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This paper is organized as follows. In the next section, we first present the method in
detail. Then we prove its global convergence under some conditions. In Section 3, we show
superlinear convergence of the proposed method. In Section 4, we report some numerical
results. Throughout the paper, we denote Fk = F (xk), Jk = J(xk), sk = xk+1 − xk = αkdk
and ∥ · ∥ is the 2-norm.

2 Algorithm and Global Convergence

In this section, we first illustrate our approach which is mainly based on the following
consideration. In [6], the GN-BFGS method for symmetric nonlinear equations produces
the search direction dk by computing the linear equations

Bkd = −F (xk + λk−1Fk)− F (xk)

λk−1
,

where λk−1 > 0 is a stepsize and the iterative matrix Bk is updated by the BFGS formula

Bk+1 = Bk − Bksks
T
kBk

sTkBksk
+
γkγ

T
k

γTk sk

with γk = F (xk + δk)− F (xk), δk = F (xk+1)− F (xk). Let us define

f(x) ≜ 1

2
∥F (x)∥2. (2.1)

When ∥Fk∥ is small and the Jacobian is symmetric, F (xk+λk−1Fk)−F (xk)
λk−1

≈ ∇f(xk), which
shows that this is a method based on inexact gradient. Moreover, if J(x) satisfies Lipschitz
condition with Lipschitz constant L̄, then the symmetry of the Jacobian implies∥∥∥F (xk + λk−1Fk)− F (xk)

λk−1
−∇f(xk)

∥∥∥ =
∥∥∥ ∫ 1

0

(
J(xk + tλk−1Fk)− J(xk)

)
Fkdt

∥∥∥
≤ L̄λk−1∥Fk∥2, (2.2)

which gives an error estimation between F (xk+λk−1Fk)−F (xk)
λk−1

and ∇f(xk).
Thus for general nonlinear equations, the key is to construct a suitable term which

approximates ∇f(xk). In this case, it is clear that the term F (xk+λk−1Fk)−F (xk)
λk−1

is no longer

a suitable approximation of ∇f(xk). But we note that when ∥Fk∥ is small,

f(xk + α∥Fk∥2ei)− f(xk)

α∥Fk∥2
≈ ∂f(xk)

∂xi
,

where ei is the i-th column of the identity matrix and α > 0 is a parameter. Hence the term

gk(α) ≜
1

∥Fk∥2


f(xk+α∥Fk∥2e1)−f(xk)

α
f(xk+α∥Fk∥2e2)−f(xk)

α
...

f(xk+α∥Fk∥2en)−f(xk)
α

 (2.3)

is an approximation of ∇f(xk), which also can be seen from the following equality

lim
α→0+

gk(α) = ∇f(xk). (2.4)
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Moreover, if ∇f(x) satisfies Lipschitz condition with Lipschitz constant L̄1, then

∥gk(α)−∇f(xk)∥ =

∥∥∥∥∥∥∥∥


∫ 1

0

(
∇f(xk + tα∥Fk∥2e1)−∇f(xk)

)T
e1dt

...∫ 1

0

(
∇f(xk + tα∥Fk∥2en)−∇f(xk)

)T
endt


∥∥∥∥∥∥∥∥

≤ nL̄1α∥Fk∥2. (2.5)

This is the main reason of choosing gk(α) instead of choosing the term

1

∥Fk∥


f(xk+α∥Fk∥e1)−f(xk)

α
f(xk+α∥Fk∥e2)−f(xk)

α
...

f(xk+α∥Fk∥en)−f(xk)
α


as an approximation of ∇f(xk) since the approximate precision between gk(α) and ∇f(xk)
given by (2.5) in the general nonlinear case is the same as that of (2.2) in the symmetric
nonlinear case.

Assume that we have a parameter αk−1 at the moment, then we get the search direction
dk by letting it be the solution of the following linear equations:

Bkd = −gk, (2.6)

where
gk ≜ gk(αk−1). (2.7)

Moreover, we adopt the line search proposed by Li and Fukushima [6] to compute the next
stepsize αk. Let σ1 > 0 and σ2 > 0 be two given constants and {ηk} be a positive sequence
satisfying

∞∑
k=0

ηk ≤ η <∞, (2.8)

where η is a positive constant. We compute αk = max{1, ρ, ρ2, · · · } such that

f(xk + αdk) ≤ f(xk)− σ1∥αdk∥2 − σ2∥αFk∥2 + ηkf(xk), (2.9)

where ρ ∈ (0, 1) is a constant. It is clear that the line search (2.9) is well-defined.
Therefore, we are ready for presenting the following BFGS method for solving (1.1).

