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A BFGS METHOD USING INEXACT GRADIENT FOR
GENERAL NONLINEAR EQUATIONS
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Abstract: A globally and superlinearly convergent BFGS method is introduced to solve general nonlinear
equations without computing exact gradient. Compared with existing Gauss-Newton-based BFGS type
methods, the proposed method does not require conditions such as symmetry on the underlying function.
Moreover, it can be suitably adjusted to solve nonlinear least squares problems and still guarantee global
convergence. Some numerical results are reported to show its efficiency.
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Introduction

Let F': R™ — R™ be a continuously differentiable mapping. We consider numerical methods
for solving general nonlinear equations

F(z)=0. (1.1)

When the Jacobian J(x) = F'(z) can be used, Newton methods, Gauss-Newton methods
and Levenberg-Marquardt methods are very attractive [11, 23]. When n is large and F
has special structure, derivative-free methods and subspace methods are always adopted
[8, 18, 19, 25].

In this paper we focus our attention on BFGS type quasi-Newton methods with line
search for the general system which has no special structure. BFGS type methods are
efficient for solving nonlinear equations and optimization problems since they possess locally
superlinear convergence properties and need not compute the Jacobian or the Hessian [3, 9,
11, 14, 15, 18]. However, global convergence of BFGS type methods for nonlinear equations
often require special structure such as symmetry or very strong assumption conditions [2,
5,6, 12, 13, 16, 17, 21, 22, 24].

To our knowledge, the first global convergence result of BFGS type methods for nonlinear
equations is due to Li and Fukushima [6], where they introduced a Gauss-Newton-based
BFGS method (GN-BFGS), which has been extended to solve symmetric nonlinear least
squares [21]. But both methods need the assumption that the system is symmetric (i.e.,
J(z) = J(x)T), which restricts their applications. The aim of this paper is to generalize the
GN-BFGS method such that it can be suitable to solve general nonlinear system without
computing exact Jacobian of the system or exact gradient.
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This paper is organized as follows. In the next section, we first present the method in
detail. Then we prove its global convergence under some conditions. In Section 3, we show
superlinear convergence of the proposed method. In Section 4, we report some numerical
results. Throughout the paper, we denote Fy, = F(zi), Jr = J(a), Sk = Tp41 — Tk = apdg
and || - | is the 2-norm.

Algorithm and Global Convergence

In this section, we first illustrate our approach which is mainly based on the following
consideration. In [6], the GN-BFGS method for symmetric nonlinear equations produces
the search direction dj, by computing the linear equations

F(a:k + )\k—le) — F(xk)
Ak—1 ’

Bid = —

where A,_1 > 0 is a stepsize and the iterative matrix By is updated by the BFGS formula

Bisisi By wE

Bry1 = By —
s1 Bk Ve sp

with v, = F(xg + 0x) — F(xk), 0k = F(xk+1) — F(zg). Let us define

Fla) £ JIF@)P. (21)

When || F}|| is small and the Jacobian is symmetric, F(x’“Jr’\"'/\*;i’“)_F(wk) ~ V f(xy), which

shows that this is a method based on inexact gradient. Moreover, if J (x) satisfies Lipschitz
condition with Lipschitz constant L, then the symmetry of the Jacobian implies

H F(:L’k + Aklek) — F({Ek)

Nt Vi) = ”/Ol(J(xk+t>\k1Fk)—J($k))detH

L1 Fx|, (2.2)

IN

which gives an error estimation between ZEEFM1FI=FER) onq 7 f(z,.).
Ak—1

Thus for general nonlinear equations, the key is to construct a suitable term which
F(szr)\k,le)fF(xk) . 1
is no longer

approximates V f(zy). In this case, it is clear that the term v
a suitable approximation of V f(z). But we note that when || Fy| is small,

flay + al|[FpllPe;) — f(xx)  Of(xx)
al| Fy |2 = 9z

where e; is the i-th column of the identity matrix and « > 0 is a parameter. Hence the term
f@pta|Fyll?en)—f(zr)
1 f($k+a”FkT|é2€2)*f(wk)
gr(a) & —— N (2.3)
1% :

fertal|Frll®en)—f (k)
«@

is an approximation of V f(xy), which also can be seen from the following equality

lim gi(a) = Vf(zp). (2.4)

a—0t
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Moreover, if V f(z) satisfies Lipschitz condition with Lipschitz constant L;, then

fol (Vf(xk + tal|Fy||%er) — Vf(mk eldt
lgk(a) = Vf(zp)| = :

S (Vf (s + ta]| Fy|2en) — Vf(ar)) " endt
TLIquHFk”Q.

IN

This is the main reason of choosing g («) instead of choosing the term

ferpto|Frllen)—f(x)
) fantol Filles) — f (zx)
(| |l :

f(xrta||Fyllen)—f(zx)

[e3

as an approximation of V f(xy) since the approximate precision between g («) and V f(zy)
given by (2.5) in the general nonlinear case is the same as that of (2.2) in the symmetric
nonlinear case.

