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Abstract: The iteratively reweighted ¢; ( IRL1) algorithm is commonly employed for addressing nonconvex
optimization problems mainly through solving a sequence of convex subproblems. In this paper, we propose
an enhanced IRL1 algorithm tailored for addressing structured optimization problems involving nonconvex
Lq,p regularization. The key to its acceleration lies in a simple yet effective feature screening strategy. The
proposed strategy involves a priori screening test capable of identifying potential inactive groups before
executing the subproblem solver and also incorporates an efficient posterior Karush-Kuhn-Tucker condition
check procedure to ensure an optimal solution even if some screened variables are mistakenly removed.
The priori screening procedure primarily exploits the dual subproblem information at current iteration.
Furthermore, we establish a theoretical proof that, within a finite number of IRL1 iterations, the screening
test correctly removes all inactive variables. Numerical experiments showcase the significant computational
advantages of our algorithm over several state-of-the-art algorithms.
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Introduction

In modern statistics and statistical machine learning [12, 16, 17, 33], many researchers are
interested in solving optimization problems that involve empirical risk minimization with an
appropriate penalty term, that is,

z* € argmin f(x) + AR(x), (1.1)
zER®

where f : R” — R U {400} is closed, convex function referring to the error or a data
fidelity term, while the regularization function R : R® — R U {400} is closed and possibly
nonconvex and nonsmooth. The parameter A > 0 controls the trade-off between data
fidelity and regularization. This general framework encompasses a variety of optimization
models depending on the choice of f and R, such as the least squares regression (with a
squared loss function) and logistic regression (with a logistic loss function). Regularization
is primarily employed to induce sparsity or low-rank structures in the solution, thereby
enhancing generalization performance in high-dimensional learning settings. Notably, the
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widely recognized Lasso (least absolute shrinkage and selection operator) method, introduced
by Tibshirani in a seminal paper [24], employs the ¢;-norm regularizer to remove irrelevant
features of the concerned model, leading to a more interpretable and parsimonious model.

Since the advent of Lasso, sparsity-promoting regularizers have been a central focus in
both the statistics and sparse optimization communities owing to their widespread appli-
cations [6, 4, 35]. Over the past decade, nonconvex sparsity-promoting regularizers have
attracted considerable attention, exhibiting superior performance compared to their convex
counterparts, such as the £1-norm regularizer. Noteworthy examples of nonconvex regular-
izers include the smoothly clipped absolute deviation (SCAD) [5], the log-sum penalty [4],
the Minimax Concave Penalty (MCP) [35] and the ¢, norm penalty with 0 < p < 1 [9, 8].
These regularizers offer improved flexibility and enhanced performance in various sparse
optimization scenarios.

Building on this foundation, researchers have naturally extended sparsity-promoting reg-
ularization to structured optimization problems, aiming to induce sparsity at the group level.
In this setting, variables that form a predefined group structure are either selected or re-
moved simultaneously. A widely used class of group sparsity-promoting regularizers is based
on the nonsmooth £, ;-norm, where different values for p > 0 and ¢ > 1 yield various formu-
lations. Notable examples include convex regularizers such as the ¢ j-norm and ¢ ;-norm
[34, 1], as well as the nonconvex s o s-norm [13]. This line of research enhances model inter-
pretability and effectiveness by enabling the simultaneous selection or removal of grouped
variables, thereby improving performance across a range of applications.

For problems demanding sparse solutions—where only a small subset of variables con-
tributes to the true support—reducing computational burden involves directing the solver
towards active variables. This is typically achieved through techniques such as screening
strategies and working set methods. Screening rules identify and discard variables that are
likely to be zeros in the optimal solution. A rule is considered “safe” if it guarantees the cor-
rect identification of inactive variables [11]. In the context of Lasso-type problems, Ghaoui
et al. [11] introduced the SAFE screening rule to discard irrelevant features. Tibshirani et
al. [25] proposed a heuristic strong rule, building on SAFE, while Lee et al. [15] extended it
to general linear models incorporating nonconvex MCP and SCAD regularization. Further
advancements include dynamic safe screening rules [2, 19, 21], which exploited the duality
gap during optimization to iteratively discard inactive variables within the solver. Collec-
tively, these techniques significantly enhance computational efficiency in sparse optimization
problems.

Alternatively, the working set technique begins by heuristically selecting a small subset
of variables as the initial working set and gradually expands it until the optimality condition
is satisfied. This approach, which has been applied in SVM training for sample filtering [26],
has evolved in recent works. [14] introduced the convergent working set method “Blitz” for
Lasso, addressing the dual constrained problem. In a subsequent study, Massias et al. [18]
proposed an efficient working set technique based on a novel dual extrapolation strategy.
Building on these contributions, [20] extended “Blitz” to solve problems with nonconvex
regularizers. These developments collectively enhance the efficiency of the working set tech-
nique in solving various optimization problems.

Addressing the nonconvex £, ,-regularized problem [13] with ¢ > 1 and 0 < p < 1 is
the central focus of this paper, and efficiently solving large-scale instances is our primary
motivation. To enhance computational efficiency, feature-reducing methods such as screen-
ing rules and working set techniques offer promising strategies. However, adapting these
existing methods to handle the nonconvex ¢, norm is challenging due to its nonconvex and
non-Lipschitz properties. A promising approach is to reformulate the original problem into
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a sequence of convex subproblems. In this context, we explore the iteratively reweighted ¢4
algorithm, which solves a sequence of tractable weighted ¢;-norm regularized subproblems
[4, 10]. This method aligns with the approach presented in [21], which incorporates the gap
safe rule [19] within a majorization-minimization framework. Moreover, discarding irrele-
vant features before the solver commences is crucial. In [18], the gap safe rule introduced in
[19] was shown to be inefficient at the beginning of the solver due to a large initial duality
gap. Recognizing potential inefficiencies, we aim to develop an efficient screening rule for
the reweighted ¢; subproblem that prioritizes both accuracy and speed.

