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lower bounds that converge to the global optimum of the problem. In [30], Nie gave the
explicit constructions of lifted LMI representations for the set defined by PMIs. Henrion
and Lasserre [15] constructed a hierarchy of inner approximations of feasible sets defined by
parametrized or uncertain PMIs, which are essential for controller design purposes because
they correspond to sufficient conditions and guarantee stability or robust stability [12, 21].

In recent years, the polynomial complementarity problem (PCP) has received much
attention. Given two polynomial maps F,G : Rn → Rn, the polynomial complementarity
problem (PCP(F,G)) is the nonlinear complementarity problem of finding a vector x ∈ Rn

such that

F (x) ≥ 0, G(x) ≥ 0, and 〈F (x), G(x)〉 = 0, (1.1)

where 〈·, ·〉 denotes the standard inner product in real Euclidean space. The PCP(F,G)
includes the tensor complementarity problem (TCP) as a special case if F (x) = x and
G(x) = f(x) + q with a given homogeneous polynomial map f(x) : Rn → Rn and a vector
q ∈ Rn. TCP has wide applications in n-person noncooperative game[17], hypergraph
clustering problem[18] and so on. Interested readers are referred to [2, 3, 18, 39] for theories
and methods of TCP. Obviously, all methods for the nonlinear complementarity problem
(NCP) can be applied to solve the PCP. One may expect specialized methods and results
that make use of the polynomial nature of the problem [10, 27, 40].

Inspired by the wide applications of PMI optimization problems and the PCP, in this
paper, we introduce the polynomial semidefinite complementarity problem (PSDCP), which
is to find a vector x ∈ Rn, such that

Q1(x) � 0, Q2(x) � 0, and 〈Q1(x), Q2(x)〉 = 0, (1.2)

where Qi(x) represents the given m × m polynomial matrices, with each entry being a
polynomial in x; Qi(x) � 0 means that Qi(x) is symmetric positive semidefinite (i = 1, 2);
〈A,B〉 := trace(AB) denotes the standard inner product in real symmetric matrix space.
Clearly, when Q1(x) and Q2(x) are diagonal, the problem (1.2) is reduced to the PCP (1.1).
When one of the two matrix is zero, (1.2) becomes the PMI problem. Hence the PSDCP
includes both the PCP and PMI problem as special cases. They have wide applications in
control systems, noncooperative game, hypergraph clustering problem and so on.

Indeed, the constraint Qi(x) � 0 defines a semi-algebraic set that can be described ex-
plicitly in terms of finite scalar polynomial inequalities such as the principal minors of Qi(x).
Thus Lasserre’s semidefinite relaxation method for the scalar polynomial optimization prob-
lem [25] can be used to solve (1.2). By increasing the relaxation orders, Lasserre’s approach
results in a sequence of lower bounds of the global optimum, and the asymptotic conver-
gence can be obtained under the Archimedean condition. However, note that Qi(x) may
have exponentially many principal minors with high degrees, so the method may encounter
numerical difficulties. The representation directly on Qi(x) is preferable. In [14], Henrion
and Lasserre gave matrix-type relaxations to solve nonconvex PMI optimization problems.

Contributions. This paper proposes a matrix-type semidefinite relaxation method
for computing all real solutions of the PSDCP (1.2) if there are finitely many ones. We
formulate (1.2) as polynomial optimization with scalar polynomial and PMI constraints.
Especially, we replace the complementarity condition 〈Q1(x), Q2(x)〉 = 0 with equivalent
m2 algebraic equations. By doing this, tighter relaxation problems can be obtained when
applying Lasserre’s relaxation method. The solutions can be computed in order by choosing a
random sum of squares polynomial objective. Each of them can be computed by a sequence
of semidefinite relaxations. Under suitable assumptions, we prove that such sequence of
semidefinite relaxations has asymptotic convergence and finite convergence.
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The paper is organized as follows. In section 2, we review the basics of polynomial
optimization. In section 3, we study properties of the PSDCP and reformulate it as a
polynomial optimization problem with scalar polynomial and PMI constraints. A hierarchy
of semidefinite relaxations is constructed to compute all real solutions of the PSDCP if there
are finitely many ones. Convergence properties of the proposed algorithm are also studied.
In section 4, some numerical experiments are presented. Finally, we conclude the paper in
section 5.

Notation. The symbol R (resp., N) denotes the set of real numbers (resp., nonneg-
ative integers). Rn (resp., Nn) denotes the set of all real (resp., nonnegative integers) n-
dimensional vectors. For integer n > 0, [n] denotes the set {1, . . . , n}. For x := (x1, . . . , xn)
and α := (α1, . . . , αn), denote the monomial power xα := xα1

1 · · ·xαn
n . The symbols [x] and

[x]d denote the following vectors of monomials, respectively,

[x] := [1, x1, . . . , xn, x
2
1, x1x2, . . . , x

d
1, x

d−1
1 x2, . . . , x

d
n, . . .]

T

and
[x]d := [1, x1, . . . , xn, x

2
1, x1x2, . . . , x

d
1, x

d−1
1 x2, . . . , x

d
n]

T .

We denote s(d) :=
(
n+d
d

)
, which is the length of [x]d. The symbol R[x] = R[x1, . . . , xn]

denotes the ring of polynomials in x := (x1, . . . , xn) over the real field. The symbol deg(p)
denotes the degree of a polynomial p ∈ R[x]. R[x]k denotes the set of polynomials in R[x]
with a degree of at most k. Its dimension is s(k). R[x]m denotes the set of m-dimensional
real polynomial vectors. S[x]m denotes the set of m×m real symmetric polynomial matrices
in x. For a polynomial matrix Q(x) ∈ S[x]m, deg(Q(x)) denotes the maximal degree of all
its polynomial entries. S[x]mk (resp. R[x]mk ) denotes the set of polynomial matrices (resp.
vectors) in S[x]m (resp. R[x]m) with a degree of at most k. For two polynomial matrices,
A(x), B(x) ∈ S[x]m, 〈A(x), B(x)〉 := trace(A(x)B(x)) denotes the inner product of A(x)
and B(x). Especially, we denote by Sm := S[x]m0 the set of all m × m real symmetric
matrices. For a symmetric matrix X ∈ Sm, X � 0 means X is positive semidefinite. The
set of all positive semidefinite matrix in Sm is denoted as Sm+ . For k ∈ R, dke denotes the
smallest integer not smaller than k. Throughout this paper, we use the words “generic”
and “generically” as conditions on the input data for some property to hold, and they shall
mean for all but a set of Lebesgue measure zero in the space of data.