Assume that we have a parameter ay_1 at the moment, then we get the search direction
dy, by letting it be the solution of the following linear equations:

Bkd = —0k, (2.6)
where
gk = gr(a_1). (2.7)

Moreover, we adopt the line search proposed by Li and Fukushima [6] to compute the next
stepsize ag. Let o1 > 0 and o2 > 0 be two given constants and {7} be a positive sequence
satisfying

Sk << oo, (2.8)
k=0

where 7 is a positive constant. We compute o, = max{1, p, p?,--- } such that

f(xr + ady) < f(zr) — o1]jady||* — oal|aFk || + m f(zk), (2.9)

where p € (0,1) is a constant. It is clear that the line search (2.9) is well-defined.
Therefore, we are ready for presenting the following BFGS method for solving (1.1).
Algorithm 2.1

Step 0. Choose a starting point xy € R™, an initial symmetric positive definite matrix
By € R™ ", a positive sequence {n;} satisfying (2.8), and several constants a_; > 0,
01> 0,02 €(0,3), p>0and pg,p € (0,1). Let k :=0.

Step 1. Compute dj by (2.6).

Step 2. If
1F(zx + di) || < poll F(xr), (2.10)

then set o, = 1. Otherwise, compute ay, by the line search (2.9).

Step 3. Set xy4+1 = ) + apd.
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Step 4. Update By by the following rule,

o Bkskszk ykyg : ygsk
Busi={ B¢ Srmse Yol 1 e 2 eI (2.11)
ks otherwise,
where
Yk = Grr1 — 9k (2.12)
and
f@eitak_a1llFriil®en)—f(@ri1)
Ok —1
1 F@rpiton—1||Fegil®e2) = f(zrg1)
k1 = g1 (an—1) = e ort . (2.13)

f@eritar_1llFrpil®en)—f(@ri1)
ap_1

Step 5. Let k:=k + 1 and go to Step 1.

Remark 2.1

(i) In Step 4, we use the cautious BFGS formula proposed by Li and Fukushima [7] where
it was used to solve nonconvex unconstrained minimization problems. The update rule (2.11)
ensures that the iterative matrix sequence {By} is symmetric and positive definite.

(ii) In the global convergence for some methods such as the BFGS methods in [7, 20],
it need the Lipschitz assumption on the gradient, which implies ||V f(zr+1) — Vf(zk)] <
Ls||sk|| for some constant La. From (2.20), we can see later that ||gr+1 — gx|| satisfies the
similar condition. This is the reason of using gi+1 instead of gi11 in (2.12).

(iii) From (2.9) and (2.10), if ay, # 1, then aj, = <& does not satisfy (2.9), that is,

flar + ardr) > f(ar) — oullagdrl® — o2l og Fel*. (2.14)

(iv) By (2.8) and (2.9), it is easy to get

o0

[T +n) <em, (2.15)
=0

and f(ag41) < (1 +ng)f(zx). Then by Lemma 3.3 in [3] that {f(zx)} converges.

From now on, we begin to investigate global convergence property of Algorithm 2.1. To
this end, we make some assumptions as follows.
Assumption 2.1

(i) The level set Q = {z| f(z) < e"f(xg)} is bounded.

(ii) In some neighbourhood Q; of Q, J(x) is Lipschitz continuous, that is, there exists a
positive constant L such that

[J(z) = JW)ll < Lllx = yll, Va,y e Q. (2.16)

It is clear that the sequence {xx} C Q. Moreover, Assumption 2.1 implies that there
exist positive constants My, Ms, L1 and Lo such that

[J(@)[| < My, [|[F(2)]] < Mz, Va €, (2.17)

[1F(z) = F)ll < Lillz —yll, [IVf(z) = Vi@ < Leflz —yl, Vo,yey.  (2.18)
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Lemma 2.1. Let Assumption 2.1 hold and the sequence {x} be generated by Algorithm
2.1. If (2.10) holds for infinite k, then limy_,o0 || F|| = 0. Otherwise, we have

oo

oo
D llsell® < oo, D [lanFll* < oo

k=0 k=0

Proof. 1f (2.10) holds for infinite k, then it is obvious that limy_, o || F| = 0. If (2.10) holds
only for finite k, then by (2.9), we have

k

k
(orllsill® + oallai F5[1?) < f(o) = flarra) + > mif (w:).
=0 1=0

7
Since f(wgy1) > 0 and {f(xx)} convergence, there exists a constant M > 0 such that

k k
(o1llsill® + o2l s Fi|?) < f(wo) + > M.
=0 i=0

K2

This and (2.8) yield the conclusion. O
Now we assume (2.10) holds for finite k. Then Lemma 2.1 shows

lim |sgl] =0, lim ai||Fk| =0. (2.19)
k—o0 k—o0
Moreover, (2.13) and (2.18) yield

lyel = k1 — gxll
T
Jo (VF(@rs + tog_1|[Frsr]?er) — Vf(ax + tor_1 ]| Fil|?er)) " erdt