In this paper, we propose an enhanced IRL1 framework incorporates a novel screening
rule strategy. Our approach consists of two modules: a heuristic screening test that identifies
zero variables prior to solving each subproblem, and a posterior module that verifies optimal
subproblem solutions. The screening test leverages dual information from the weighted ¢4
subproblem to reduce the input data dimension and accelerate each subproblem solution,
while the posterior module conducts a simple Karush-Kuhn-Tucker (KKT) check to confirm
exact solutions in the reduced space. Notably, our screening rule operates across successive
iterations, demonstrating its ability to identify and filter zero variables within a finite number
of iterations. Numerical studies demonstrate the substantial computational gains achieved
by the IRL1 algorithm with our proposed screening rule, highlighting its effectiveness in
real-world applications.

Notation and Preliminaries

Throughout this paper, we restrict our discussion to the real n-dimensional Euclidean space
R™. We denote by N the set of natural numbers and use [n] C N to represent the index set
{1,2,...,n}. For £ € R™ and A € R™*", we denote by xs) the subvector of  indexed by
an index set S C [n], and by A[s) the submatrix of A formed by the columns indexed by S.
Let 0 denote the zero vector of appropriate size in the given context. We define the active
set of a vector € R™ as A(x) = {i € [n] | x; # 0}, and its complementary set, the inactive
set, as Z(x) = {i € [n] | z; = 0}. For a vector with group structure zg € R", we denote the
inactive set by Z(x) = {i € [d] | ©g, = 0}, and the active set by A(x) = {i € [d] | g, # 0}.
Finally, we use the notation & ~ A (i,0?) to indicate that a Gaussian random variable with
mean p and variance o2.

The following definition is adapted from [22, Definition 8.3] and is used in our analysis.

Definition 1.1. Consider a function f : R™ — R U {400} and a point & with f(Z) finite.

For a vector v € R™, one says that

(a) v is a regular subgradient of f at &, written v € éf(a_:), if
f@) =2 f(Z) + (v, — &) + o(||lx — Z);
(b) v is a (general) subgradient of f at &, written v € Jf (&), if there are sequences
2 L5 % and v — Af (z¥) with v¥ — v.
(¢) wv is a horizon subgradient of f at &, written v € 9 f(&), if the same holds as in (b),

except that instead of v¥ — v, one has A\Yv”Y — v for some sequence \” Y\ 0.

According to [22, Theorem 8.6 & Eq. 8(5)], the following subgradient relationships hold:

Af(x) = limsupdf (&) and df (&) C Of(T),
A

8
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and moreover, 9% f(&) is a closed cone. When f is proper and convex, [22, Proposition 8.12]
indicates that

of() = 0f(@). (1.2)

The subdifferential of the convex function ||| is given by
Ozl ={v e R" [ {v,z) = [z[, |lv]. <1}, (1.3)

where the dual norm is defined as ||z[|. = supy,<i(®,u). In particular, the dual of the
¢,-norm with ¢ > 1 is the £-norm, where ¢’ = ¢/(¢ — 1).

The classical Fermat’s rule extends to the nonsmooth setting, as stated in [22, Theorem
10.1].

Theorem 1.2. If a proper function f : R™ — RU {400} has a local minimum at &, then
0c9f(Z).

Nonconvex Structured Optimization Problem

In this section, we provide a concise overview of the structured optimization model incorpo-
rating nonconvex ¢, , regularization. We then introduce an IRL1 algorithm for solving this
problem.

The structured optimization problem under consideration, involving a squared loss term
and nonconvex pth power of ¢, , regularization with ¢ > 1 and 0 < p < 1, is formulated as

1
in —|| Az — y||5 + \|z|]?
min S|4z — y|3 + A2}, (P)
where A € R™*" (m < n is typically assumed) refers to the feature matrix with column-
wise feature a; € R™, Vj € [n] and y € R™ is a given observation vector. The nonconvex
{q,p regularization term is defined as |z[|? , := Zle zg, ||, where € R" is partitioned
into d > 0 non-overlapping groups, denoted as [zg,,...,zg,]T with G = {G;}¢_, forming
a partition of [n]. The corresponding grouped features are represented by Ag, € R™*19%!
The derivation of the subdifferential of |lz[/? , is provided in the Appendix. By Theorem
1.2, the first-order necessary optimality condition for problem (P) is given by

0€ Ag (Agxg —y) + Mp(llag [l ollxg, llq, Vi € Al@g). (1.4)

In this work, we focus on employing the IRL1 algorithm, as proposed in [28, 29, 30, 31],
to solve (P). The IRL1 algorithm is a specific instance of the majorization-minimization
framework. To overcome the nonsmoothness of the ¢, ,-norm, a perturbation € & Ri 4 s
added at each iteration, yielding a continuously differentiable approximation. At the kth
iteration, it holds that

d

i=1

o +e P llwgllg — 28, 1), (1.5)

g +e)? +p(lleg,

d
q"‘ef)p < Z(Hw’&
i=1

where the inequality follows from the concavity of (-)? over R;. Consequently, the regular-
ization term in the objective function is replaced by the right-hand side of (1.5), leading to
the following subproblem at the kth iteration for updating **1. That is,

zER™ i=1

d
. 1
mk+1_argm1n{2||Am—y||§+)\wa||:cgi||q} ; (1.6)



NONCONVEX Zg,p STRUCTURED OPTIMIZATION 219

where w} = p(||xg [l + €)P~'. As the algorithm proceeds, the perturbation € is driven
to 0 to ensure global convergence. For completeness, we summarize the IRL1 algorithm in
Algorithm 1.