2 Preliminaries

2.1 Polynomial optimization

In this section, we review some basics in polynomial optimization. A polynomial p ∈ R[x]
is said to be sum-of-squares if p = σ2

1 + · · · + σ2
t for some σ1, . . . , σt ∈ R[x]. The set of

all sum-of-squares polynomials in x is denoted as Σ[x]. The k-th truncation of Σ[x] is
Σ[x]k = Σ[x] ∩ R[x]k. A polynomial matrix R(x) ∈ S[x]m2k is said to be the sum-of-squares
if there exist polynomial vectors Lj(x) ∈ R[x]mk , such that

R(x) =
∑
j

Lj(x)Lj(x)
T .

Let Σ[x]m×m denote the set of all m×m sum-of-square polynomial matrices in x. The k-th
truncation of Σ[x]m×m is Σ[x]m×m

k = Σ[x]m×m ∩ S[x]mk .
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An ideal I in R[x] is a subset of R[x] such that I · R[x] ⊆ I and I + I ⊆ I. Given
h1, . . . , hm, g1, . . . , gt ∈ R[x], the ideal generated by h = (h1, . . . , hm) is

I(h) = h1 · R[x] + · · ·+ hm · R[x],

and the quadratic module of g = (g1, . . . , gt) is

Q(g) = Σ[x] + g1 · Σ[x] + · · ·+ gt · Σ[x].

The k-th truncation of I(h) is the set

Ik(h) = h1 · R[x]k−deg(h1) + · · ·+ hm · R[x]k−deg(hm), (2.1)

and the k-th truncation of Q(g) is

Qk(g) = Σ[x]2k + g1 · Σ[x]2k−deg(g1) + · · ·+ gt · Σ[x]2k−deg(gt). (2.2)

Given G(x) ∈ S[x]m, we define the quadratic module of G(x) as

Q(G) := Σ[x] + {〈R,G〉 : R ∈ Σ[x]m×m} = Σ[x] + 〈Σ[x]m×m, G〉,

and its k-th order truncation as

Qk(G) := Σ[x]2k + {〈R,G〉 : R ∈ Σ[x]m×m, deg (R(i,j)G(i,j)) ≤ 2k, ∀i, j ∈ [m]}.

For G(1)(x), . . . , G(s)(x) ∈ S[x]m and Ḡ(x) = (G(1)(x), G(2)(x), . . . , G(s)(x)), the quadratic
module of Ḡ(x) is defined as

Q(Ḡ) := Σ[x] + 〈Σ[x]m×m, G(1)〉+ 〈Σ[x]m×m, G(2)〉+ · · ·+ 〈Σ[x]m×m, G(s)〉,

and its k-th order truncation is the set

Qk(Ḡ) := Σ[x]2k + 〈R(1), G(1)〉+ 〈R(2), G(2)〉+ · · ·+ 〈R(s), G(s)〉,

where R(r) ∈ Σ[x]m×m, deg (R
(r)
(i,j)G

(r)
(i,j)) ≤ 2k, ∀i, j ∈ [m], r ∈ [s].

2.2 Moment and localizing matrices

For α = (α1, . . . , αn) ∈ Nn, denote |α| = α1 + · · ·+ αn. Let

Nn
d = {α ∈ Nn : |α| ≤ d}.

Let RNn
d be the space of real vectors indexed by α ∈ Nn

d . A vector in RNn
d is called a truncated

moment sequence (tms) of degree d. For y ∈ RNn
d , we define a Riesz functional, Fy, acting

on R[x]d as

Fy(q) :=
∑
α∈Nn

d

qαyα, for all q(x) =
∑
α∈Nn

d

qαx
α,

where each qα is a coefficient of the polynomial q. For convenience, we also denote 〈q, y〉 :=
Fy(q). We say that y admits a representing measure supported on a set T if there exists a
Borel measure, µ, such that its support supp(µ) is contained in T and

yα =

∫
T

xαdµ, ∀α ∈ Nn
d .
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For a polynomial g(x) ∈ R[x]2k and a tms y ∈ RNn
2k , denote dg = ddeg(g)/2e. Define

[L(k)
g (y)]α,β = Fy([g(x)[x]k−dg

[x]Tk−dg
]α,β) =

∑
γ∈Nn

gγyα+β+γ , ∀α, β ∈ Nn
k−dg

.

We call L
(k)
g (y) the k-th order localizing matrix of g(x), generated by a tms y ∈ RNn

2k . We
also define 〈·, ·〉gy : R[x]k−dg × R[x]k−dg 7→ R by

〈p, q〉gy = Fy(gpq) = 〈vec(p), L(k)
g (y)vec(q)〉, ∀p, q ∈ R[x]k−dg

.

In the above, vec(p) denotes the coefficient vector of the polynomial p. When g = 1 (the

constant one polynomial), L
(k)
g (y) becomes a k-th order moment matrix and is denoted as

Mk(y) := L
(k)
1 (y).

For convenience, we also denote

L(k)
g (y) := diag

(
L(k)
g1 (y), . . . , L(k)

gm(y)
)

(2.3)

for a tuple of polynomials g = (g1, . . . , gm).

For a polynomial matrix G(x) ∈ S[x]m, we write

G(x) =
∑
γ∈Nn

Gγx
γ

for some finite family of {Gγ} ⊂ Sm. Recall that s(k) :=
(
n+k
k

)
is the dimension of the space

R[x]k. We define an (m-block) s(k)-vector Gy by

(Gy)α =
∑
γ∈Nn

Gγyα+γ , ∀α ∈ Nn
k ,

which is an m × m matrix. Then the localizing matrix of the polynomial matrix G(x),
generated by y ∈ RNn

2k , has the block structure {(Gy)α+β}α,β with ∀α, β ∈ Nn
d , where

d := k − ddeg (G)/2e. We denote the k-th localizing matrix of the polynomial matrix G(x)

as L
(k)
G (y). Its entry has the representation

[L
(k)
G (y)]α,β = Fy([[x]d[x]

T
d ⊗G(x)]α,β), ∀α, β ∈ Nn

d ,

where ⊗ stands for the Kronecker product.

