506e07  23/23/69/3.2506e07  17/33/67/1.5362¢-07 18/35/71/2.1307¢-07 23/23/69/4.3473¢-07 17/33/67/3.1321e:07  17/33/67/1.5358e-07
100 21/41/83/2.2309e07  29/29/87/2.6563¢-07  21/41/83/2.2371e-07 26/51/103/1.8553¢-07 30/30/90/5.7491e-07 23/45/91/2.2635¢-07  21/41/83/2.3041e-07
7(3) 1 6/11/29/45050e-09 8/8/32/1.1564¢-11 7/13/34/4.1504e-12 7/13/34/5.4451e-14 10/10/40/6.1353¢-13 7/13/34/7.3317¢-08 14/27/69/1.8591e-07
10 6/11/29/7.9691e-14 9/9/36/4.2625¢-07 13/29/68/9.9058¢-07 25/33/108/6.3083¢-10 14/14/56/3.2485¢-08 19/51/108/7.7344e-07  14/27/69/1.9874¢-07
100 13/25/64/5.7110e:07  15/15/60/8.3823¢-07  14/27/69/2.3617¢-07 8/15/39/4.4113¢-08 16/16/64/5.1973¢-08 15/29/74/1.1928¢-09 8/15/39/7.6386¢-09
14(4) 1 13/25/77/27554e07  18/18/90/2.6584e-07  13/25/77/2.7542¢:0707  13/25/77/3.3778¢07 18/18/90/2.8352¢-07 13/25/77/3.5724e07  13/25/77/2.9509e-07
01  12/23/71/2.0749e07  16/16/80/4.4925e-07 12/23/71/2.0739e-07 12/23/71/2.2742e-07 16/16/80/4.4961¢-07 12/23/71/2.3441e07  12/23/71/2.9048¢-07
001 11/21/65/9.2379¢-07  16/16/80/2.8202¢07  11/21/65/9.2763¢-07 12/23/71/1.4187¢-07 16/16/80/2.8219¢-07 12/23/71/1.4695¢07  12/23/71/2.0613¢-07
21(40) 1 13/25/545/9.2017e07  18/18/738/2.7625e-07  11/21/461/9.3589e-07  40/125/1725/7.3350e-07  54/79/2239/3.7763e-07  41/121/1761/5.9493e-07  24/65/1025/7.2034e-07
0.1 12/23/503/8.4921e-07  17/17/697/2.7970e-07  11/21/461/2.0369¢-07  14/27/587/2.9724-07 19/24/784/4.3234e07  28/93/1213/2.0395¢-07  26/61/1101/6.4085¢-07
001 12/23/503/7.3679e-07  16/16/656/9.1694e-07  11/21/461/1.7123e07  14/27/587/6.0719¢-07 19/24/784/4.8411e07  43/133/1853/7.1211e07  26/61/1101/5.8678e-07
22(1000) 1 9/17/9017/2.2067e07  12/12/12012/4.1637e-07 11/21/11021/6.0991e-07  10/19/10019/3.4824e-07  12/12/12012/5.8368¢-07  12/23/12023/1.6934e-07 ~ 9/17/9017/3.2438e-07
10 11/21/11021/6.0840e-07 15/15/15015/8.1423e-07  14/27/14027/1.6853e-07  15/29/15029/9.1611e:07  17/17/17017/4.2302¢-07  17/39/17039/6.3083¢-07 11/21/11021/5.9859¢-07
100 14/27/14027/9.0056e-08  19/19/19019/1.9873¢-07 16/31/16031/3.3134e-07 ~ 23/45/23045/8.8539e-08  24/24/24024/1.5810e-07 ~ 21/41/21041/43271e-07 14/27/14027/8.7301e-08
25(1000) 1 23/45/23045/1.0206e-07 32/32/32032/1.3728¢-07 23/45/23045/1.0206e-07  23/45/23045/1.5163¢-07  32/32/32032/1.3979¢-07  23/45/23045/1.2166e-07 19/37/19037/7.3627¢-08
10 24/47/24047/2.3509e-07 33/33/33033/7.3147e-07 24/47/24047/2.3509e-07  25/49/25049/1.5153¢-07  34/34/34034/1.8511e-07  25/49/25049/6.4208¢-08 -
100 27/53/27053/8.8645¢-08  37/37/370374.7574e-07  27/53/27053/8.8645¢-08  32/63/32063/1.4662e-07  41/41/41041/1.8216¢-07  30/59/30059/9.9380e-07 -
2601000 0.1  3/5/3005/9.0082e-07  12/27/12027/7.0362e-07 14/45/14045/ 1.0042e-07  3/5/3005/9.0080¢-07 13/33/13033/5.7576e-07  13/53/13053/3.6783¢-07 18/63/18063/8.5399€-07