Algorithm 1 An Iteratively Reweighted ¢; Algorithm for Solving (P)
Require: A e R™", y e R™ A€ Ry, p€ (0,1), ® € RY, and 2° € R™.
: Set k=0.
repeat

Compute w! = p(||lzf || + €¥)P~1, Vi € [d].

Solve (1.6) for *+1.

Set €Ft1 < pef and set k « k+ 1.
until convergence

Proposed Screening Rule

In this section, we develop a novel screening rule designed to identify and filter inactive
groups in the optimal solution of the subproblem solver. By applying this screening strategy,
the subproblem can be solved in a reduced space, leading to a significant acceleration of the
overall computational process.

A Priori Screening Test Procedure

The proposed heuristic screening rule is motivated by exploiting the dual information of the
subproblem associated with (1.6). Specifically, dropping the superscript k, the kth primal
subproblem (1.6) can be rewritten in the compact form

d

1
i P == A — 2 )\l ]
Iin P(x) = ;|| Az szJr; &g,

a (2.1)

where \; = Aw; > 0 is the group-wise regularization parameter for each i € [d]. Let
z = Ax — y, problem (2.1) can be equivalently reformulated as

1
Szl + A Izl

min
xER™ zeR™ (22)
s.t. z=Ax — vy,
where ||zglly = [[[Zg,llgs---» T, llg]T and A = [A1,...,A4]7. The Lagrangian associated

with (2.2) reads

1
E)\(sz5 0) = §ZTz + <A7 ngHq> + OT(A:B - Y- Z)7

where 8 € R™ is the Lagrange multiplier associated with (2.2). Decomposing the Lagrangian
into two terms,

1
Liz) = 3272~ 072~ 07y, Lo() = (A |lzgll) + 07 Aw.

The Lagrange dual function G : R™ — R is
G(0) = inf L1(z) + inf Ly(x).
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Since £1(z) is a convex quadratic function with respect to z, its infimum is attained at
: L7 T 1 2 1 2
inf £1(2) =~ 070~ 67y = — 0+l + 5l

On the other hand, for Lo(x), we have

u

047‘ ) g,

d
Lao(x) =Y (Nillzg,llq + (AG Z Aill®g [lg )

ZE: ”wgi
=1

where the second inequality holds by Holder’s inequality, and ¢’ = ¢/(¢—1) is the Holder con-
jugate of . For the dual function, we concentrate on the case where \; > [|AZ 6|4, Vi € [d],
since otherwise, inf, Lo(x) would be unbounded below. Thus, the Lagrange dual problem
of (2.1) is formulated as

v
M- 1
kg
?

— 145,01l g4

— 1Ag.0lly),

=1

1 o L, o
max G(6) =~ [0+ yl3 + 51yl 23

st. A > ||AE 0y, Vield).

We introduce the proposed screening rule by first considering an extreme case where the
optimal solution &* of (2.1) is 0. Let A° denote the corresponding regularization parameter.
By the strong duality theorem [3, §5.2.3], at (x*,6*), we have 8* = —y since the primal
objective in (2.1) equals the dual objective in (2.3) at optimality. Meanwhile, the dual
feasibility condition for 8* gives

1AZ, 0%l = [IAG ylly < N, Vi € [d]. (2.4)
This leads to the following lemma.
Lemma 2.1. For problem (2.1), the solution is 0 if and only if

0 € argmin P(z) < \; > ||ALylly, Vi€ [d]. (2.5)
TeR”

Proof. (sufficiency). By strong duality, at (x*,0*), we have 8* = —y. The feasibility of 6*
then directly implies the desired result.

(Necessity). It follows from the optimality condition of (2.1) and [22, Eq. 10(6)] that
there exists 3; € J|xg, ||, such that

0= Al (Ag,z§, —y) + N\iBi, Vi€ [d]. (2.6)
At &* = 0, condition (2.6) simplifies to 0 = any + A\iBi, Vi € [d]. Next, we have that

1Bille = IIA Yo <1,V e [d],

where the inequality holds by the assumption A; > ||AZ yllg. From (1.3), it holds that
Bi € 9]|0||4, Vi € [d]. Therefore, we can write
0€—Afy+ 00|, Vi€ [d].

Finally, since the first-order optimality condition (2.6) is satisfied, it follows that 0 €
argmingcpn P(x). This completes the proof. O
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Let Amax — |AZ yllq, Vi € [d]. By Lemma 2.1, we know * = 0 in the primal problem
(2.1) if A\; > A"®* ¥ € [d]. This leads to the following ideal screening rule:

Vi€ [d], A > A — z* = 0. (NR)

However, this ideal screening rule (NR) is often too stringent, as the conditions it requires
are difficult to implement in practice. To address this, we propose a more practical screening
condition, referred to as the weak rule (WR), for filtering out inactive groups. Specifically,
for any i € [d], we use the following condition:

Ai > AP = gf = 0. (WR)

In a pioneering work [25], the authors proposed a strong screening rule for Lasso-type
problems. For the problem in (1.6), the strong rule suggests discarding variables xg, if
|AZ Yl < wi(2A—Amax), where A is the tuning parameter in (1.6), and Amax is the smallest
tuning parameter that yields the solution 0. Specifically, their rule can be equivalently

written as:
T

A Yllqg
1AL ylly <2\ —w; mx{”gw} (2.7)
J

It is clear that our proposed screening rule (WR) is notably simpler compared to the
strong rule in (2.7). This simplicity stems from the fact that (WR) does not require

the computation of max; {(llAijyllq/)/wj}. In contrast, the right-hand side of the strong
rule, as given by (2.7), explicitly necessitates the regularization parameter X\ satisfy A >

2
the applicability of the strong rule, as it requires a specific range for the regularization pa-
rameter. On the other hand, our proposed rule in (WR) imposes no such restriction on A,
allowing for more flexible screening of potentially inactive feature groups.