For simplicity, we write the k-th order moment matrix and localizing matrix associated
with q(x) ∈ R[x] and G(x) ∈ S[x]m as

Mk(y) = Fy([x]k[x]
T
k ), (2.4)

Lk
q (y) = Fy(q(x)[x]d1 [x]

T
d1
), (2.5)

Lk
G(y) = Fy([x]d2

[x]Td2
⊗G(x)), (2.6)

where d1 := k − ddeg (q)/2e, d2 := k − ddeg (G)/2e, and Fy is applied entrywise to the
polynomial matrices.
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Example 2.1. Let G(x) =

[
1− 4x1x2 x1

x1 4− x2
1 − x2

2

]
. The second-order moment matrix is

M2(y) = Fy([x]2[x]
T
2 ) =


y00 y10 y01 y20 y11 y02
y10 y20 y11 y30 y21 y12
y01 y11 y02 y21 y12 y03
y20 y30 y21 y40 y31 y22
y11 y21 y12 y31 y22 y13
y02 y12 y03 y22 y13 y04

 .

The second-order localizing matrix of G, generated by y, is

L
(2)
G = Fy([x]1[x]

T
1 ⊗G(x)) :=

L00 L10 L01

L10 L20 L11

L01 L11 L02

 ,

where

L00 =

[
y00 − 4y11 y10

y10 4y00 − y20 − y02

]
, L10 =

[
y10 − 4y21 y20

y20 4y10 − y30 − y12

]
,

L01 =

[
y01 − 4y12 y11

y11 4y01 − y21 − y03

]
, L20 =

[
y20 − 4y31 y30

y30 4y20 − y40 − y22

]
,

L11 =

[
y11 − 4y22 y21

y21 4y11 − y31 − y13

]
, L02 =

[
y02 − 4y13 y12

y12 4y02 − y22 − y04

]
.

In fact, for such G(x) with n = 2 and k = 2, the 2-block 6-vector Gy is given by

Gy =
[
L00 L10 L01 L20 L11 L02

]T
,

and for α = (0, 0)T , β = (1, 0)T ∈ N2
1, we have (Gy)α+β = L10.

2.3 Flatness

It was shown in [6, 11] that a necessary condition for y ∈ RNn
2k to admit a representing

measure in the set

E(h) ∩ S(g) := {x ∈ Rn : h(x) = 0} ∩ {x ∈ Rn : g(x) ≥ 0}

is that
L
(k)
h (y) = 0, Mk(y) � 0, L(k)

g (y) � 0. (2.7)

However, it is typically not sufficient. Let d′ = max{1, ddeg(h)/2e, ddeg(g)/2e}. If y also
satisfies the rank condition

rank Mk−d′(y) = rank Mk(y), (2.8)

then y admits a unique finitely atomic measure on E(h)∩S(g) (cf. [6]). We call y flat with
respect to h = 0 and g ≥ 0 if both (2.7) and (2.8) are satisfied.

We say y ∈ RNn
2k is flat with respect to G(x) � 0 if it satisfies not only the semidefinite

constraints
Mk(y) � 0, L

(k)
G (y) � 0, (2.9)
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but also the rank condition

rankMk−dG
(y) = rankMk(y), (2.10)

where dG = max {1, ddeg (G)/2e}.
According to Nie [34, Proposition 2.1], if y ∈ RNn

2k is flat with respect to polynomial
matrix inequality G(x) � 0, then y admits a unique r-atomic measure on the semi-algebraic
set

T (G) := {x ∈ Rn : G(x) � 0},

with r = rankMk(y).

Based on the above, we say that tms y ∈ RNn
2k is flat with respect to h = 0, g ≥ 0 and

G(x) � 0 if it satisfies

L
(k)
h (y) = 0, Mk(y) � 0, L(k)

g (y) � 0, L
(k)
G (y) � 0 (2.11)

and the rank condition

rankMk−d̄(y) = rankMk(y), (2.12)

where d̄ = max {1, ddeg (h)/2e, ddeg (g)/2e, ddeg (G)/2e}. In such case, y admits a unique
r-atomic measure, µ∗, on E(h) ∩ S(g) ∩ T (G), with r = rankMk(y).

For y ∈ RNn
d and t ≤ d, denote the truncation of y as

y|t = (yα)α∈Nn
t
.

For two tms y ∈ RNn
k and z ∈ RNn

l with k < l, we say that y is a truncation of z (equivalently,
z is an extension of y), if y = z|k. For such a case, y is called a flat truncation of z if y is
flat, and z is a flat extension of y if z is flat.

3 Solving the PSDCP

In this section, we study how to find all real solutions of the PSDCP, if there are a finite
number of them. We formulate it as a sequence of polynomial optimization problems and
compute the solutions in order. A matrix-type semidefinite relaxation method is proposed.

3.1 Reformulation as polynomial optimization

Recall that x ∈ Rn is a solution of the PSDCP if and only if

Q1(x) � 0, Q2(x) � 0 and 〈Q1(x), Q2(x)〉 = 0, (3.1)

where Q1(x), Q2(x) ∈ S[x]m. Denote the set of all real solutions to (3.1) by

S(Q1, Q2) = {x ∈ Rn : Q1(x), Q2(x) ∈ Sm+ , trace(Q1(x)Q2(x)) = 0}. (3.2)

The following lemma gives an equivalent condition for the orthogonality of two positive
semidefinite matrices.

Lemma 3.1. Let A,B be two m × m symmetric positive semidefinite matrices. Then,
trace(AB) = 0 if and only if AB = 0.
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Proof. Obviously, AB = 0 implies trace(AB) = 0. Next, we prove that the converse also
holds true.