1 9/41/9041/5.5454e-07  24/39/24039/4.4218e-07 20/75/20075/4.2129e-07  8/45/8045/2.7416e-07  23/37/23037/4.1376e-07 ~ 12/49/12049/6.9998e-07 10/25/10025/7.3420e-07
10 15/51/15051/4.0712e-07  27/44/27044/6.3816-07 23/85/23085/2.1941e-07  21/83/21083/6.3086e-07  32/62/32062/7.6224e-07  21/89/21089/8.8656¢-07 14/45/14045/2.7737¢-07
100 15/53//15053/9.6801e-07 - - 49/169/49169/8.9963¢-07 - - -
27(1000) 1 13/25/13025/48991e-07 17/17/17017/3.7863e-07 13/25/13025/2.7587e-07  47/131/47131/7.0206e-07  53/79/53079/2.2831e-07  25/65/25065/4.3025¢-07 25/69/25069/9.0735¢-07
0.1 14/27/14027/2.2496e-07 18/18/18018/3.0361e-07 13/25/13025/5.6833¢-07 ~ 44/111/44111/4.8945¢-07  37/50/37050/2.9880e-07  36/97/36097/2.0433¢-07 30/63/30063/5.0488¢-07
0.01 14/27/14027/2.4074e-07 18/18/18018/3.2802¢-07 13/25/13025/6.0491e-07 ~ 43/107/43107/8.6428¢-07  60/89/60089/7.8275¢-08 ~ 35/119/35119/7.7313e-07 16/31/16031/2.8992e-07
28(1000) 1 4/7/4007/2.8592e-08  3/3/3003/1.7819e-07  3/5/3005/1.5575¢-07 4/7/4007/2.0251e-09 3/3/3003/1.1654¢-09 3/5/3005/1.8553¢-10  5/9/5009/1.8354¢-07
10 5/9/5009/6.2302e-07  5/5/5005/1.4688¢-07  5/9/5009/1.2828¢-07 4/7/4007/6.2984¢-07 4/4/4004/1.6141e-08 4/7/4007/3.2204¢-09  8/15/8015/3.9845¢-07
100 11/21/11021/4.5519e-08  12/12/12012/4.1989e-08  10/19/10019/6.4549¢-07  10/19/10019/5.7089¢-07 ~ 11/11/11011/1.0689-07  9/17/9017/3.6333¢-07  14/27/14027/3.4697¢-07
30(1000) 1 83/293/83293/8.0125¢-07 98/193/98193/9.4315¢-07 99/379/99379/8.2873¢-07 128/503/128503/8.3373¢-07 128/246/128246/8.8849¢-07 94/349/94349/8.7405¢-07 97/341/97341/6.8246¢-07

0.1 12/37/12037/7.7718e-07 82/158/82158/9.5928e-07 92/347/92347/8.3789e-07 119/467/119467/8.3257e-07 107/205/107205/8.9413e-07 87/317/87317/8.8543e-07 52/165/52165/9.5061e-07

From Tables 2 and 3, we see that the nonmonotone LM method with § = 1 always
outperforms the nonmonotone LM method with § = 2 in terms of the number of iterations
and the total number of calculations. We observe from Tables 2 and 3 that our proposed
nonmonotone LM method with correction (NLMC) is superior to the LMC method [19] and
MTLM method [3] since it requires fewer numbers of Jacobian calculations and function
calculations for almost all test problems. From the results showed in Tables 2 and 3, we find
that the nonmonotone LM method with correction (NLMC) achieves nearly the same numer-
ical results as AMLM method [14], and in some cases even better. In a word, our proposed
nonmonotone LM method is efficient in both the first set problems with rank(F’(z)) =n—1
and the second set problems with rank(F’(x)) = n — 2. This means that our new choice of
the nonmonotone LM parameter is satisfactory for the singular nonlinear equations. Hence
our new Algorithm 2.1 is promising and efficient.