We should highlight that the proposed screening rule (WR) is practical yet efficient, as
confirmed by our numerical studies. Additionally, the heuristic embedded in (WR) requires
an optimality check to ensure that all variables are correctly discarded in the optimal solu-
tion. To guarantee the reliability of our screening strategy, we employ the KKT conditions
of (2.1) to ensure the safety of the proposed screening strategy. This will be discussed in
the next subsection.

1 max; {(||Agjy||q/) /wj} to ensure non-negativity. This condition can, in practice, limit

A Posterior KKT Check Procedure

To prevent mistakenly discarding inactive feature groups, we follow a similar spirit in [25] by
incorporating an optimality check. In particular, note that the KKT optimality condition
for (2.1) is
d
0€ Af, (Z Ag,xg, — y) + Xid|lzg, |l g, Vi € [d]. (2.8)

=1

Suppose we set g, = 0. Then there exists B € 9||0||, such that

d

=1
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Thus, we can exploit 3 to check whether the condition (2.9) is satisfied. By (1.3), we can
check whether

—AL ("L Ag,xg, —
' gi(Zz,l)\‘ G:Tg, —Y) <1.vieTI@)
3 q,
Equivalently, this condition can be written as
d
’Aa <Z Ag,xg, — y> < \i,Vi e I(x). (2.10)
i=1 q

We use this KKT check, denoted by (2.10), to detect any incorrectly discarded variables after
applying the proposed screening rule (WR). Specifically, if (2.10) is violated for a particular
group, then—as suggested in [25]—that group is added back, and the problem (2.1) is re-
solved until the condition (2.10) holds. In practice, rather than running multiple rounds
of full optimization, a more efficient strategy is to warm-start the original problem using
the solution obtained in the reduced space, requiring at most one additional optimization
cycle. This is an improvement over methods such as that in [19], which rely on two complete
optimization cycles when using heuristic screening rules. Moreover, since the computations
of ATA and ATy can be precomputed, the overall computational burden of the KKT
checking procedure in (2.10) is further reduced.

Overall, the IRL1 algorithm equipped with the proposed screening strategy is summa-
rized in Algorithm 2.

In Algorithm 2, we develop an efficient screening rule to accelerate the solution of the
weighted ¢; subproblem. Unlike most existing dynamic screening rules [2, 7, 19, 21], our
screening rule is applied as a preprocessing step before initiating the solver for (2.1) at
each iteration. This approach enables us to combine our rule with dynamic screening tech-
niques. Meanwhile, the working set strategy acts as a meta-algorithm that iteratively solves
reduced-dimensional subproblems. Consequently, one can first use the proposed screening
rule to trim features from the input matrix, and then apply an established working set
method—augmented by an efficient solver and dynamic screening—to tackle the resulting
lower-dimensional problem. This synergistic combination enhances the overall efficiency of
the solution process.

IRL1 with Proposed Screening Strategy

In this section, we present the theoretical analysis for the proposed screening rule integrated
into the IRL1 framework. We first show that groups filtered out by the screening rule are
fully identified in the next iteration. Next, we establish that the rule detects all inactive
groups within a finite number of iterations. Additionally, we extend the working set strategy
from [18] to the weighted ¢; subproblem (1.6) and present a streamlined framework that
serves as an effective guide.

Screening Between Iterations
We first state the IRL1 algorithm incorporating our proposed screening rule in Algorithm 3.

In Step 5 of Algorithm 3, we employ the proximal gradient method introduced in [32]
to solve (2.1), which admits efficient soft-thresholding operations. Moreover, we adopt the
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Algorithm 2 Proposed Screening Strategy

Require: Ag, A, y, an index set list C [d] representing the currently active groups, and a
screening set scrlist C [d].

1: Screening Condition:

2: for j € list do

3:  if the condition (WR) holds for group j then

4 list + list\ {j} and scrlist « serlistU {j}.

5. end if

6: end for

7: Subproblem Solution:

8: Initialize < 0.

9: Solve (2.1) with Ay to obtain @ and set x(ysy < 2.

10: KKT Check:

11: Initialize an empty error set: errlist < ().

12: for i € scrlist do

13:  if the condition (2.10) is not satisfied for group ¢ then

14: errlist < errlistU {i}.
15:  end if
16: end for

17: if errlist # () then
18:  Warm-start by solving (2.1) over all groups with A to obtain an updated solution .
19:  for i € scrlist do

20: if g, # 0 then

21: serlist < serlist\ {i} and list + listU {i}
22: end if

23:  end for

24: end if

25: Output: x, list, and scrlist.

warm-start technique described in [32], using the solution from the previous iteration as the
initialization for the subsequent subproblem to accelerate convergence.

The following lemma states that once a group is added to the screened list in the current
iteration, it is guaranteed to remain screened (i.e., be detected as inactive) in the next
iteration. As a result, in the subsequent subproblem, the screening procedure only needs to
verify those groups that were previously considered active.

Lemma 3.1. Let Gs with S C [d], be the set of groups that have been screened by Algorithm 2
at the kth subproblem. Then, for each i € S, it holds that

1AG Yl < AT
bl = 0.