Since A ∈ Sm+ , there exists an orthogonal matrix P ∈ Rm×m such that A = PΣPT , where
Σ = diag(λ1, . . . , λr, 0, . . . , 0) with r = rank(A) and λi > 0(i = 1, . . . , r). Let C = PTBP .
Then, C ∈ Sm+ due to B ∈ Sm+ . Note that

AB = PΣPTB = PΣCPT . (3.3)

We have
trace(ΣC) = trace(AB) = 0. (3.4)

Write C =

[
C1 C2

CT
2 C3

]
, where C1 ∈ Sr. Then,

ΣC =

[
Σ1C1 Σ1C2

0 0

]
.

So, by (3.4),
trace(Σ1C1) = 0. (3.5)

Since C ∈ Sm+ , we have cii ≥ 0(i = 1, . . . , r). This, together with (3.5) and λi > 0(i =
1, . . . , r), gives cii = 0. Hence, C1 = 0, which further implies that C2 = 0. So ΣC = 0. It
then follows from (3.3) that AB = 0. The proof is completed.

By Lemma 3.1, (3.2) can be written equivalently as

S(Q1, Q2) = {x ∈ Rn : Q1(x), Q2(x) ∈ Sm+ , Q1(x)Q2(x) = 0}. (3.6)

Let H(x) = Q1(x)Q2(x). Denote the polynomial tuple

h(x) := (H11(x), . . . , H1m(x),H21(x), · · · ,Hmm(x)) (3.7)

and the set
VR(h) = {x ∈ Rn : h(x) = 0}. (3.8)

Then, (3.2) can be written as

S(Q1, Q2) = {x ∈ Rn : Q1(x), Q2(x) ∈ Sm+} ∩ VR(h). (3.9)

Let
d = max{1, deg(h), deg(Q1(x)), deg(Q2(x))} (3.10)

and f ∈ Σ[x]2k0 be a generic sum-of-squares polynomial with k0 = dd/2e. Consider the
optimization problem 

min f(x)
s.t. h(x) = 0,

Q1(x) � 0,
Q2(x) � 0.

(3.11)

Clearly, x ∈ S(Q1, Q2) if and only if x is feasible for (3.11). Note that we consider (3.11)
instead of the optimization problem

min f(x)
s.t. trace(Q1(x)Q2(x)) = 0,

Q1(x) � 0,
Q2(x) � 0.

(3.12)

This is because (3.11) has more equations than (3.12) and tighter relaxation problems can
be obtained when using Lasserre’s relaxation method.
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3.2 Compute all solutions of the PSDCP

Suppose S(Q1, Q2) is nonempty and finite. f(x) achieves different values at different x ∈
S(Q1, Q2) when it is randomly chosen in Σ[x]2k0

, where k0 = dd/2e with d given in (3.10).
We order them monotonically as

f1 < f2 < · · · < fN .

Let

Si = S(Q1, Q2) ∩ {x ∈ Rn : f(x) = fi} (3.13)

= {x ∈ Rn : Q1(x) � 0, Q2(x) � 0, h(x) = 0, f(x) = fi}, i = 1, · · · , N.

Then,
S(Q1, Q2) = S1 ∪ S2 ∪ · · · ∪ SN .

3.2.1 The first set S1

Note that S1 is the set of optimal solutions of the polynomial optimization problem:
f1 := min f(x)

s.t. h(x) = 0,
Q1(x) � 0,
Q2(x) � 0.

(3.14)

The feasible set of problem (3.14) is a semi-algebraic set and can be represented by a
finite number of scalar polynomial inequalities. Denote the principal minors of Q1(x) and
Q2(x) as (gI1(x)) and (gI2(x)) with all I1, I2 ⊆ [m], respectively. Then, the constraints
{Q1(x) � 0, Q2(x) � 0} can be described explicitly by finite scalar polynomial inequalities
{gIj (x) ≥ 0, ∀Ij ⊆ [m], j = 1, 2}. So, one might consider to apply Lasserre’s semidefinite
relaxation method for the case of the scalar-type polynomial optimization problem to solve
problem (3.14), and the k-th order scalar-type semidefinite relaxation of (3.14) is

r̃k1 := min 〈f, y〉
s.t. 〈1, y〉 = 1,

Mk(y) � 0,

L
(k)
h (y) = 0,

L
(k)
gIj

(y) � 0, ∀Ij ⊆ [m], j = 1, 2,

y ∈ RNn
2k ,

(3.15)

whereMk(y), L
(k)
h (y), L

(k)
gIj

(y) are the moment matrix and localizing matrices defined by (2.4)

and (2.5), respectively. However, a general m×m polynomial matrix Q(x) has exponentially
many 2m−1 principal minors typical in this scalar-type representation, and they have much
higher degrees. This is a big disadvantage for using them in practice.

Based on the above observation, we apply matrix-type semidefinite relaxations to solve
(3.14) in this paper. For k = k0, k0 + 1, . . ., the k-th order semidefinite relaxation of (3.14)
is 

rk1 := min 〈f, y〉
s.t. 〈1, y〉 = 1,

Mk(y) � 0,

L
(k)
h (y) = 0,

L
(k)
Qj

(y) � 0, j = 1, 2,

y ∈ RNn
2k ,

(3.16)
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where Mk(y), L
(k)
h (y), L

(k)
Qj

(y) are the moment matrix and localizing matrices defined by

(2.4)–(2.6).

Lemma 3.2. For (3.14) and (3.16), we have rk1 ≤ f1 for all k.

Proof. Suppose x ∈ Rn is feasible for (3.14), and y = [x]2k. By the definition, we have

〈f, y〉 = Fy(f) = f(x), Mk(y) = [x]k[x]
T
k � 0, and L

(k)
hi

(y) = 0, i = 1, · · · ,m2.

In addition, L
(k)
Q1

(y) � 0 because L
(k)
Q1

(y) is the Kronecker product of Q1(x) � 0 and

Mk−dQ1
(y) � 0. So does L

(k)
Q2

(y) � 0. Hence y = [x]2k is feasible for the SDP problem

(3.16). Thus, the problem (3.16) is a relaxation of problem (3.14), and rk1 ≤ f1 for any
relaxation order k.