Algorithm 2.1

Step 0. Choose a starting point x0 ∈ Rn, an initial symmetric positive definite matrix
B0 ∈ Rn×n, a positive sequence {ηk} satisfying (2.8), and several constants α−1 > 0,
σ1 > 0, σ2 ∈ (0, 12 ), µ > 0 and ρ0, ρ ∈ (0, 1). Let k := 0.

Step 1. Compute dk by (2.6).

Step 2. If
∥F (xk + dk)∥ ≤ ρ0∥F (xk)∥, (2.10)

then set αk = 1. Otherwise, compute αk by the line search (2.9).

Step 3. Set xk+1 = xk + αkdk.
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Step 4. Update Bk by the following rule,

Bk+1 =

{
Bk − Bksks

T
k Bk

sTk Bksk
+

yky
T
k

yT
k sk

, if
yT
k sk

∥sk∥2 ≥ µ∥Fk∥,
Bk, otherwise,

(2.11)

where
yk ≜ ḡk+1 − gk (2.12)

and

ḡk+1 ≜ gk+1(αk−1) =
1

∥Fk+1∥2


f(xk+1+αk−1∥Fk+1∥2e1)−f(xk+1)

αk−1

f(xk+1+αk−1∥Fk+1∥2e2)−f(xk+1)
αk−1

...
f(xk+1+αk−1∥Fk+1∥2en)−f(xk+1)

αk−1

 . (2.13)

Step 5. Let k := k + 1 and go to Step 1.

Remark 2.1
(i) In Step 4, we use the cautious BFGS formula proposed by Li and Fukushima [7] where

it was used to solve nonconvex unconstrained minimization problems. The update rule (2.11)
ensures that the iterative matrix sequence {Bk} is symmetric and positive definite.

(ii) In the global convergence for some methods such as the BFGS methods in [7, 20],
it need the Lipschitz assumption on the gradient, which implies ∥∇f(xk+1) − ∇f(xk)∥ ≤
L̄2∥sk∥ for some constant L̄2. From (2.20), we can see later that ∥ḡk+1 − gk∥ satisfies the
similar condition. This is the reason of using ḡk+1 instead of gk+1 in (2.12).

(iii) From (2.9) and (2.10), if αk ̸= 1, then α′
k = αk

ρ does not satisfy (2.9), that is,

f(xk + α′
kdk) > f(xk)− σ1∥α′

kdk∥2 − σ2∥α′
kFk∥2. (2.14)

(iv) By (2.8) and (2.9), it is easy to get

∞∏
i=0

(1 + ηi) ≤ eη, (2.15)

and f(xk+1) ≤ (1 + ηk)f(xk). Then by Lemma 3.3 in [3] that {f(xk)} converges.
From now on, we begin to investigate global convergence property of Algorithm 2.1. To

this end, we make some assumptions as follows.
Assumption 2.1

(i) The level set Ω = {x| f(x) ≤ eηf(x0)} is bounded.
(ii) In some neighbourhood Ω1 of Ω, J(x) is Lipschitz continuous, that is, there exists a

positive constant L such that

∥J(x)− J(y)∥ ≤ L∥x− y∥, ∀x, y ∈ Ω1. (2.16)

It is clear that the sequence {xk} ⊂ Ω. Moreover, Assumption 2.1 implies that there
exist positive constants M1, M2, L1 and L2 such that

∥J(x)∥ ≤M1, ∥F (x)∥ ≤M2, ∀x ∈ Ω1, (2.17)

∥F (x)− F (y)∥ ≤ L1∥x− y∥, ∥∇f(x)−∇f(y)∥ ≤ L2∥x− y∥, ∀x, y ∈ Ω1. (2.18)
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Lemma 2.1. Let Assumption 2.1 hold and the sequence {xk} be generated by Algorithm
2.1. If (2.10) holds for infinite k, then limk→∞ ∥Fk∥ = 0. Otherwise, we have

∞∑
k=0

∥sk∥2 <∞,

∞∑
k=0

∥αkFk∥2 <∞.