Proof. At the kth subproblem, for any ¢ € § , the screening rule ensures that xg’
Consequently, we have

k k k k k
||xgj_1Hq + ei+1 = €i+1 <|lzg,llq + €,

where the inequality holds since the perturbation parameter € decreases at each iteration.
Hence,

k+1 k41 k41yp—1 E

A= (g g+ 6P > (g,

i

kzxp—1 _ Kk
gt &) =N




224 T. LI, X. YANG AND H. WANG

Algorithm 3 IRL1 with Proposed Screening Strategy
Require: p€ (0,1), A >0, 2’ € R}, , € € R‘Lr, A e R™ "™ and y € R™.
1: Set k =0, list <+ [d] (all groups active), scrlist < () (no groups screened).
2: repeat
3: Compute wf = p(||ef, [lq + €F)P~1, Vi € [d].
4 Set AF « Mg, Vi € [d].
5. Call Algorithm 2 to obtain &**! and list and scrlist.
6
7

Set €**! < ¥ and set k « k + 1.
: until convergence

where the inequality holds since 0 < p < 1 and (-)P~! monotonically decreases on R .
Moreover, the screening rule applied at iteration k guarantees that ||Agiy||q/ < A¥. Thus,
we have

1AG ylly < AT < X,

which completes the proof. O

Analysis

The global convergence of the basic IRL1 algorithm for general nonconvex problems with
convex constraints has been established in [31], and these convergence properties extend to
(P). Importantly, the proposed screening strategy does not affect the convergence of the
IRL1 algorithm; rather, it accelerates the solution of the subproblems by reducing the data
dimension while preserving the optimality of each subproblem solution. In other words, the
screening technique is applied solely within the subproblem solver and is guaranteed to yield
the optimal solution for that subproblem. It is also noteworthy that the global convergence
result in [31] relies on the assumption that the sequence {z*} is contained within a bounded
level set. This assumption is also integral to our analysis.

Assumption 3.1. The level set L(z% ) := {& € R" | f(z) + Mz|?, < f(=°) +
ASE (|28, [l + €2)P} is bounded.

Under this assumption, the convergence of the IRL1 algorithm is maintained even with
the integration of the proposed screening strategy. Next, we establish that the proposed

screening rule can discard all inactive group features in a finite number of iterations in the
following lemma.

Lemma 3.2. Let {x*} be the sequence generated by Algorithm 3. Then, there exists a
constant C > 0 such that

d
AL | Agab —y || <C, Vield,VkeN. (3.1)
Jj=1 /
q

Proof. By Assumption 3.1, Algorithm 3 generates a bounded sequence {x*} that remains
within the bounded level set L(z°, €”). The boundedness of {x*} implies that there exists
a constant C' > 0 such that (3.1) holds. This completes the proof. O

An important property of the IRL1 algorithm is that the support of the iterates remains
stable after a finite number of iterations.
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Lemma 3.3. Let {x*} be the sequence generated by Algorithm 3, and let the constant C' be
as defined in Lemma 3.2. If there exists k € N such that N > O, then it follows a}’éi =
for all k > k.

Proof. By (2.8), we have —Af (Z?zl Ag].:l)éj - y) = )\fﬁ, where B € 8||:1:é||q Taking
the norm on both sides, we obtain

d
AL (> Agal —y ||| =Bl
j:1 ’
q

If (L’é # 0, then by the properties of the subdifferential, we have Hﬂ||q, = 1. Substituting
this into the previous equation gives

d
1 ~

1= = Agi ZAg]ng -y
Ai j=1 .

However, this contradicts the assumption that )\fc >C > HAgl (Z?Zl Ag].:l:éj — y)

q"

Therefore, wéz = 0. By induction, it follows that a:éi = 0 for any k > k. This completes

the proof. O

For completeness, we include the proof from [30], which establishes that the active and
inactive groups remain stable after a sufficiently large number of iterations.

Proposition 3.4. Let {x*} be the sequence generated by Algorithm 3, and let C be the
constant defined in Lemma 3.2. Then, there exist an index set T* C [n] and an iteration index
k > 0 such that, Vk > k, the inactive set remains fized, i.e., Z(x*) = I*. Furthermore, for
all i € [d]\T*, there exists a positive constant € > 0 such that ng ||q > e > 0 for sufficiently

large k. Consequently, for any cluster point z* of {z*}, it holds that I(x*) = T*.

Proof. We prove the proposition by contradiction. Suppose, to the contrary, that the inactive
set does not stabilize. Then, there exists one index j € [d] such that the sequence {Hw’éj Hq}
takes both zero and nonzero values infinitely often. That is, there exist two disjoint infinite

subsequences S1, Sz C N such that |S1] = co and [Sz| = 00, and that

xg, = 0,Vk € S and x§, # 0,Vk € S.

Since {€*} is monotonically decreased to 0, there exists k > 0 such that for all k > k,
p—1 1
k k k kP~
A= p (Ha:ngq—i—ej> >Mp(ef) > C.

By Lemma 3.3, this implies that wéj = 0 for any k > k. In particular, the set {l~€ + 1, k+

2,...} C &1, meaning |Sa| < co. However, this contradicts the assumption that |Sz| = oco.
Now suppose by contradiction that there exists some j € [d] \ Z* (i.e., an active group)

and a subsequence S3 C N such that HwéHq — 0,k € S3. Since € — 0, we obtain for

sufficiently large k,

)\g? = )\p(ngJ_Hq + 6?)”_1 >C.
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By Lemma 3.3, this implies that w’éj = 0 for all sufficiently large k, contradicting the
assumption that j € [d] \ Z*. Thus, all active groups remain bounded away from zero
after a sufficiently large number of iterations. Since any cluster point x* of {x*} satisfies
Z(x*) = I*, the proof is complete. O

Using Proposition 3.4, we show that for sufficiently large k, all components within the
inactive set of the optimal solution satisfy the proposed criterion (WR). This implies that
they are correctly identified by (WR) within a finite number of iterations. Once this iden-
tification occurs, Algorithm 3 reverts to the conventional iteratively reweighted algorithm,
operating in a lower-dimensional space restricted to the active groups.