. T
Sy (Vf(@rir + tag—1]|Fer|Pen) — Vf(zx + tag—1]|F|?en)) endt
< nlo(||lzgrr — xpl + ar—1l[[Frea|* = 1 Fxl?))
< nLa(lzerr — 2kl + ar—1 ([Ferall + 1 FRD U1 Fxra | = [1Fx))
< nLy(1+ 2L, Mo)||sk]l, (2.20)

where the last inequality follows from (2.17), (2.18) and the fact ap_1 < 1. Moreover, if
there exists a positive constant 7; such that

IVf(ze)] =7 (2.21)
holds for all k. Then there is a positive constant m satisfying
|Fr| > 72, Vk>0. (2.22)
From the update rule (2.11), if By is updated by the BFGS formula, then

Yi Sk . Viys _ (nLa(1+ 2L Mo))?|lsi|® _ (nLa(1+2L1Ms))* 5 o
Isel> =57 yisk pre|skl? pT2

hold for some positive constant C4.
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Lemma 2.2. Let Assumption 2.1 hold. If (2.21) holds, then there are positive constants
Bi,i=1,2,3,4 such that

Bullsill < ||Bisill < Ballsill,  Bsllsill® < sf Bisi < Bal|sil|?

hold for at least f%] many i € Ay, where |Ag| is the cardinality of the set Ay, and

B;sisI'Bi gyl
A :{' | < k,Biy, = B; — 0% 21 Vil }
4§ ilis + siTBisi * lesl
Proof. By (2.11), we know that By is updated by the BFGS formula or By = By. Then
we have
(Brt1) < 9(Bo) + (C1 — 1 —In(um))|Axl

+Z<lncos20j+1— 4 +In 4 ),

20, 20,
jea, cos? §; cos? §;
wh B) = te(B) — In(det(B)),q; = P2 0, = sl oy ing th
ere Y(B) = tr(B) — In(det(B)),q; = sy »0080; = gy Thus using the same

argument as that of Theorem 2.1 in [1], we obtain the conclusion. O
Since s, = aydy, Lemma 2.2 and (2.6) imply that

Billdll < |Bidill = llgill < Balidill,  Balldill® < df Bidi = —dff gi < Balldi]® (2.23)

hold for at least (lA—Q’“l] many i € Ay.

The following result shows that Algorithm 2.1 converges globally.

Theorem 2.3. Let Assumption 2.1 hold and the sequence {xy} be generated by Algorithm
2.1. Then we have
likminf |V f(zx)]| = 0. (2.24)
—00

Proof. We prove the theorem by contradiction. If (2.24) is not true, then (2.21)-(2.22) hold
and (2.10) only holds for finite k.
(i) If lim supy,_, o, o > 0, then we deduce from (2.19) that

lim inf || Fy|| = 0,
k—o0

which contradicts (2.22).
(if) If limy— o0 g = 0, then (2.14) holds for o}, = %. Moreover, from (2.5) and (2.21),
there exists a positive constant 73 such that

gkl > 75, Vk > 0. (2.25)

Denote )
K& | ) A, K2 {i|(2.23) holds}. (2.26)
k>0
If K is finite, then the conclusion is clear. If K is infinite, then K is infinite. Since {z}}
is bounded, then the sequence {girex and {di}rex are bounded. Without loss of gener-

ality, let the sequences {dj}rex and {zj}rex converge to d* and z*, respectively. Hence
limgek koo g = Vf(2*). Let k — oo with k € K in (2.14), then

Vf(x*)Tar >o. (2.27)
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By (2.6), we get 0 = dF Bydy, + gl dj, which together with (2.23) implies 0 > Bs]|dg||? +
gFdy,Vk € K. Let k — oo with k € K in this inequality, we have

V(@) < = Bslld”|*.
This and (2.27) show that d* = 0. Since g, = —Bydy, then from (2.23), we know

li = i dg|l = ||d*||=0
e lgell =l fld]l = [l =0,
which contradicts with (2.25). This completes the proof. O

Remark 2.2 It is clear that Algorithm 2.1 can be applied to solving the following nonlinear
least squares problem

min f(x) £ 2| F(@)]. (2.28)

where F': R™ — R™ is a general vector value mapping and n may be not equal to m. And
from the previous analysis, it is easy to show that Algorithm 2.1 still converges globally for
(2.28), which is also supported by the numerical results later.

Superlinear Convergence

In this section, we turn to discussing the superlinear convergence of Algorithm 2.1. To do
this, we need the following assumptions.
Assumption 3.1

(I) The sequence {xj} converges to z*, where F(z*) = 0 and J(z*) is nonsingular.