Proof. If (2.10) holds for infinite k, then it is obvious that limk→∞ ∥Fk∥ = 0. If (2.10) holds
only for finite k, then by (2.9), we have

k∑
i=0

(
σ1∥si∥2 + σ2∥αiFi∥2

)
≤ f(x0)− f(xk+1) +

k∑
i=0

ηif(xi).

Since f(xk+1) ≥ 0 and {f(xk)} convergence, there exists a constant M̄ > 0 such that

k∑
i=0

(
σ1∥si∥2 + σ2∥αiFi∥2

)
≤ f(x0) +

k∑
i=0

M̄ηi.

This and (2.8) yield the conclusion. □
Now we assume (2.10) holds for finite k. Then Lemma 2.1 shows

lim
k→∞

∥sk∥ = 0, lim
k→∞

αk∥Fk∥ = 0. (2.19)

Moreover, (2.13) and (2.18) yield

∥yk∥ = ∥ḡk+1 − gk∥

=

∥∥∥∥∥∥∥∥


∫ 1

0

(
∇f(xk+1 + tαk−1∥Fk+1∥2e1)−∇f(xk + tαk−1∥Fk∥2e1)

)T
e1dt

...∫ 1

0

(
∇f(xk+1 + tαk−1∥Fk+1∥2en)−∇f(xk + tαk−1∥Fk∥2en)

)T
endt


∥∥∥∥∥∥∥∥

≤ nL2(∥xk+1 − xk∥+ αk−1|∥Fk+1∥2 − ∥Fk∥2|)
≤ nL2

(
∥xk+1 − xk∥+ αk−1(∥Fk+1∥+ ∥Fk∥)(|∥Fk+1∥ − ∥Fk∥|)

)
≤ nL2(1 + 2L1M2)∥sk∥, (2.20)

where the last inequality follows from (2.17), (2.18) and the fact αk−1 ≤ 1. Moreover, if
there exists a positive constant τ1 such that

∥∇f(xk)∥ ≥ τ1 (2.21)

holds for all k. Then there is a positive constant τ2 satisfying

∥Fk∥ ≥ τ2, ∀k ≥ 0. (2.22)

From the update rule (2.11), if Bk is updated by the BFGS formula, then

yTk sk
∥sk∥2

≥ µτ2,
yTk yk
yTk sk

≤ (nL2(1 + 2L1M2))
2∥sk∥2

µτ2∥sk∥2
=

(nL2(1 + 2L1M2))
2

µτ2
≜ C1

hold for some positive constant C1.
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Lemma 2.2. Let Assumption 2.1 hold. If (2.21) holds, then there are positive constants
βi, i = 1, 2, 3, 4 such that

β1∥si∥ ≤ ∥Bisi∥ ≤ β2∥si∥, β3∥si∥2 ≤ sTi Bisi ≤ β4∥si∥2

hold for at least ⌈ |Ak|
2 ⌉ many i ∈ Ak, where |Ak| is the cardinality of the set Ak and

Ak =
{
i| i ≤ k,Bi+1 = Bi −

Bisis
T
i Bi

sTi Bisi
+
yiy

T
i

yTi si

}
.

Proof. By (2.11), we know that Bk+1 is updated by the BFGS formula or Bk+1 = Bk. Then
we have

ψ(Bk+1) ≤ ψ(B0) +
(
C1 − 1− ln (µτ2)

)
|Ak|

+
∑
j∈Ak

(
ln cos2 θj + 1− qj

cos2 θj
+ ln

qj
cos2 θj

)
,

where ψ(B) = tr(B) − ln(det(B)), qj =
sTj Bjsj

sTj sj
, cos θj =

sTj Bjsj
∥sj∥∥Bjsj∥ . Thus using the same

argument as that of Theorem 2.1 in [1], we obtain the conclusion. □
Since sk = αkdk, Lemma 2.2 and (2.6) imply that

β1∥di∥ ≤ ∥Bidi∥ = ∥gi∥ ≤ β2∥di∥, β3∥di∥2 ≤ dTi Bidi = −dTi gi ≤ β4∥di∥2 (2.23)

hold for at least ⌈ |Ak|
2 ⌉ many i ∈ Ak.