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Table 3: Numerical results on the second singular test set with rank(F’(z*)) =n — 2.
Label) 20 NIMCT IMCL[19] AMIMI[14] NLMC2 IMC2 [19] AMIM2[14] MTLM (3]
NJ/NF/NT/F NJ/NF/NT/F NJ/NF/NT/F NJ/NF/NT/F NJ/NF/NT/F NJ/NE/NT/F NJ/NF/NT/F
2(2) 1 8/15/31/3.6049e-07 11/11/33/3.0203e-07 8/15/31/3.6049¢-07 8/15/31/3.6101e-07 11/11/33/3.0203e-07 8/15/31/3.6101e-07 8/15/31/3.6276e-07
10 13/25/51/9.2140e-08 17/17/51/6.0757e-07 13/25/51/9.2140e-08 13/25/51/1.5818e-07 17/17/51/6.1883e-07 13/25/51/1.6554e-07 13/25/51/9.2137e-08
100 17/33/67/1.3161e-07 23/23/69/3.6215¢-07 17/33/67/1.3161e-07 20/39/79/2.4130e-07 24/24/72/9.6027e-07 20/39/79/5.9042¢-07 17/33/67/1.3161e-07
7(3) 1 11/21/54/7.2790e-07 18/22/76/8.3518e-07 13/25/64/5.0159-07 10/19/49/8.2223e-07 20/26/86/5.1111e-07 22/57/123/6.0161e-07 13/25/64/7.5784e-07
10 14/27/69/2.4337e-07 23/32/101/4.9805e-07 14/27/69/2.7060e-07 24/67/139/3.3247e-07 22/22/88/6.3583e-07 15/29/74/5.7237e-07 13/25/64/4.8473e-07
100 15/29/74/4.4193e-07 19/19/76/5.7073e-07 15/29/74/4.6010e-07 33/101/200/3.6856e-07 26/26/104/5.7127e-07 25/49/124/5.1838e-07 13/25/64/4.1598e-07
14(4) 1 11/21/65/7.6509e-07 - 11/21/65/6.6710e-07 - - 11/31/75/6.8704e-07 11/21/65/7.6590e-07
0.1 10/19/59/5.7468e-07 391/771/2335/9.6881e-07 10/19/59/5.0107e-07 - 12/35/83/4.7693e-07 10/19/59/5.7761e-07
0.01  10/19/59/3.6077e-07 - 10/19/59/3.1455e-07 316/1261/2525/9.8195e-07 - 12/23/71/5.3315e-07 10/19/59/3.6338e-07
21(40) 1 9/17/377/5.7002e-07 13/13/533/1.3859%-07 9/17/377/5.7002e-07 9/17/377/6.4810e-07 13/13/533/1.3882e-07 9/17/377/6.4665e-07 9/17/377/5.7285e-07
0.1 9/17/377/7.5210e-08 12/12/492/1.4629e-07 9/17/377/7.5210e-08 9/17/377/7.7834e-08 12/12/492/1.4631e-07 9/17/377/7.7822e-08 9/17/377/7.6285e-08
0.01  9/17/377/5.5484e-08 11/11/451/8.6335e-07 9/17/377/5.5484e-08 9/17/377/5.7056e-08 11/11/451/8.6342e-07 9/17/377/5.7050e-08 9/17/377/5.6360e-08
22(1000) 1 9/17/9017/2.2067¢-07 12/12/12012/4.1637¢-07 9/17/9017/2.1668e-07 10/19/10019/3.4824e-07 12/12/12012/5.8368e-07  10/19/10019/1.5414e-07  9/17/9017/3.2438e-07
10 11/21/11021/6.0840e-07  15/15/15015/8.1423e-07 11/21/11021/5.8654e-07 15/29/15029/9.1611e-07 17/17/17017/4.2302e-07  16/31/16031/1.9828e-07 11/21/11021/5.985%-07
100 14/27/14027/9.0056e-08  19/19/19019/1.9873e-07 14/27/14027/7.5916e-08 23/45/23045/8.853%¢-08 24/24/24024/1.5810e-07  23/45/23045/2.3026e-07 14/27/14027/8.7301e-08
25(1000) 1 23/45/23045/1.0458e-07  32/32/32032/1.3728e-07 23/45/23045/1.0458e-07 23/45/23045/1.5832e-07 32/32/32032/1.3975e-07  23/45/23045/1.5844e-07 -