(IT) In some neighourhood Qy of z*, V2f is Lipschitz continuous, i.e., there exists a
positive constant Ls satisfying

IV2f(2) = V2 f ()]l < Lsllz =y, Yo,y € Qo. (3.1)

Without loss of generality, we assume {z;} C 3. Assumption (I) implies that J(z) is
uniformly nonsingular in 5, that is, there is a constant m; > 0 such that

malldl| < [ J(2)dll, malldl| < ||J(z)7"d]l, VxeQ2deR" (3.2)
This shows 1
[kl < —[IV £ ()]l (3.3)
mi
Moreover, by (2.5), we know
IV f (@)l < llgrll + nLoo—1 | Fill*. (3-4)

Since limg o [|[Fx|| = 0 and ax—1 < 1, from (3.3) and (3.4), there exists a constant mg > 0
such that for sufficiently large k,
[FEll < mallgell- (3.5)

This together with (2.23) implies that for any k € K,
[Fkl| < mafa||dyl]. (3.6)

Since Fy, — F(z*) = F, = fol J(x* +t(xy —x*))dt(zr, — x*), hence from (3.2), there exist two
constants mgz > 0 and my4 > 0 such that

malley — 2| < || Fill < mallor — 27 (3.7)

Assumption 3.1 also implies the following result [11].
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Lemma 3.1. Let Assumption 3.1 hold. Then

I(Vf(@rs1) = V(@) = V2f(@)si

55l < Ms{||zpgr — 2*|| + lzw — 2*||} (3.8)

holds for some positive constant Ms.

Lemma 3.2. Let Assumption 3.1 hold and the sequence {xi} be generated by Algorithm
2.1, then there exists a constant Mg > 0 such that

lyr — V2 f (@) s
skl

< Me{llwnsr — % + [lzxe — 27|} (3.9)

Proof. From (2.13), we obtain

Gk+1 = Vf(Trs1)
Jo (V@i + taga|[Fesa|er) = V(i) erdt

’ T
Jo (Vf@rar + tan_1 || FeralPen) = VF(zrs1)) endt
T
I (Jo V2 f (@1 + trag—1 || Frp||2en)tag—1 || Fiii || 2erdr)” erdt

' T
Iy ([ V2 f (@1t | Frpa |en)tan—1 || Fisa | endr)” endt

Similarly,

T
o (fy V2 (@p + trag—||Fil2e))tag—1 | Fi || 2erdr) " erdt
g — Vf(zr) = :
T
Iy (fs V2 (@ + trag—1 || Fl2en)tag—1 || Fi|2endr) " endt

Moreover, Assumption 3.1 implies that there exists a constant My > 0 such that

HVZf(x)H < ]\447 Vr € QQ.
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Hence, by (2.12), we have

lye — (Vf(zpg1) = V()
= Gr+1 — Vf(@rt1) — (g6 — VF(xr))]l

n 1 1
T
< Z‘/ (/ V2f (@1 + trap s | Fosr |2e0)tan1 || Fosr [2esdr) esdt
/ / V2 f (@ + tron—1||Fx || esto_1 | Fi|2esdr) eldt‘
< Z’/ / (V2 f(@rsr + tTan—1|| Fisa[Pes)
T
V2 (x + tran-]| Fil2e) b1 ]| s |2esdr) "eadt|
1 1 T
+ / (/ sz($k +tTak_1||Fk||26¢)tak_1(||Fk||2f ||Fk+1||2)61'd7') eidt‘
0 0
< > (L3(||xk+l — @il + [ Fesa |® = [1FeP) 1 Frra I + Mall| Feqa ||* — IIFkIIQI)
i=1
< N(LB(HSkH + Lymy(|zpgr — || + ok — 2*[skll) m3 |l ax1 — 2*|?

FMaLyma(llziss — o)+ ok — o) ]
< Myllsill (lwer — 2] + low — 2*)

with some constant My, where the third inequality follows from (3.1) and the fourth in-
equality uses (3.7) and (2.18). This and (3.8) show that (3.9) holds. O
Remark 3.1 Lemma 3.2 implies that there exists a constant C's > 0 such that
T
yise  (u = V2f(a")sk) sk + s, V2 f(2*)sk
(el (El
s V2 )se  llye — V2 f (@) si
Isxl1? skl

2 O?n

where we use the facts that V2f(z*) is symmetric positive definite and x;, — 2*. This and
|F%]] — 0 show that for sufficiently large k, Byt in (2.11) is always updated by the BFGS

formula Byy1 = By — B’“S’;;:Sf" z"i’z . Therefore, without loss of generality, we assume
that Byi1 is updated by the BFGS formula for all k£ > 0, that is, Ay = {1,2,--- ,k} and

K={1,2,---}.
The following lemma gives a bound from below for the stepsize oy with k € K.

Lemma 3.3. If ay, # 1, then there exists a constant Cy > 0 such that
ap>Cy, VkeK.
Proof. From the mean value theorem, there exists t; € (0,1) such that
f@e + ode) — flan)
Vf(zg + traddy)t o dy,
ok gk di + o (V () = gi) T di + (V f(zk + teaddy) — Vf(xk))Ta;dk
apgic dy, +nLoajo—1 | Fil*||di]| + La(a,)?|ldk |,

IN
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where o), = € and the last inequality follows from (2.5) and (2.18). This and (2.14) yield

—gi dx — nLoag_1|| Fg|]?||dx]|
(01 + Lo)||di? + oo | Fil|?

ay > (3.10)

This together with (2.23), (2.6) and (3.6) shows that there exists a constant Cy > 0 such
that oy, > Cs,VEk € K. O
The following result shows that Algorithm 2.1 converges linearly.