The following result shows that Algorithm 2.1 converges globally.

Theorem 2.3. Let Assumption 2.1 hold and the sequence {xk} be generated by Algorithm
2.1. Then we have

lim inf
k→∞

∥∇f(xk)∥ = 0. (2.24)

Proof. We prove the theorem by contradiction. If (2.24) is not true, then (2.21)-(2.22) hold
and (2.10) only holds for finite k.

(i) If lim supk→∞ αk > 0, then we deduce from (2.19) that

lim inf
k→∞

∥Fk∥ = 0,

which contradicts (2.22).
(ii) If limk→∞ αk = 0, then (2.14) holds for α′

k = αk

ρ . Moreover, from (2.5) and (2.21),
there exists a positive constant τ3 such that

∥gk∥ ≥ τ3, ∀k ≥ 0. (2.25)

Denote
K̂ ≜

⋃
k>0

Ak, K ≜ {i|(2.23) holds}. (2.26)

If K̂ is finite, then the conclusion is clear. If K̂ is infinite, then K is infinite. Since {xk}
is bounded, then the sequence {gk}k∈K and {dk}k∈K are bounded. Without loss of gener-
ality, let the sequences {dk}k∈K and {xk}k∈K converge to d∗ and x∗, respectively. Hence
limk∈K,k→∞ gk = ∇f(x∗). Let k → ∞ with k ∈ K in (2.14), then

∇f(x∗)T d∗ ≥ 0. (2.27)
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By (2.6), we get 0 = dTkBkdk + gTk dk, which together with (2.23) implies 0 ≥ β3∥dk∥2 +
gTk dk, ∀k ∈ K. Let k → ∞ with k ∈ K in this inequality, we have

∇f(x∗)T d∗ ≤ −β3∥d∗∥2.

This and (2.27) show that d∗ = 0. Since gk = −Bkdk, then from (2.23), we know

lim
k∈K,k→∞

∥gk∥ = lim
k∈K,k→∞

∥dk∥ = ∥d∗∥ = 0,

which contradicts with (2.25). This completes the proof. □
Remark 2.2 It is clear that Algorithm 2.1 can be applied to solving the following nonlinear
least squares problem

min f(x) ≜ 1

2
∥F (x)∥2, (2.28)

where F : Rn → Rm is a general vector value mapping and n may be not equal to m. And
from the previous analysis, it is easy to show that Algorithm 2.1 still converges globally for
(2.28), which is also supported by the numerical results later.

3 Superlinear Convergence

In this section, we turn to discussing the superlinear convergence of Algorithm 2.1. To do
this, we need the following assumptions.
Assumption 3.1

(I) The sequence {xk} converges to x∗, where F (x∗) = 0 and J(x∗) is nonsingular.
(II) In some neighourhood Ω2 of x∗, ∇2f is Lipschitz continuous, i.e., there exists a

positive constant L3 satisfying

∥∇2f(x)−∇2f(y)∥ ≤ L3∥x− y∥, ∀x, y ∈ Ω2. (3.1)

Without loss of generality, we assume {xk} ⊆ Ω2. Assumption (I) implies that J(x) is
uniformly nonsingular in Ω2, that is, there is a constant m1 > 0 such that

m1∥d∥ ≤ ∥J(x)d∥, m1∥d∥ ≤ ∥J(x)−1d∥, ∀x ∈ Ω2, d ∈ Rn. (3.2)

This shows

∥Fk∥ ≤ 1

m1
∥∇f(xk)∥. (3.3)

Moreover, by (2.5), we know

∥∇f(xk)∥ ≤ ∥gk∥+ nL2αk−1∥Fk∥2. (3.4)

Since limk→∞ ∥Fk∥ = 0 and αk−1 ≤ 1, from (3.3) and (3.4), there exists a constant m2 > 0
such that for sufficiently large k,

∥Fk∥ ≤ m2∥gk∥. (3.5)

This together with (2.23) implies that for any k ∈ K,

∥Fk∥ ≤ m2β2∥dk∥. (3.6)