Consider the sum-of-square optimization problem{
λk
1 := max λ

s.t. f − λ ∈ I2k(h) +Qk(Q1, Q2),
(3.17)

where I2k(h) is the 2k-th truncation of the ideal generated by h(x), and Qk(Q1, Q2) is
the k-th truncation of the quadratic module generated by (Q1, Q2). We have the following
result.

Theorem 3.3. (3.16) and (3.17) are dual to each other.

Proof. Let 〈f, y〉 =
∑

α∈Nn fαyα,Mk(y) =
∑

α∈Nn Bαyα, L
(k)
hi

(y) =
∑

α∈Nn H
(i)
α yα, i =

1, . . . ,m2, L
(k)
Qj

(y) =
∑

α∈Nn C
(j)
α yα, j = 1, 2, where Bα,H

(i)
α , C

(j)
α are real symmetric. The

Lagrangian function of (3.16) is

L(y,X, Y, Z) =
∑
α∈Nn

fαyα − 〈X,Mk(y)〉 −
2∑

j=1

〈Yj , L
(k)
Qj

(y)〉 −
m2∑
i=1

〈Zi, L
(k)
hi

(y)〉,

where Y = (Y1, Y2) and Z = (Z1, . . . , Zm2). Thus,

g(X,Y, Z) = inf
y
L(y,X, Y, Z)

= inf
y

 ∑
α∈Nn

fαyα − 〈X,B0 +
∑
α ̸=0

Bαyα〉 −
2∑

j=1

〈Yj , C
(j)
0 +

∑
α ̸=0

C(j)
α yα〉

−
m2∑
i=1

〈Zi,H
(i)
0 +

∑
α ̸=0

H(i)
α yα〉


=f0 + 〈X,−B0〉+

2∑
j=1

〈Yj ,−C
(j)
0 〉+

m2∑
i=1

〈Zi,−H
(i)
0 〉 := λ,

and

fα = 〈X,Bα〉+
2∑

j=1

〈Yj , C
(j)
α 〉+

m2∑
i=1

〈Zi,H
(i)
α 〉, ∀α 6= 0. (3.18)
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Then, the dual problem of (3.16) is
max λ

s.t. f0 − λ = 〈X,B0〉+
∑2

j=1〈Yj , C
(j)
0 〉+

∑m2

i=1〈Zi,H
(i)
0 〉

fα = 〈X,Bα〉+
∑2

j=1〈Yj , C
(j)
α 〉+

∑m2

i=1〈Zi,H
(i)
α 〉, 0 6= |α| ≤ 2k,

X, Y1, Y2 � 0.

(3.19)

Suppose that (λ,X, Y, Z) is a feasible point of (3.19). Multiplying both sides of the equality
constraint in problem (3.19) by xα and adding them, we obtain

f(x)− λ = 〈X,
∑
α∈Nn

Bαx
α〉+

2∑
j=1

〈Yj ,
∑
α∈Nn

C(j)
α xα〉+

m2∑
i=1

〈Zi,
∑
α∈Nn

H(i)
α xα〉. (3.20)

According to the definitions of the moment matrix and localizing matrix associated with the
scalar polynomial and polynomial matrix given in (2.4)–(2.6), we let y = [x]2k and get

Mk(y) =
∑
α∈Nn

Bαyα = [x]k[x]
T
k , (3.21)

L
(k)
hi

(y) =
∑
α∈Nn

H(i)
α yα = [x]k−dhi

[x]Tk−dhi
hi(x), i = 1, 2, . . . ,m2, (3.22)

L
(k)
Qj

(y) =
∑
α∈Nn

C(j)
α yα = [x]k−dQj

[x]Tk−dQj
⊗Qj(x), j = 1, 2. (3.23)

SinceX,Y1, Y2 are positive semidefinite matrices, there exist vectors such that X =
∑

l q0lq
T
0l,

Y1 =
∑

s q1sq
T
1s, Y2 =

∑
r q2rq

T
2r. Combining (3.20)–(3.23), we have

f(x)− λ =
∑
l

〈q0l, [x]k〉2 +
∑
s

〈q1sqT1s, [x]k−dQ1
[x]Tk−dQ1

⊗Q1(x)〉

+
∑
r

〈q2rqT2r, [x]k−dQ2
[x]Tk−dQ2

⊗Q2(x)〉

+

m2∑
i=1

〈Zi, [x]k−dhi
[x]Tk−dhi

hi(x)〉,

where p0 =
∑

l〈q0l, [x]k〉2 ∈ Σ[x]2k, and

〈Zi, [x]k−dhi
[x]Tk−dhi

hi(x)〉 ∈ hi(x) · R[x]2k−deg (hi), i = 1, 2, · · · ,m2.

Let R1(x) =
∑

s L
(1)
s (x)L

(1)
s (x)T , where L

(1)
s (x) = L̂

(1)
s [x]k−dQ1

∈ R[x]m with L̂
(1)
s ∈

Rm×s(k−dQ1
). Arrange its column vectors in order to get the vector q1s ∈ Rm·s(k−dQ1

).
We can prove

〈R1, Q1〉 =
∑
s

〈L̂(1)
s [x]k−dQ1

[x]Tk−dQ1
L̂(1)T
s , Q1(x)〉

=
∑
s

〈[x]k−dQ1
[x]Tk−dQ1

⊗Q1(x), q1sq
T
1s〉.

Similarly, we have

〈R2, Q2〉 =
∑
r

〈[x]k−dQ2
[x]Tk−dQ2

⊗Q2(x), q2rq
T
2r〉.
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Thus, f(x) − λ ∈ I2k(h) + Qk(Q1, Q2). Based on the above analysis, we know (3.16) and
(3.17) are dual to each other. The proof is completed.

Remark 3.4. It follows from Theorem 3.3 that λk
1 ≤ rk1 for any relaxation order k by weak

duality. So both rk1 and λk
1 are lower bounds of f1. Moreover, the sequences {rk1} and {λk

1}
monotonically non-decrease as k increases, i.e.,

rk0
1 ≤ rk0+1

1 ≤ . . . ≤ f1,

and

λk0
1 ≤ λk0+1

1 ≤ . . . ≤ f1.