Theorem 3.4. Let Assumption 3.1 hold and the sequence {xy} be generated by Algorithm
2.1, then there exist constants r € (0,1) and ms > 0 such that

| Fell < msr®, |l — 2% < msr. (3.11)
Proof. Let K7 be the set of index k which satisfies (2.10). Then for k € K3, we have
f(@es) < oo f (an). (3.12)
Since 7 — 0, we assume 7, < 02C3. For k € K\K71, by (2.9) and Lemma 3.3, we get
fxri1) < (1= 2000 + i) f(zx) < (1= 0203) f (). (3.13)

Let r1 = max{y/1 — 02C%, po}, then 71 < 1. By Lemma 2.2 and (3.12)-(3.13), we know that
for at least [k/2] many ¢ < k such that

[Fill < rallF-all- (3.14)

Denote by Ij; the set of index ¢ < k which satisfies (3.14). By recurrence, (3.14) and the line
search (2.9), we obtain that

5
[Frall < II +n)n

i€{1,2,--- ,k}

e | Ryl < T Ver | Roll,

where the last inequality uses (2.15). Therefore, ||Fjy1] < @Jlf‘j”rkﬂ with r = \/r1 < 1.

This and (3.7) yield (3.11) with some positive constant ms. O
Moreover, it follows from (3.11) that

oo
Z leg — 2% < 0. (3.15)
k=0

(3.15) and (3.9) show that the following Dennis-Mofe condition holds.

Lemma 3.5 (Theorem 3.2 in [1]). Let Assumption 3.1 hold. Then we have

i BTSNl .
k—o0 ||Sk||

Moreover, the sequences {By} and {B; '} are uniformly bounded.
The following result shows that the unit stepsize will be always accepted finally.

Lemma 3.6. Let Assumption 3.1 hold. Then for all sufficiently large k, we have oy = 1.
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Proof. From (2.5) and Lemma 3.5, there exist two constants M7 and Mg such that
Idill = || = By 'grll < Mallgll < Mz([[Vf (@)l + llge — Vf(p)l]) < Mg|| Fill.  (3.17)

This together with (3.6) and (3.16) means

—

Wy +di — ™)
= V2f(a")(x —a*) + V2 f(2")dy
= )
)

= (z1, — a*) = (Vf(zx) = V(") + (Vf(xr) = g) + (V2 f (") — By)di
= olller —2*|) + (Vf (@) = gr) + o(lldi]))-
From the above equality, (2.5), (3.17) and (3.7), we know
IV2f(z*) ek + di — 2*)|| = o(llex — ™) + o(||Fxl)) = o([lax — 2]))-
Since V2 f(z*) is symmetric positive definite, hence the above equality yields

d _ *
lim M = 0. (3.18)
k— o0 ||{Ek — SU*H

Moreover, by (2.18) and (3.7), we obtain

1z + di) | [F(zx + di) — F(z")]|

< Lillzg +di — 2"
Lol +d — 2| .
= — 0 mgllry — 2"
mz ||lzg — 2|
14 ka + dk — x*||
< —————||F(x
ms ||xk — .’E*” H ( )”7

which together with (3.18) implies that (2.10) holds for sufficiently large k, that is, o, = 1
for sufficiently large k. U
Lemmas 3.6 and 3.5 imply the superlinear convergence of Algorithm 2.1.

Theorem 3.7 ([11, Theorem 5.4.6]). Let Assumption 3.1 hold. Then the sequence {x}} be
generated by Algorithm 2.1 converges superlinearly, that is, ap = 1 for sufficiently large k

and

[ehsr — " _

lim =0.

k— oo ||$k - I*H

Numerical Experiments

In this section, we first compared the performance of the GN-BFGS method in [6], the
cautious BFGS method (CBFGS) proposed by Li and Fukushima in [7] and Algorithm 2.1
for general nonlinear equations (1.1). Then we tested the efficiency of the CBFGS method
and Algorithm 2.1 on some nonlinear least squares problems (2.28). The codes were written
in Matlab 7.4.

e In the GN-BFGS method, we set the same parameters as those of [6], that is, By = I,
r=0.1,p= \/@, o1 =09=107% A_; =0.01 and ¢, = k2.
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09 F : J
08| 2 |

0.7 4 |

‘ ,l: I PP GN-BFGS
: 3 ~oroons Algorithm 2.1
- CBFGS

Figure 1: Performance profiles with respect to the number of iterations.

e In Algorithm 2.1, we set parameters By = I, 7 = 0.1, pg = /0.9, 01 = 05 = 107°,
a_1 =0.01, g, =k 2 and u = 1076,

o In the CBFGS method [7], we approximately compute V f(xy) by the classical standard
finite difference (f(z’“+he,1)_f(z’€) s f(z’“"'he;)_f(”))T with h = 10715 and h = 1072 for
the nonlinear equations and the nonlinear least squares problems, respectively. We adopted
the standard Armijo line search to compute the stepsize aj. We set parameters By = I,
p=01,06=01,a=1ande= 1075,