Since Fk −F (x∗) = Fk =
∫ 1

0
J(x∗+ t(xk −x∗))dt(xk −x∗), hence from (3.2), there exist two

constants m3 > 0 and m4 > 0 such that

m3∥xk − x∗∥ ≤ ∥Fk∥ ≤ m4∥xk − x∗∥. (3.7)

Assumption 3.1 also implies the following result [11].
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Lemma 3.1. Let Assumption 3.1 hold. Then

∥
(
∇f(xk+1)−∇f(xk)

)
−∇2f(x∗)sk∥

∥sk∥
≤M3{∥xk+1 − x∗∥+ ∥xk − x∗∥} (3.8)

holds for some positive constant M3.

Lemma 3.2. Let Assumption 3.1 hold and the sequence {xk} be generated by Algorithm
2.1, then there exists a constant M6 > 0 such that

∥yk −∇2f(x∗)sk∥
∥sk∥

≤M6{∥xk+1 − x∗∥+ ∥xk − x∗∥}. (3.9)

Proof. From (2.13), we obtain

ḡk+1 −∇f(xk+1)

=


∫ 1

0

(
∇f(xk+1 + tαk−1∥Fk+1∥2e1)−∇f(xk+1)

)T
e1dt

...∫ 1

0

(
∇f(xk+1 + tαk−1∥Fk+1∥2en)−∇f(xk+1)

)T
endt



=


∫ 1

0

( ∫ 1

0
∇2f(xk+1 + tταk−1∥Fk+1∥2e1)tαk−1∥Fk+1∥2e1dτ

)T
e1dt

...∫ 1

0

( ∫ 1

0
∇2f(xk+1 + tταk−1∥Fk+1∥2en)tαk−1∥Fk+1∥2endτ

)T
endt

 .

Similarly,

gk −∇f(xk) =


∫ 1

0

( ∫ 1

0
∇2f(xk + tταk−1∥Fk∥2e1)tαk−1∥Fk∥2e1dτ

)T
e1dt

...∫ 1

0

( ∫ 1

0
∇2f(xk + tταk−1∥Fk∥2en)tαk−1∥Fk∥2endτ

)T
endt

 .

Moreover, Assumption 3.1 implies that there exists a constant M4 > 0 such that

∥∇2f(x)∥ ≤M4, ∀x ∈ Ω2.
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Hence, by (2.12), we have

∥yk −
(
∇f(xk+1)−∇f(xk)

)
∥

= ∥ḡk+1 −∇f(xk+1)− (gk −∇f(xk))∥

≤
n∑

i=1

∣∣∣ ∫ 1

0

( ∫ 1

0

∇2f(xk+1 + tταk−1∥Fk+1∥2ei)tαk−1∥Fk+1∥2eidτ
)T
eidt

−
∫ 1

0

( ∫ 1

0

∇2f(xk + tταk−1∥Fk∥2ei)tαk−1∥Fk∥2eidτ
)T
eidt

∣∣∣
≤

n∑
i=1

∣∣∣ ∫ 1

0

( ∫ 1

0

(
∇2f(xk+1 + tταk−1∥Fk+1∥2ei)

−∇2f(xk + tταk−1∥Fk∥2ei)
)
tαk−1∥Fk+1∥2eidτ

)T
eidt

∣∣∣
+
∣∣∣ ∫ 1

0

( ∫ 1

0

∇2f(xk + tταk−1∥Fk∥2ei)tαk−1

(
∥Fk∥2 − ∥Fk+1∥2

)
eidτ

)T
eidt

∣∣∣
≤

n∑
i=1

(
L3

(
∥xk+1 − xk∥+ |∥Fk+1∥2 − ∥Fk∥2|

)
∥Fk+1∥2 +M4|∥Fk+1∥2 − ∥Fk∥2|

)
≤ n

(
L3

(
∥sk∥+ L1m4(∥xk+1 − x∗∥+ ∥xk − x∗∥)∥sk∥

)
m2

4∥xk+1 − x∗∥2

+M4L1m4(∥xk+1 − x∗∥+ ∥xk − x∗∥)∥sk∥
)