On the other hand, we randomly choose f(x) ∈ Σ[x]2k0
in practice. Generically, it holds

that f(x) ∈ int(Σ[x]2k0
). This means that λ = 0 is an interior point of (3.17). Hence, the

strong duality also holds if (3.16) is feasible, i.e., (3.16) has a minimizer and (3.16)–(3.17)
has the same optimum value rk1 = λk

1 , for all k ≥ k0 (cf. [1, Section 2.4]).

Further, by the results given in [19, 20, 23], we have the following asymptotic convergence
result.

Theorem 3.5. Suppose that the Archimedean condition holds for the feasible set of (3.14),
i.e., there exists a polynomial p ∈ I(h)+Q(Q1, Q2) such that the level set {x ∈ Rn : p(x) ≥ 0}
is compact. Then, lim

k→∞
rk1 = f1 and lim

k→∞
λk
1 = f1.

Proof. By Lemma 3.2 and Theorem 3.3, we have λk
1 ≤ rk1 ≤ f1 for any relaxation order

k. Under the assumption, Hol and Scherer [19, 20] and Kojima [23] have proved that
lim
k→∞

λk
1 = f1. From what precedes, the result follows.

Remark 3.6. The assumption of Theorem 3.5 is not very restrictive. For instance, suppose
that there exist a global minimizer contained in the ball {x ∈ Rn : ρ − ‖x‖2 ≥ 0}, where
ρ > 0 is a priori bound. Then, we can add ρ − ‖x‖2 ≥ 0 to the constraints so that the
Archimedean condition holds for such feasibility set.

3.2.2 The second and other sets Sj

Suppose that ft and St are known. We investigate how to compute ft+1 and St+1, if they
exist. For a small ε > 0, we consider the optimization problem

f+
t = min f(x)

s.t. h(x) = 0,
Q1(x) � 0,
Q2(x) � 0,
f(x) ≥ ft + ε.

(3.24)

Clearly, ft+1 = f+
t if and only if

0 < ε < ft+1 − ft. (3.25)
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Let g(x) = f(x)− ft − ε. We construct the optimization problem

rkt+1 := min 〈f, y〉
s.t. 〈1, y〉 = 1,

Mk(y) � 0,

L
(k)
h (y) = 0,

L
(k)
g (y) � 0,

L
(k)
Q1

(y) � 0,

L
(k)
Q2

(y) � 0,

y ∈ RNn
2k

(3.26)

and a sum-of-squares problem{
λk
t+1 := max λ

s.t. f − λ ∈ I2k(h) +Qk(g,Q1, Q2),
(3.27)

where I2k(h) is the 2k-th truncation of the ideal generated by h(x), and Qk(g,Q1, Q2) is
the k-th truncation of the quadratic module of (g,Q1, Q2)

Qk(g,Q1, Q2) = Σ[x]2k + g · Σ[x]2k−deg (g) +Qk(Q1, Q2).

Similarly to Lemma 3.2 and Theorem 3.3, we have the following result.

Lemma 3.7. For (3.26) and (3.27), we have rkt+1 ≤ f+
t for all k. Moreover, (3.26) and

(3.27) are dual to each other.

Next, we discuss how to determine the value of ε that satisfies 0 < ε < ft+1 − ft.
Note that we typically do not know whether or not ft+1 exists in practice. Consider the
optimization problem 

f−
t = max f(x)

s.t. h(x) = 0,
Q1(x) � 0,
Q2(x) � 0,
f(x) ≤ ft + ε.

(3.28)

Its optimal value, f−
t , can be computed by semidefinite relaxations similar to (3.26) and

(3.16).

Lemma 3.8. Suppose that S(Q1, Q2) is nonempty and finite. Let ft be the value of f(x)
on the set St. For t = 1, 2, . . . , N − 1 and ε > 0, we have

1. If ft+1 exists, then f−
t = ft if and only if ε satisfies (3.25).

2. If f−
t = ft for some ε > 0, and (3.24) is infeasible, then ft+1 does not exist; that is,

ft is the maximum value on S(Q1, Q2).

3. If ft is the maximum value of f(x) on S(Q1, Q2), then f−
t = ft for any ε > 0.

Proof. (i) If ε satisfies (3.25), then ft+1 > ft+ ε. Because f−
t is the maximum feasible value

on S(Q1, Q2) less than or equal to ft + ε, the result is obvious. Conversely, if f−
t = ft, then

there are no feasible values in the interval (ft, ft + ε). So ft+1 > ft + ε if ft+1 exists.
(ii) By (i), f−

t = ft means ft+1 > ft+ε, if ft+1 exists. Since (3.24) is infeasible, there are
no feasible values larger than ft on S(Q1, Q2). Thus, ft is the maximum value on S(Q1, Q2).

(iii) If ft = fN is the maximum value on S(Q1, Q2), then for any x ∈ S(Q1, Q2), we have
f(x) ≤ ft. Hence, f

−
t = ft for any ε > 0.
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For numerical reasons, the value ε > 0 cannot be too small. A typical value like 0.05 is
preferable in computations. Let ε = 0.05 in (3.28). If f−

t > ft, we decrease ε by half and
solve (3.28) again. After repeating this process several times, we can obtain f−

t = ft.

3.2.3 An algorithm for computing all real solutions of PSDCP

Based on the above analysis, we propose a semidefinte relaxation algorithm to compute
all real solutions of the PSDCP, if there are finitely many ones. First, we solve (3.14) to
get S1, if S(Q1, Q2) is nonempty. After obtaining S1, we turn to solve (3.24). If (3.24) is
infeasible, then S1 = S(Q1, Q2) is the solution set of the PSDCP , and we stop. Otherwise,
we determine f2 and S2 by solving problem (3.24). Repeating this procedure, we can get
the solution set S(Q1, Q2) = S1 ∪ S2 ∪ · · · ∪ SN . The algorithm is presented as follows.