Theorem 3.5. Let {:13_’“} be the sequence generated by Algorithm 3. Then there exists k € N
such that for any k > k,

145,y

o < NovieTr

Consequently, Algorithm 3 reverts to the traditional iteratively reweighted algorithm described
in Algorithm 1.

Proof. By Proposition 3.4, the inactive set stabilizes, i.e., Z(x*) = Z* for sufficiently large

k. Since :ca =0 for all i € Z*, it follows from €* — 0 that

A= Np (ef)p_l — o0, VieIr

This ensures that the screening condition (WR) holds, completing the proof. O

Working Set Strategy Based on Duality Gap

In conjunction with the proposed efficient screening rule, we extend the working set strategy
introduced in [18] to address the weighted ¢;-norm subproblem. Specifically, we propose a
tailored working set strategy for the case ¢ = 2. This strategy initializes with a single
working variable, selecting only one group. At each iteration, it expands the working set by
sequentially incorporating selected groups until an optimal solution is reached. First, recall
that

q/> ’

If 2 # 0, then the optimal dual variable 8* should satisfy ||AZ 6*||; = A;. Thus, from the
dual formulation, whenever ||Af 0*[, < A;, it follows that f = 0. This condition aligns
precisely with the safe screening rule for the weighted ¢;-norm subproblem:

q ()‘i - HAgie

d
La(x) > ) |lzg,
i=1

Vi€ [d], ||AL,60% |y <N = zf, =0.

Notably, when ¢ = 2, the dual norm remains the fs-norm, effectively transforming the
subproblem into a group Lasso problem [34]. Building on the derivations in [19], we establish
a safe screening rule specifically for the weighted ¢;-norm subproblem (1.6).

To begin, using the triangle inequality and the Cauchy—Schwarz inequality, we obtain
for any 6:

|AG,0% ]2 = || AG,0+AG (0" —0)]2 < || Ag 0]+ Ag, (0" ~0)||> < || Ag,0]|2+] Ag,

2[|0* 0|2
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Next, we derive an upper bound for [|@* — 0||2. Since the objective function of the dual
problem (2.3) is strongly concave, for any dual variables 61, 82, we have

C(0:) < C(0:) + (VC(60:), 0, — 01) — 50>~ 013,
Setting 8, = 6* and 65 = 0, we have
G(6) < G(6) + (VG(6Y),0 - %) — S [lo* — 6.
Since 8* maximizes G(6), we know that (VG(6*),0 — 0*) < 0. Thus, we obtain
G(0) < G(6) ~ 16"~ 013
= Sl6"— 8l3 < G(6") - G(6)

1 *
= 56" - 0|3 < P(z) - G(6)
— |10* - 0||> < \/2Gap(x, 0),

where Gap(z,0) := P(xz) — G(0). Thus, for the subproblem of interest, we obtain the
gap-based screening rule:

1A, 0|2 + [| Ag,

21/2Gap(z,0) < \; = =5 = 0.

Given that the dual gap is independent of the variable index, we can isolate it on one
side of the equation, resulting in the following inequality:

Ai — A0

2Gap(x,0) <
V2Gap(@,8) < g

where the dual variable can be obtained using the dual mapping, as detailed in [19, 18].
Assuming that Ag, # 0 for all ¢ € [d], and following the approach in [18], we define

mai = 0’
2

Ai — [|AZ 6]l
| Ag, |2

We then sort all group variables in ascending order of dg,(0). Groups with larger values of
dg, (0) are more likely to correspond to zeros in the optimal solution. Thus, in constructing
the working set, we select the group with the smallest dg, (@) at each iteration. Based on
this criterion, we propose a suitable working set strategy for solving the weighted ¢;-norm
subproblem.

It’s important to note that the Algorithm 4 is essentially an extension of an existing
working set strategy for group-sparsity problems. As a result, we do not delve into a detailed
exploration of this working set strategy in the numerical experiments section.

Numerical Experiments

In this section, we conduct extensive experiments on both synthetic data and real-world
datasets to demonstrate the substantial gains in computational efficiency achieved by the
proposed screening rule strategy. All numerical experiments are implemented in Matlab
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Algorithm 4 Working Set Strategy Based on Safe Screening Rules
Require: A ¢ R™*" y e R™, A € R‘LL and ¥ € R™.
1: Initialize co = max{100, |A(z")|} and Wy = {G1,...,Gey }. Set t = 1.
2: repeat

3:  Compute the dual variable 8 based on z!~! and compute Gap(x‘~*, 8?).
Xi—||AZ 6|2
) to 2 177G, 7 112
For each group §;, compute dg. = g, s

Assign dtgi = —1 for groups already in the working set W,_;.
Update ¢; = min(2¢;—1, d).

Update W; = {G; : dg, is among the first c; smallest values}.
8:  Solve for ' based on Apy,].

9: until Gap(z'~1,0) falls below a predefined threshold.

10: Output: x'.

g

R2020b and executed on Macbook Air equipped with an Intel Core i7 processor (1.2 GHz)
and 16 GB of RAM.