≤ M5∥sk∥
(
∥xk+1 − x∗∥+ ∥xk − x∗∥

)
with some constant M5, where the third inequality follows from (3.1) and the fourth in-
equality uses (3.7) and (2.18). This and (3.8) show that (3.9) holds. □
Remark 3.1 Lemma 3.2 implies that there exists a constant C3 > 0 such that

yTk sk
∥sk∥2

=

(
yk −∇2f(x∗)sk

)T
sk + sTk∇2f(x∗)sk

∥sk∥2

≥ sTk∇2f(x∗)sk
∥sk∥2

− ∥yk −∇2f(x∗)sk∥
∥sk∥

≥ C3,

where we use the facts that ∇2f(x∗) is symmetric positive definite and xk → x∗. This and
∥Fk∥ → 0 show that for sufficiently large k, Bk+1 in (2.11) is always updated by the BFGS

formula Bk+1 = Bk − Bksks
T
k Bk

sTk Bksk
+

yky
T
k

yT
k sk

. Therefore, without loss of generality, we assume

that Bk+1 is updated by the BFGS formula for all k > 0, that is, Ak = {1, 2, · · · , k} and
K̂ = {1, 2, · · · }.

The following lemma gives a bound from below for the stepsize αk with k ∈ K.

Lemma 3.3. If αk ̸= 1, then there exists a constant C2 > 0 such that

αk ≥ C2, ∀k ∈ K.

Proof. From the mean value theorem, there exists tk ∈ (0, 1) such that

f(xk + α′
kdk)− f(xk)

= ∇f(xk + tkα
′
kdk)

Tα′
kdk

= α′
kg

T
k dk + α′

k(∇f(xk)− gk)
T dk +

(
∇f(xk + tkα

′
kdk)−∇f(xk)

)T
α′
kdk

≤ α′
kg

T
k dk + nL2α

′
kαk−1∥Fk∥2∥dk∥+ L2(α

′
k)

2∥dk∥2,
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where α′
k = αk

ρ and the last inequality follows from (2.5) and (2.18). This and (2.14) yield

α′
k ≥ −gTk dk − nL2αk−1∥Fk∥2∥dk∥

(σ1 + L2)∥dk∥2 + σ2∥Fk∥2
. (3.10)

This together with (2.23), (2.6) and (3.6) shows that there exists a constant C2 > 0 such
that αk ≥ C2, ∀k ∈ K. □

The following result shows that Algorithm 2.1 converges linearly.

Theorem 3.4. Let Assumption 3.1 hold and the sequence {xk} be generated by Algorithm
2.1, then there exist constants r ∈ (0, 1) and m5 > 0 such that

∥Fk∥ ≤ m5r
k, ∥xk − x∗∥ ≤ m5r

k. (3.11)

Proof. Let K1 be the set of index k which satisfies (2.10). Then for k ∈ K1, we have

f(xk+1) ≤ ρ20f(xk). (3.12)

Since ηk → 0, we assume ηk ≤ σ2C
2
2 . For k ∈ K\K1, by (2.9) and Lemma 3.3, we get

f(xk+1) ≤ (1− 2σ2α
2
k + ηk)f(xk) ≤ (1− σ2C

2
2 )f(xk). (3.13)

Let r1 = max{
√

1− σ2C2
2 , ρ0}, then r1 < 1. By Lemma 2.2 and (3.12)-(3.13), we know that

for at least ⌈k/2⌉ many i ≤ k such that

∥Fi∥ ≤ r1∥Fi−1∥. (3.14)

Denote by Ik the set of index i ≤ k which satisfies (3.14). By recurrence, (3.14) and the line
search (2.9), we obtain that

∥Fk+1∥ ≤
√ ∏

i∈{1,2,··· ,k}

(1 + ηi) r

∑
i∈Ik

1 ∥F0∥ ≤ r
k/2−1
1

√
eη∥F0∥,

where the last inequality uses (2.15). Therefore, ∥Fk+1∥ ≤
√
eη∥F0∥
r1r

rk+1 with r =
√
r1 < 1.

This and (3.7) yield (3.11) with some positive constant m5. □
Moreover, it follows from (3.11) that

∞∑
k=0

∥xk − x∗∥ <∞. (3.15)

(3.15) and (3.9) show that the following Dennis-Moŕe condition holds.