(i) When we tested general nonlinear equations (1.1), we stopped the iteration if the total
number of iterations exceeds 200 or ||F)| < 1075. The test problems were created by the
following three matrices A1, As, A3 € R"*™ and two functions H : R — R™, W : R — R",

where H(z) = (e** —1,e*2 —1,--- ;e —1)T W(z) = (sinz; — 1,sinzy—1, - ;sinz, —1)T
and
2 -1 2 -1 2 —1
—1 2 -1 1 2 —1 0 2 -1
Ay = Ay = N Az =
1 . R . B
—1 2 1 2 0 2

Then we construct six functions F(z) in the system (1.1) as follows:

Probleml. F(x) = Ajxz+ H(x); Problem2. F(x)= Az + W(x);
Problem3. F(x) = Asx+ H(x); Problemd. F(x)= Asx + W (x);
Problemb. F(x) = Asx+ H(x); Problem6. F(x)= Asz + W (x).

It is clear that Problems 1-2 are symmetric and Problems 3-6 are nonsymmetric.
Table 1 lists the numerical results of the three methods on the six problems with different
initial points and different n values. In Table 1, ”P”, ”Initial” and ” Time” stand for the test
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Table 1: Test results for the three methods on nonlinear equations.

GN-BFGS Algorithm 2.1 CBFGS

P | Initial n Tter Time | F |l Tter Time [ Fe |l Tter Time | E% |l

1 R 10 11 1.048 2.8215e-007 11 0.90511  2.6128e-006 16 0.92351  6.0859e-006
0 20 17 1.0584 6.7266e-006 24 1.0061 7.0196e-006 28 0.83569  4.3231e-006
B 50 33 0.97135  5.3601e-006 45 1.9508 9.3449e-006 51 2.1059 7.6565e-006
o 100 54 1.5096 8.5778e-006 57 6.0657 7.331e-006 125 12.8936  8.8467e-006
o 10 10 1.1703 1.481e-007 9 1.1848 1.1755e-006 16 0.86611  7.3687e-006
Zo 20 16 0.76968  5.2813e-006 15 1.0146 2.8183e-006 26 0.99583  3.4271e-006
Zo 50 34 0.88546  7.9491e-006 27 1.7207 8.6756e-006 31 1.6723 8.5909e-006
Zo 100 52 1.2655 7.0907e-006 31 3.6561 9.9592e-006 34 7.4336 7.8293e-006
Zo 10 19 1.0596 2.2397e-006 40 1.1377 7.9921e-006 29 1.0659 6.0842e-006
Zo 20 27 0.99892  2.7856e-006 48 1.1798 4.0396e-006 39 1.1566 6.9262e-006
Zo 50 55 1.5882 4.3485e-006 78 3.1516 4.0693e-006 | 100 4.0569 9.5394e-006
Zo 100 91 1.7503 8.6119e-006 8 2.206 NaN 132 13.0432  8.3809e-006

2 R 10 23 1.0447 6.6131e-006 31 1.1018 6.2191e-006 24 0.93773  4.9769e-006
o 20 57 1.2079 2.8553e-006 48 1.1943 6.705e-006 200 2.1172 1.3062
B 50 65 1.1639 9.5702e-006 | 115 4.1182 4.9732e-006 3 2.0117 NaN
0 100 | 200 2.5244 1.3393e-005 | 200 19.6632 2.9976 4 3.1377 NaN
o 10 21 1.1223 2.7352e-006 35 1.0095 8.1695e-006 23 0.89339  4.1627e-006
Zo 20 54 0.86599  8.4346e-006 67 1.2932 4.1925e-006 | 116 1.7632 9.8718e-006
Zo 50 84 0.99273  8.8706e-006 | 112 3.9176 8.7568e-006 | 200 8.5619 6.116
Zo 100 | 200 2.171 0.00042728 | 200 20.8686 3.0456 3 3.1105 NaN
Zo 10 20 1.1288 2.5224e-006 36 1.057 7.3856e-006 25 0.9341 4.218e-006
Zo 20 47 1.3982 5.4395e-006 62 1.3342 2.8471e-006 59 1.3272 5.3204e-006
Zo 50 135 1.0641 7.0401e-006 | 150 5.136 5.1979e-006 | 146 7.6011 NaN
Zo 100 | 200 2.1301 0.0022011 200  22.5321 3.0248 9 3.5232 NaN