On the experiment setup, we initialize €) = (’\Q;D—a)\")ﬁ for each i € [d], where Apax =
max;e(q) | A yllg, and set p = 0.9 for the IRL1 algorithm. The initial point x° is ob-
tained by solving the ¢, regularization problem with early stopping. To determine the
weighting parameter A, we perform a grid search over {\;} = {107(1+%))\max}, where
t€{0,1,...,Q — 1}. All algorithms are terminated when the relative change in successive
iterates satisfies |2+ — ¥ ||y/[|x"T]|2) < 1076,

In our comparisons, we consider the following benchmark algorithms: the proximal gra-
dient method for group sparse optimization (PGM-GSO) proposed in [13], the original IRL1
algorithm (ori-IRL1) without screening, and the Safe-Scr-IRL1 method presented in [19],
which employs heuristic screening rules by using solutions of lower-dimensional problems to
warm-start the optimization. In particular, the proposed IRL1 algorithm enhanced with our
screening rule strategy is abbreviated as scr-IRL1.

Experiments on Synthetic Data

In this subsection, we conduct a sparse signal recovery experiment to demonstrate the ef-
fectiveness and efficiency of the proposed screening rule. Following the setup in [13], we
generate a matrix A € R™*" such that AT A = I, with each entry drawn from a stan-
dard Gaussian distribution. The ground-truth vector @.ue, which we aim to estimate, has
a fixed group size |G;| for each ¢ € [d], and its nonzero entries are also sampled from a
standard Gaussian distribution. The observed signal is generated according to the model
Y = AZue + €, where each ¢; ~ N(0,107%) represents Gaussian noise.

We begin by evaluating the performance of the proposed IRL1 algorithm. In this experi-
ment, we generate the matrix A € R?°6x1024 and set the group size |G;| = 8 for each i € [d].
Then, we vary the number of nonzero groups in @, from 2 to 36 in increments of 2. We fix
g = 2 and p = 0.5 for this test. A signal x is considered successfully recovered if the relative
error satisfies (|| — Tiruell2/||Tiruell2) < 5 x 1073, With a fine-tuned weighting parameter \
in (P), we compare the successful recovery rate between scr-IRL1 and PGM-GSO. Here, the
successful recovery rate is defined as the number of successful recoveries divided by the total
number of runs at different levels of group sparsity in @yrye. The performance comparison,
showing the relationship between sparsity levels in @y, and the successful recovery rate, is
presented in Figure 1.
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Figure 1: The successful recovery rate across different sparsity levels in @¢.n.. The presented

results represent the average over 50 random trials.
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Figure 2: Comparison of computation time across different methods and screening rule
strategies. The computation time of ori-IRL1 is normalized to 1 for reference.

From Figure 1, we can see that IRL1 outperforms PGM-GSO, which demonstrates its
competitiveness in solving (P).

We also evaluate the efficiency of the proposed IRL1 algorithm when equipped with
the screening strategy. We set Q = 20 and fix the number of active groups at k¥ = 10
with the group size of |G;| = 5. We consider two problem sizes: (m,n) = (500,2000)
and (m,n) = (500,10000). Additionally, we compare different pairs of (p,q), specifically
(p,q) = (%72)’ (p,q) (%7 1), and (p,q) = (%72)'

From Figure 2, we observe that the proposed scr-IRL1 consistently outperforms all other
methods in terms of computation time across all scenarios. Notably, equipping ori-IRL1
with the proposed screening rule reduces computation time by at least a factor of three.
Moreover, our screening rule demonstrates significantly higher efficiency compared to the safe

method proposed in [19]. Furthermore, the effectiveness of our screening strategy becomes
increasingly pronounced in high-dimensional settings.

Next, we investigate the relationship between the computational gain and both the reg-
ularization parameter A\ and noise level o. Here, the computational gain is defined as the
ratio of the computation time ori-IRL1 to that of scr-IRL1. We consider (p,q) = (%,2) and

2
fix k = 10, while varying the number of features n in increments of 2000. The results are
presented in Figure 3.

As observed in Figure 3 (a), a larger A\ generally leads to greater computational gain.
From Figure 3 (b), we observe that o

0.01 results in the highest computational gain
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Figure 3: Influence of A and o on computational efficiency. Left: Varying A with o fixed at
= 0.01. Right: Varying o with A fixed at 0.01\.x-

among the tested scenarios.

Experiments on Real-World Datasets

In this subsection, we conduct experiments on real-world datasets to evaluate the efficiency
of scr-IRL1. Specifically, we test datasets from the LIBSVM repository!, Kaggle?, and the
UCI machine learning repository?.

Following [25], we evaluate both regression and classification models on these datasets.
Specifically, in the regression setting, the observation vector y remains unchanged, un-
changed, whereas in the classification setting, y is mapped into {0,1}. For further details,
refer to [25]. Additionally, we adopt the strategy from [23] to construct a group structure
for the data, expanding its dimensions via polynomial feature mapping. Throughout our
experiments, we set @ = 20 and consider (p, q) = (%, 2).

We first examine the computational gains achieved by the proposed screening strategy.
For a more comprehensive comparison, this test includes the PGM-GSO algorithm as a
benchmark. Next, we verify the correctness of the screening strategy by comparing the
predictive performance of both regression and classification models. As shown in Table
1(a), applying the screening rule to IRL1 significantly reduces computation time. Moreover,
as demonstrated in Table 1(b), the prediction accuracy remains nearly identical for both
IRL1 variants, indicating that the proposed screening rule has a negligible impact on solution
quality.