Lemma 3.5 (Theorem 3.2 in [1]). Let Assumption 3.1 hold. Then we have

lim
k→∞

∥
(
Bk −∇2f(x∗)

)
sk∥

∥sk∥
= 0. (3.16)

Moreover, the sequences {Bk} and {B−1
k } are uniformly bounded.

The following result shows that the unit stepsize will be always accepted finally.

Lemma 3.6. Let Assumption 3.1 hold. Then for all sufficiently large k, we have αk = 1.
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Proof. From (2.5) and Lemma 3.5, there exist two constants M7 and M8 such that

∥dk∥ = ∥ −B−1
k gk∥ ≤M7∥gk∥ ≤M7(∥∇f(xk)∥+ ∥gk −∇f(xk)∥) ≤M8∥Fk∥. (3.17)

This together with (3.6) and (3.16) means

∇2f(x∗)(xk + dk − x∗)

= ∇2f(x∗)(xk − x∗) +∇2f(x∗)dk

= ∇2f(x∗)(xk − x∗) +Bkdk +
(
∇2f(x∗)−Bk

)
dk

= ∇2f(x∗)(xk − x∗)− (∇f(xk)−∇f(x∗)) + (∇f(xk)− gk) +
(
∇2f(x∗)−Bk

)
dk

= o(∥xk − x∗∥) + (∇f(xk)− gk) + o(∥dk∥).

From the above equality, (2.5), (3.17) and (3.7), we know

∥∇2f(x∗)(xk + dk − x∗)∥ = o(∥xk − x∗∥) + o(∥Fk∥) = o(∥xk − x∗∥).

Since ∇2f(x∗) is symmetric positive definite, hence the above equality yields

lim
k→∞

∥xk + dk − x∗∥
∥xk − x∗∥

= 0. (3.18)

Moreover, by (2.18) and (3.7), we obtain

∥F (xk + dk)∥ = ∥F (xk + dk)− F (x∗)∥
≤ L1∥xk + dk − x∗∥

=
L1

m3

∥xk + dk − x∗∥
∥xk − x∗∥

m3∥xk − x∗∥

≤ L1

m3

∥xk + dk − x∗∥
∥xk − x∗∥

∥F (xk)∥,

which together with (3.18) implies that (2.10) holds for sufficiently large k, that is, αk = 1
for sufficiently large k. □

Lemmas 3.6 and 3.5 imply the superlinear convergence of Algorithm 2.1.

Theorem 3.7 ([11, Theorem 5.4.6]). Let Assumption 3.1 hold. Then the sequence {xk} be
generated by Algorithm 2.1 converges superlinearly, that is, αk ≡ 1 for sufficiently large k
and

lim
k→∞

∥xk+1 − x∗∥
∥xk − x∗∥

= 0.

4 Numerical Experiments

In this section, we first compared the performance of the GN-BFGS method in [6], the
cautious BFGS method (CBFGS) proposed by Li and Fukushima in [7] and Algorithm 2.1
for general nonlinear equations (1.1). Then we tested the efficiency of the CBFGS method
and Algorithm 2.1 on some nonlinear least squares problems (2.28). The codes were written
in Matlab 7.4.

• In the GN-BFGS method, we set the same parameters as those of [6], that is, B0 = I,
r = 0.1, ρ =

√
0.9, σ1 = σ2 = 10−5, λ−1 = 0.01 and ϵk = k−2.
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Figure 1: Performance profiles with respect to the number of iterations.

• In Algorithm 2.1, we set parameters B0 = I, r = 0.1, ρ0 =
√
0.9, σ1 = σ2 = 10−5,

α−1 = 0.01, ηk = k−2 and µ = 10−6.
• In the CBFGS method [7], we approximately compute ∇f(xk) by the classical standard

finite difference
( f(xk+he1)−f(xk)

h , . . . , f(xk+hen)−f(xk)
h

)T
with h = 10−15 and h = 10−12 for

the nonlinear equations and the nonlinear least squares problems, respectively. We adopted
the standard Armijo line search to compute the stepsize αk. We set parameters B0 = I,
ρ = 0.1, σ = 0.1, α = 1 and ϵ = 10−6.