3 zo 10 200 1.4679 0.32355 21 0.93261  6.1808e-007 20 0.8854 1.0502e-006
0 20 200 1.3095 0.84298 40 1.1322 1.6205e-006 34 1.2953 9.6677e-006
o 50 200 1.7253 1.8638 52 2.5426 8.6451e-006 37 1.9244 8.0854e-006
) 100 | 200 2.5966 1.6114 56 6.2791 9.9395e-006 47 5.2077 9.0332e-006
Zo 10 200 1.301 0.075087 12 0.85863  9.9741e-006 19 0.93545  2.1489e-006
Zo 20 200 1.3559 0.10286 21 0.94522  4.4428e-006 31 1.0888 5.9018e-006
o) 50 200 1.427 0.18978 39 2.0498 7.3718e-006 34 2.1647 7.9365e-006
o 100 | 200 2.5813 0.18872 40 4.9906 9.0476e-006 34 4.6117 9.3205e-006
Zo 10 200 1.3603 2.7621 6 0.79223 NaN 23 0.98528  2.1419e-006
Zo 20 200 1.3822 3.089 51 1.1539 4.6276e-006 39 1.4408 1.9136e-006
Zo 50 200 1.4335 3.154 62 2.6105 9.3295e-006 75 3.4425 6.8842e-006
Zo 100 | 200 2.6232 3.146 93 9.8708 8.602e-006 170 19.9981  9.0265e-006
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Table 1 continued.
GN-BFGS Algorithm 2.1 CBFGS

Initial n Tter Time [ Fe |l Tter Time || Fr | Tter Time | F |l
4 L) 10 200 1.3843 1.4285 23 0.85771  3.3178e-007 20 0.91863  6.1212e-006
) 20 200 1.4449 2.8213 44 1.1104 2.1014e-006 36 1.1028 6.1736e-006
To 50 200 1.4304 4.5608 103 3.4149 6.9242e-006 45 2.2621 8.9213e-006

L) 100 | 200 2.6736 5.3408 7 8.784 9.9594e-006 3 1.9267 NaN
To 10 200 1.4819 1.954 25 0.8534 1.6403e-006 20 0.90497  3.4281e-006
o 20 200 1.135 2.6132 43 1.1326 5.1442e-006 37 1.0996 5.2411e-006
o 50 200 1.7197 5.5081 71 2.9305 8.5732e-006 60 3.0253 9.2657e-006

o 100 | 200 2.6091 6.4258 79 8.7997 8.3433e-006 | 200  29.8352 3.4998
o 10 200 1.3764 1.697 21 0.88366  1.8002e-006 19 0.9236 9.5928e-006
o 20 200 1.4405 1.7151 39 1.1148 7.9653e-006 35 1.3136 2.7938e-006
o 50 200 1.6869 4.9869 97 3.5427 7.6832e-006 51 2.6815 9.5552e-006

) 100 | 200 4.802 9.8699 7 9.8851 9.5321e-006 17 4.9677 NaN
5 To 10 86 1.0673 8.8464e-006 19 0.82017  6.0455e-006 20 0.82784  2.5122e-006
) 20 85 0.77264  9.8059e-006 33 0.99799  7.4934e-006 34 1.0207 2.7689e-006
To 50 90 1.1134 1.4171e-006 50 2.5662 8.3434e-006 47 2.2716 8.9916e-006
o 100 | 145 1.9561 5.5596e-006 51 7.5112 9.2228e-006 47 6.2081 8.4677e-006
o 10 69 1.0553 9.5372e-006 18 0.84247  3.6371e-006 20 0.8318 1.582e-006
Zo 20 72 1.0994 7.4875e-006 33 1.0146 2.7531e-006 32 1.0331 7.3799e-006
To 50 84 1.1809 4.4746e-006 39 2.1663 8.513e-006 36 2.0324 8.3393e-006
o 100 | 151 1.984 8.5627e-006 40 4.8143 9.9909e-006 38 5.0642 9.5722e-006
Zo 10 37 1.0757 2.9395e-006 31 0.87309  9.7853e-006 21 0.83738  1.2274e-006
) 20 85 1.0862 9.1519e-006 47 1.0794 5.0535e-007 34 1.0203 3.1146e-006
o 50 91 1.2883 6.0859e-006 75 2.969 2.7442e-006 58 2.8185 8.6993e-006
) 100 | 154 2.0383 6.6776e-006 87 10.363 8.4248e-006 | 108  14.9576  9.0055e-006
6 o 10 90 1.1004 9.0485e-006 33 0.88687  2.3348e-006 19 0.77249  5.3494e-006
o 20 135 1.0271 9.9744e-006 41 1.0766 5.7777e-006 33 1.0475 6.5278e-006
o 50 102 1.6068 7.4259e-006 76 3.0147 8.3818e-006 57 2.884 9.1108e-006

) 100 | 154 1.888 5.4206e-006 81 8.1003 8.6528e-006 3 1.823 NaN
To 10 42 0.93437  8.4974e-006 31 0.8971 2.5814e-006 21 0.8519 8.3409e-006
o 20 141 1.4067 9.7021e-006 38 1.0065 9.563e-006 37 1.0576 1.6761e-006
) 50 91 1.0003 9.0507e-006 73 3.0067 9.3243e-006 49 5.4197 7.7265e-006

To 100 | 161 2.1892 9.189¢-006 78 7.7524 9.4776e-006 3 2.6181 NaN
o 10 37 1.096 7.9541e-006 26 0.96237  5.4964e-006 20 0.86068  8.4117e-007
o 20 87 0.90113  9.0594e-006 36 0.98838 4.1e-006 32 1.0068 8.3151e-006

o 50 124 1.536 9.6887e-006 81 3.128 4.8315e-006 53 3.5589 NaN

o 100 | 161 2.0016 8.9602e-006 83 9.0375 8.1393e-006 52 7.39 NaN
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Table 2: Test results of Algorithm 2.1 and the CBFGS method on some nonlinear least
squares problems.