10 24/47/24047/2.3407e-07  33/33/33033/7.2748e-07 24/47/24047/2.3534e-07 25/49/25049/1.5231e-07 34/34/34034/1.8587e-07  25/49/25049/2.4891e-07
100 27/53/27053/1.3302e-07 - 27/53/27053/9.4614e-08 32/63/32063/1.2762¢-07 - 32/63/32063/2.9222¢-07 -
26(1000) 0.1  3/5/3005/9.0082e-07 11/27/11027/4.7312e-07 15/47/15047/4.8865e-07 3/5/3005/9.0080e-07 12/30/12030/1.2340e-07  17/55/17055/1.7775e-07 22/71/22071/8.7887e-07
1 10/41/10041/6.5691e-07  25/41/25041/5.6064e-07 10/33/10033/9.4869e-07 9/47/9047/8.7609e-07 22/35/22035/6.5942e-07  19/57/19057/5.5136e-07 10/25/10025/7.3416e-07
10 15/47/15047/9.1110e-07  32/46/32046/9.8924e-07 17/55/17055/1.5212e-07  36/123/36123/2.3445e-07 38/64/38064/8.5258e-07  24/89/24089/4.3313e-07 15/45/15045/1.4835e-07
100 15/55/15055/4.6043e-07 370/564/370564/7.1329¢-07 - 18/77/18077/8.0058e-07 - - -
27(1000) 1 8/15/8015/6.3638e-07 11/11/11011/5.2063e-07 8/15/8015/6.3638e-07 8/15/8015/7.4693e-07 11/11/11011/5.2207e-07 8/15/8015/7.4421e-07 8/15/8015/6.8220e-07
0.1 9/17/9017/2.3018e-07 12/12/12012/4.4637e-07 9/17/9017/2.3018e-07 9/17/9017/3.7943e-07 12/12/12012/4.6035e-07 9/17/9017/3.9914e-07 9/17/9017/2.3623e-07
0.01  9/17/9017/2.6447e-07 12/12/12012/5.1286e-07 9/17/9017/2.6446e-07 9/17/9017/4.5327e-07 12/12/12012/5.3184e-07 9/17/9017/4.8504e-07 9/17/9017/2.7094e-07
28(1000) 1 4/7/4007/2.8582e-08 3/3/3003/1.7819e-07 4/7/4007/4.7301e-08 4/7/4007/1.7439-07 3/3/3003/2.9206e-08 4/7/4007/6.7207e-08 5/9/5009/1.8353e-07
10 5/9/5009/6.2302e-07 5/5/5005/1.4688e-07 6/11/6011/7.6640e-08 4/7/4007/6.2983e-07 4/4/4004/1.9436e-07 5/9/5009/1.0576e-07 8/15/8015/3.9844e-07
100 11/21/11021/4.1498e-07  12/12/12012/3.3942e-07 11/21/11021/9.2516e-07 11/21/11021/1.0070e-08 11/11/11011/6.2666e-07  11/21/11021/6.3608e-08 15/29/15029/3.8064e-08
30(1000) 1 83/293/83293/8.0151e-07 98/193/98193/9.4295e-07 12/45/12045/5.9457e-07  128/503/128503/8.3122e-07 128/246/128246/8.8615e-07 14/59/14059/6.0027e-07 97/341/97341/6.8227e-07

0.1 12/37/12037/7.7807e-07

82/158/82158/9.5924e-07 103/393/103393/8.6624e-07 119/467/119467/8.3080e-07 107/205/107205/8.9318e-07 61/191/61191/9.6308e-07 52/165/52165/9.5079¢-07

(6] Conclusions

In this paper, we propose a nonmonotone LM method with correction to solve systems of
nonlinear equations for which its global convergence and cubic convergence rate, under mild
assumptions, are established. Preliminary numerical results illustrate that the proposed
algorithm is efficient and robust.
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