(i)When we tested general nonlinear equations (1.1), we stopped the iteration if the total
number of iterations exceeds 200 or ∥Fk∥ ≤ 10−5. The test problems were created by the
following three matrices A1, A2, A3 ∈ Rn×n and two functions H : Rn → Rn, W : Rn → Rn,
where H(x) = (ex1 −1, ex2 −1, · · · , exn −1)T , W (x) = (sin x1−1, sinx2−1, · · · , sinxn−1)T

and

A1 =



2 −1
−1 2 −1

. . .
. . .

. . .

. . .
. . . −1
−1 2


, A2 =



2 −1
1 2 −1

. . .
. . .

. . .

. . .
. . . −1
1 2


, A3 =



2 −1
0 2 −1

. . .
. . .

. . .

. . .
. . . −1
0 2


,

Then we construct six functions F (x) in the system (1.1) as follows:

Problem1. F (x) = A1x+H(x); Problem2. F (x) = A1x+W (x);

Problem3. F (x) = A2x+H(x); Problem4. F (x) = A2x+W (x);

Problem5. F (x) = A3x+H(x); Problem6. F (x) = A3x+W (x).

It is clear that Problems 1-2 are symmetric and Problems 3-6 are nonsymmetric.
Table 1 lists the numerical results of the three methods on the six problems with different

initial points and different n values. In Table 1, ”P”, ”Initial” and ”Time” stand for the test
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Table 1: Test results for the three methods on nonlinear equations.
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Table 1 continued.
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Table 2: Test results of Algorithm 2.1 and the CBFGS method on some nonlinear least
squares problems.

problem, the initial point and the CPU time in seconds, respectively; ”Iter” and ∥Fk∥ are the
total number of iterations and the norm of Fk at the last iteration; and x0 = (0.1, · · · , 0.1)T ,
x̄0 = (0.01, · · · , 0.01)T , x̂0 = (1, 1/2, · · · , 1/n)T .

From Table 1, for the symmetric Problems 1-2, the GN-BFGS method is the best. How-
ever, for nonsymmetric Problems 3-6, Algorithm 2.1 and CBFGS method are more efficient
than the GN-BFGS method. Especially, we note that the GN-BFGS method failed to
solve Problems 3-4. In our numerical experiments, we observed that Algorithm 2.1 and
the CBFGS method need more CPU time for many problems. This is due to the fact
that the approximation of gk requires n F -evaluations, while in the GN-BFGS method such
approximation is obtained performing just one F -evaluation.

In order to show the performance of the three methods clearly, we plotted Figure 1
according to the data in Table 1 by using the performance profiles of Dolan and Moré [4].
From Table 1 and Figure 1, we can see that Algorithm 2.1 is the most efficient among the
three methods since its performance curves corresponding to the number of iterations is top
in the figure.

(ii) When we tested nonlinear least squares problems (2.28), we stopped the iteration if
∥∇f(xk)∥ ≤ 10−4 or the total number of iterations exceeds 500. The test problems come
from [10]. Table 2 lists the numerical results of Algorithm 2.1 and the CBFGS method with
∇f(xk) approximated by the standard finite difference approach. The second column of
Table 2 means that the initial point is x0, 10x0, 100x0, where x0 is suggested by Moré et
al. in [10]. From Table 2, we see that both methods performed well. For some problems
such as ”Bard”, the CBFGS method is better. One possible reason is that Algorithm 2.1
may not converge superlinearly since gk is no longer a good approximation of ∇f(xk) in
the nonzero residual case (otherwise, αk = 1 and ∥F (xk)∥ → ∥F (x∗)∥ ̸= 0, which implies
that αk−1∥F (xk)∥2 can not converges to 0). On the other hand, for the problem ”Trig”
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with m = n = 100, we see that Algorithm 2.1 performs better than the CBFGS method.
This shows that Algorithm 2.1 converges globally. However, the CBFGS method with such
standard finite difference approximation does not converge for this problem.

5 Conclusions

In this paper, we proposed a globally and superlinearly convergent BFGS method for general
nonlinear equations without using exact gradient and Jacobian. This extended the GN-
BFGS method proposed by Li and Fukushima [6]. Some numerical results compared with
the GN-BFGS method and the CBFGS method are also reported.
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