Algorithm 2.1 CBFGS
P Initial —n  m || Iter VS (@)l [EA] Iter IV f ()l [
Bard 1 3 15 147 5.8517e-005 0.090636 19 3.8327¢-005 0.090636
10 3 15 148 5.8441e-005  0.090636 50 8.1793e-006 0.090636
100 3 15 148 5.8568e-005 0.090636 7 NaN NaN
Gauss 1 3 15 3 5.4894e-006 0.00010822 3 5.4945e-006 0.00010822
10 3 15 8 1.1393e-017  0.75115 24 3.3911e-005 0.00012191
100 3 15 2 0 0.75115 4 3.4467e-005 0.63647
Gulf 1 3 10 2 0 0.19621 47 7.4043e-005 0.0002262
10 3 10 1 2.3853e-016 1.5717e-016 1 2.3853e-016 1.5717e-016
100 3 10 1 0 0.19621 1 0 0.19621
Box 1 3 10 70 9.7319e-005  6.849e-005 39 8.4792e-005 6.7384e-005
10 3 10 35 5.6095e-005 0.002708 24 2.8134e-005 0.2749
100 3 10 55 NaN NaN 33 3.5693e-005 0.27493
Kowosb 1 4 11 32 8.2917e-005  0.017536 30 8.3724e-006 0.017536
10 4 11 188 9.3601e-005 0.029762 44 5.5791e-005 0.029564
100 4 11 34 8.837e-005 0.036498 44 4.7101e-005 0.04245
Biggs 1 6 13 313  2.7977e-005  0.075204 110 1.1731e-005 0.0002578
10 6 13 65 5.9716e-005  0.075205 105 5.7778e-005 0.00088187
Trig 1 10 10 29 8.3729e-005  0.0052876 30 2.0803e-005 0.0052873
20 20 51 8.9498e-005 0.0026387 54 9.197e-005 0.0026286
50 50 40 9.0067e-005  0.0023461 54 9.3835e-005 0.0023438
100 100 38 8.9446e-005 0.0015715 500 0.00011511 0.0014006

problem, the initial point and the CPU time in seconds, respectively; "Iter” and || Fy|| are the
total number of iterations and the norm of Fy at the last iteration; and x¢ = (0.1,---,0.1)%
To = (0.01,---,0.0)T, 9 = (1,1/2,--- ,1/n)T.

From Table 1, for the symmetric Problems 1-2, the GN-BFGS method is the best. How-
ever, for nonsymmetric Problems 3-6, Algorithm 2.1 and CBFGS method are more efficient
than the GN-BFGS method. Especially, we note that the GN-BFGS method failed to
solve Problems 3-4. In our numerical experiments, we observed that Algorithm 2.1 and
the CBFGS method need more CPU time for many problems. This is due to the fact
that the approximation of gj requires n F-evaluations, while in the GN-BFGS method such
approximation is obtained performing just one F-evaluation.

In order to show the performance of the three methods clearly, we plotted Figure 1
according to the data in Table 1 by using the performance profiles of Dolan and Moré [4].
From Table 1 and Figure 1, we can see that Algorithm 2.1 is the most efficient among the
three methods since its performance curves corresponding to the number of iterations is top
in the figure.

(ii) When we tested nonlinear least squares problems (2.28), we stopped the iteration if
[V £(zr)]| < 107% or the total number of iterations exceeds 500. The test problems come
from [10]. Table 2 lists the numerical results of Algorithm 2.1 and the CBFGS method with
Vf(xy) approximated by the standard finite difference approach. The second column of
Table 2 means that the initial point is g, 10xq, 100z, where x( is suggested by Moré et
al. in [10]. From Table 2, we see that both methods performed well. For some problems
such as "Bard”, the CBFGS method is better. One possible reason is that Algorithm 2.1
may not converge superlinearly since gi is no longer a good approximation of V f(zy) in
the nonzero residual case (otherwise, o, = 1 and ||F(zx)| — ||F(2*)| # 0, which implies
that ax_1]|F(xy)||?> can not converges to 0). On the other hand, for the problem ”Trig”
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with m = n = 100, we see that Algorithm 2.1 performs better than the CBFGS method.
This shows that Algorithm 2.1 converges globally. However, the CBFGS method with such
standard finite difference approximation does not converge for this problem.

Conclusions

In this paper, we proposed a globally and superlinearly convergent BFGS method for general
nonlinear equations without using exact gradient and Jacobian. This extended the GN-
BFGS method proposed by Li and Fukushima [6]. Some numerical results compared with
the GN-BFGS method and the CBFGS method are also reported.
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