Algorithm 3.9 (Computing all real solutions of PSDCP).
Step 0. Let k0 = dd/2e with d given in (3.10). Choose a random polynomial f(x) ∈

Σ[x]2k0 . Set t := 0 and k := k0.
Step 1. If (3.16) is infeasible, then S(Q1, Q2) = ∅, and stop. Otherwise, solve (3.16) to

get an optimal solution y1,k and the optimal value r1,k.
Step 2. If the rank condition (2.12) is satisfied for some s ∈ [k0, k], i.e., it holds

that rankMs−k0
(y1,k) = rankMs(y

1,k), then set S(Q1, Q2) := S1, where S1 is the set of
minimizers of (3.14). Let F = {r1,k}, k := k0, t := t + 1, and go to Step 3. If such s does
not exist, let k := k + 1 and go to Step 1.

Step 3. Let ε = 0.05. Compute the optimal value f−
t of (3.28). If f−

t > ft, let ε = ε/2
and solve (3.28) again. Repeat this procedure until f−

t = ft.
Step 4. Solve (3.26). If it is infeasible, then the PSDCP has no more real solutions, and

stop. Otherwise, compute an optimal solution yt+1,k and the optimal value rt+1,k.
Step 5. If the rank condition (2.12) is satisfied for some s ∈ [k0, k], i.e., it holds that

rankMs−k0
(yt+1,k) = rankMs(y

t+1,k), then update S(Q1, Q2) := S(Q1, Q2) ∪ St+1, where
St+1 is the set of minimizers of (3.24). Set F := F ∪ {rt+1,k}, k := k0, t := t+ 1, and go to
Step 3. If such s does not exist, let k := k + 1 and go to Step 4.

Remark 3.10. Algorithm 3.9 can be implemented by the software GloptiPoly 3 [16],
which solves the generalized problem of moments. In Step 0, we choose F = [x]Tk0

RTR[x]k0 ,
where R is a random square matrix obeying Gaussian distribution. In Steps 1 and 4, the
semidefinite relaxation problems (3.16) and (3.26) are solved by the semidefinite program-
ming solvers YALMIP [28] and SeDuMi [38]. In Steps 2 and 5, we evaluate the rank of a matrix
as the number of its singular values that are not smaller than 10−6, which is a standard
procedure in numerical linear algebra (see [7, 9]). If the rank condition (2.12) is satisfied,
Henrion and Lasserre’s method [13] is used to extract the optimal solutions.

Now, we prove that Algorithm 3.9 converges in finitely many steps if the set VR(h) as in
(3.8) is finite.

Theorem 3.11. For t = 1, 2, . . . , N , let ft be the value of f(x) on the set St if it exists.
Then, we have the following properties:

(i) If the relaxation (3.16) (resp. (3.26)) is infeasible for some order k, then the feasible
set of (3.14) (resp. (3.24)) is empty.

(ii) If VR(h) as in (3.8) is a compact set and the feasible set of (3.14) (resp. (3.24)) is
empty, then for all k big enough, the relaxation (3.16) (resp. (3.26)) is infeasible.
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(iii) Suppose ft+1 exists and 0 < ε < ft+1 − ft. If VR(h) as in (3.8) is a finite set, then
for all k big enough, the rank condition (2.12) must be satisfied and

rkt+1 = λk
t+1 = ft+1.

Proof. (i) If the relaxation (3.16) (resp. (3.26)) is infeasible for some order k, then the
feasible set of (3.14) (resp. (3.24)) must be empty. This is because, if otherwise (3.14) (resp.
(3.24)) has a feasible point, say, u (resp. ũ), then the tms [u]2k (resp. [ũ]2k) generated by u
(resp. ũ) must be feasible for (3.26) (resp. (3.26)).

(ii) The ideal I(h) is archimedean because VR(h) is compact and −‖h‖2 ≥ 0 defines a
compact set in Rn. If the feasible set of (3.14) (resp. (3.24)) is empty, then −Q1(x) ⪯̸ 0 or
−Q2(x) ⪯̸ 0 for any x ∈ VR(h) (resp. for all x ∈ VR(h) ∩ {g(x) ≥ 0}). By Corollary 3.16 of
Klep and Schweighofer [22],

−1 ∈ I2k(h) +Qk(Q1, Q2) (resp. − 1 ∈ I2k(h) +Qk(g,Q1, Q2)),

Thus, for all k big enough, (3.17) (resp. (3.27)) is unbounded from above, which implies the
infeasibility of (3.16) (resp. (3.26)) by weak duality.

(iii) When the set VR(h) is finite, the Lasserre’s hierarchy (3.26)-(3.27) must have finite
convergence, and the rank condition (2.12) must be satisfied, when k is sufficiently large.
This can be implied by Theorem 1.1 of [33] and Proposition 4.6 of [26].

Remark 3.12. By item (ii) of Theorem 3.11, for any f , (3.16) (resp. (3.26)) is infeasible
for some k if VR(h) is a compact set and (3.14) (resp. (3.24)) is infeasible. This implies that
our algorithm can always obtain a certificate for the infeasibility of (3.14) (resp. (3.24)).

Remark 3.13. By item (iii) of Theorem 3.11, the Lasserre’s hierarchy must have fi-
nite convergence if VR(h) is finite. Note that for generic symmetric polynomial matrices
Q1(x), Q2(x) ∈ Sm, the tuple h as in (3.8) with m2 polynomials is also generic. Then, for
the n ≤ m2 case, VR(h) is a finite set. This can be implied by [29, Corollary A.2]. This
means that our algorithm converges in finite steps for generic Q1(x), Q2(x) ∈ Sm if n ≤ m2.

On the other hand, the asymptotic convergence of rkt+1 and λk
t+1 can also be established

even if VR(h) is not a finite set. When the feasible set of (3.24) is nonempty, if we add
ρ − ‖x‖2 ≥ 0 to the constraints, where ρ > 0 is a sufficiently large number, rkt+1 and λk

t+1

have asymptotic convergence to ft+1. This can be implied by the results given in [19, 20, 23]
and the fact that the feasible set is Archimedean. In fact, the finite convergence occurred
in all our numerical experiments.

4 Numerical experiments

In this section, we present some numerical experiments to solve the PSDCP by Algorithm
3.9. We used the softwares YALMIP [28], SeDuMi [38], and GloptiPoly 3 [16] to solve the
Lasserre’s hierarchy of matrix-type semidefinite relaxations. We also give the numerical
results for each example by the scalar-type method that uses the semidefinite relaxation
(3.15). The experiments were implemented on a laptop with an Intel Core i7-8550U CPU
(1.80 GHz) and 8 GB of RAM, using Matlab R2020a. We display 4 decimal digits for
numerical numbers.

Example 4.1. Consider the PSDCP (Q1, Q2) with

Q1(x) =

[
2x4

1 − x2
1x2 + 2x2

2 x3
1x2 − x1x

2
2 − 2

x3
1x2 − x1x

2
2 − 2 x2

1 − 4x2
1x2 + x2

2 + 1

]
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and

Q2(x) =

[
x1 + x2

2 x2 − x1

x2 − x1 x2
1 + x2

]
.

We solved it by Algorithm 3.9 with k0 = 3. It took about 2.74 seconds for Algorithm
3.9 to find two real solutions (−1.0000,−1.0000)T and (0.0000, 1.0000)T . We also solved it
by the scalar-type method with k0 = 4. It took 3.39 seconds to find all real solutions.

Example 4.2. Consider the PSDCP (Q1, Q2) with

Q1(x) =

[
1
2x

6
1 − 1

3x
2
1x2 + 2x2

2
2
3x

4
1x2 − 1

2x1x
2
2 − 2

2
3x

4
1x2 − 1

2x1x
2
2 − 2 2x2

1 − 1
4x

4
1x2 + x2

2 + 1

]
and

Q2(x) =

[
x1 + x2

2 x2 − 1
2x

2
1

x2 − 1
2x

2
1 x2

1 + x2

]
.

We solved it by Algorithm 3.9 with k0 = 4. It took about 1.36 seconds for Algorithm
3.9 to find the unique real solution (0.0000, 1.0000)T . We also solved it by the scalar-type
method with k0 = 6. It took 2.66 seconds to find the real solution.

Example 4.3. Consider the PSDCP (Q1, Q2) with

Q1(x) =

[
2− 2x4

1 − 4x2
1x

2
2 − 2x4

2 3− x3
1x2 − x1x

3
2

3− x3
1x2 − x1x

3
2 5− x4

1 − 4x2
1x

2
2 − x4

2

]
and

Q2(x) =

[
1− x4

1 − x4
2 x4

2 − x4
1

x4
2 − x4

1 1− x4
1 − x4

2

]
.

We applied Algorithm 3.9 with k0 = 4. It took about 0.58 seconds and stopped at Step 1,
because (3.16) is infeasible. This means that the problem has no real solutions. We also
solved it by the scalar-type method with k0 = 4. It took about 0.44 seconds and stopped at
Step 1 because (3.15) is infeasible.

Example 4.4. Consider the PSDCP (Q1, Q2) with

Q1(x) =

2x2 − x2
1 − 1 x1x2 − 1 x2 − 1

x1x2 − 1 2x1 − x2
2 1− x2

3

x2 − 1 1− x2
3 1− x2

3


and

Q2(x) =

x1 + x2x3 + 3 x1 − 1 x1 + 2x2 − 3
x1 − 1 x1x3 − x2

2x3 x2
1x2 + x2 − 2

x1 + 2x2 − 3 x2
1x2 + x2 − 2 x2

1 − 2x3

 .

We solved it by Algorithm 3.9 with k0 = 3. It took about 1.53 seconds for Algorithm
3.9 to find two real solutions (1.0000, 1.0000, 0.5000)T and (1.0000, 1.0000,−1.0000)T . We
also solved it by the scalar-type method with k0 = 4. It took 4.36 seconds to find all real
solutions.

Example 4.5. Consider the PSDCP (Q1, Q2) with

Q1(x) =


1− 4x1x2x3 x1 + x3 − 1 x1x2 − x3 + 1 4− x2

2x3

x1 + x3 − 1 4− x2
1x3 − x2

2 4x1 0
x1x2 − x3 + 1 4x1 + x2

1 x3 + x2
1 x1x2

4− x2
2x3 0 x1x2 5x1x2


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and

Q2(x) =


4x3 − x2

2 x1x2 x1x3 0
x1x2 x2

2 + x3 − 1 4x1x2 x1

x1x3 4x1x2 x1x3 + x1x2 x2
1

0 x1 x2
1 x2

1 + x2
2

 .

We solved it by Algorithm 3.9 with k0 = 3. It took 6.49 seconds for Algorithm 3.9 to find
two real solutions (0.0000, 2.0000, 1.0000)T and (0.0000,−2.0000, 1.0000)T . We also solved
it by the scalar-type method with k0 = 6. Unfortunately, it ran into numerical problems
and no real solutions are obtained.

Almost all of the numerical results show that the scalar-type method require exponen-
tially many principal minors typically in its representation and have much higher degrees.
This often costs much more time to solve the PSDCP compared with the matrix-type meth-
ods in practice. Especially when the size of the matrix is big (even for the case m = 4), the
scalar-type methods runs into numerical problems.

5 Conclusions

In this paper, we studied the polynomial semidefinite complementarity problem (PSDCP),
which has not only the scalar polynomial constraints but also the polynomial matrix inequal-
ity (PMI) constraints. We formulate it equivalently as a polynomial optimization problem,
where h(x) = 0 in (3.2) is used instead of trace(Q1(x)Q2(x)) = 0, so that tighter relax-
ation problems can be obtained when using Lasserre’s relaxation method. The solutions
of the problem can be computed sequentially, if there are finitely many ones. The formu-
lated polynomial optimizations are solved by Lasserre’s hierarchy of matrix-type semidefinite
relaxations.

Note that the optimization problems of the PSDCP are special cases of the following
polynomial optimization problem with PMI constraints:

min f(x)
s.t. hi(x) = 0, ∀i ∈ S1,

gj(x) ≥ 0, ∀j ∈ S2,
Qk(x) � 0, ∀k ∈ S3,

where f(x), hi(x), gj(x) are scalar polynomials, Qk(x) are symmetric polynomial matrices,
S1, S2, S3 are finite index set. Actually, the method proposed in this paper can be extended
to solve the above general problem and the related ones.
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