Next, we validate the efficiency of the proposed screening rule, including both the screen-
ing procedure and the KKT check procedure, on the breastcancer dataset. In this exper-
iment, we fix (p,q) = (%, 2) while varying A\. During the first 20 iterations, we record three
quantities: the number of screened groups, the number of incorrectly screened groups (as
identified by the KKT check), and the number of inactive groups in the solution obtained
without using the screening rule. These quantities are reported as ratios in Figure 4. Specif-
ically, the ratio of the number of screened groups to the number of inactive groups (from
the solution without screening) is denoted by RSN, and the ratio of the number of wrongly
screened groups (detected via the KKT check) to the number of inactive groups is denoted

Ibodyfat and ionosphere(https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/)
2mobileprice(https://www.kaggle.com /iabhishekofficial /mobile-price-classification)
3breastcancer(https://archive.ics.uci.edu/ml/datasets/breast-+cancer+wisconsin+(diagnostic))
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Table 1: Performance evaluation on real-world datasets (for each dataset, 70% of the samples
are used for training, while the remaining 30% are are used for testing). Mean squared
error (MSE) is reported for regression tasks, and classification accuracy is used to assess
classification performance.

(a) Computation time (s)

Datasets Dimension  Model ori-IRL1 scr-IRL1 PGM-GSO
Regression 56.2361 23.1422 1.7801 x 103
bodyfat 252x455  (aGsification 101.2709 68.4473 3.3692 x 103
. . Regression 847.4916 263.3385 8.9154 x 103
mobileprice 2000 X 950 o < chcation  970.0614 535.0475 1.0068 x 10*
. Regression 1.4965 x 10°  508.2043 1.5738 x 10%
ionosphere 351 X 2805 oy Cification  971.1735 323.9606 5.6018 x 10
Regression 1.6621 x 10>  695.7239 1.5424 x 10%
breastcancer 569 x 2175 o Cification  3.9650 x 105 1.4383 x 10°  1.4630 x 10*
(b) Prediction performance
Datasets Model ori-IRL1 scr-IRL1
bodviat Regression 3.2164 x 10~*  3.2178 x 10~*
Y Classification  100% 100%
mobileprice Regression 0.1190 0.1190
P Classification  93.17% 93.17%
ionosphere Regression 0.2947 0.2951
P Classification  98.10% 98.10%
breasteancer Regression 0.3296 0.3296
Classification  88.30% 88.30%

by RWN. As shown in Figure 4, the proposed screening strategy identifies all inactive groups
within a finite number of iterations while making almost no mistakes.

Ratio

——RSN
——RWN

Ratio

—-RSN
——RWN

Ratio

RSN
——RWN

O]
Iteration

(¢) A =0.1Amax

O]
Iteration

(b) A = 0.01Amax

O]
Iteration

(a) A = 0.001 Amax

Figure 4: Evaluation of the efficiency and accuracy of the proposed screening strategy on
the breastcancer dataset.

Conclusion

In this paper, we have proposed a screening rule strategy for a structured optimization
problem with a nonconvex ¢, , regularizer. The proposed screening rule is designed to op-
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erate as a prepossessing step before starting the subproblem solver, efficiently identifying
inactive group features in the optimal solution. After solving the reduced-dimensional sub-
problem, a straightforward KKT check verifies the optimality of the solution. Our analysis
have demonstrated that inactive group features can be safely identified and removed within
a finite number of iterations. The empirical performance of the proposed screening rule
is validated through numerical experiments conducted on both synthetic and real-world
datasets.
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Appendix
Calculation of Subgradients for |z, ||,

The extended chain rule for subgradients, as presented in [22, Theorem 10.49], is adapted
and applied below.

Theorem 5.1. Let f(x) = g(F(x)) for a proper, lower semicontinuous function g : R™ — R
and a strictly continuous vector-valued function F : R™ — R™. Let & be a point where f is
finite. Then

0f@) > D'F(@) [09(F@)| = J{owr)@) |y € dg(F(@))}.
If the only vector y € 0°g(F(Z)) with 0 € O(yF)(E) is y = 0, one also has
0f (@) c D*F(@)[0g(F(@))] = {oWF)(®) | y € 9g(F(@))}.

Recall that |z|lg,, = >0, |lzil|2, where z; € R™,n = 37" n;,q > 1, and p € (0,1).
Using Theorem 5.1, we can compute the subgradients of |||, p-

Consider the function f(z) = fi(z1) + -+ + fm(zm), where f; : R — R are lower
semicontinuous functions. From [22, Proposition 10.5], for any & = [Z1, ..., |7 with f(Z)
finite and df;(z;)(0) = 0, one has

Of (&) = 0fi(Z1) X ... X Of o (Tm),

and A X X
af(a_:) = afz(jl) XX afm(i'm)

Therefore, we only need to compute the subgradient of [|z;||?. From (1.2), we have

Nzillg = Ollillg = {u | {w, i) = [lillg, [lull <1},

where || - ||« is the dual norm of || - ||,. By [27, Theorem 2.1], we have

R if [|zillq =0,

PH%‘HZ_I otherwise.

O (Ilzillq) = OO (llwilly) = {

First, consider the case where ||z;||, = 0. For any y € R, we have Ayl - lg)(z:) = {yu |
|lu|l« < 1}, which implies

Bllaally > {0l - ) (@) |y € R} =R™.

Hence, in this case, R™ C 9||z;]|? C 9]|z;||2 € R™, which indicates O||z;||5 = |z||Z = R™.
Next, consider the case where ||lz;]|, # 0. Let y = p|l2;||?~", we obtain

Ol - lo) (@) = {yu | (w, i) = [lillg, Julle < 1} = ydail,-

This implies
Ollailly > {0l - 1) (w:) |y € O (i) } =yl
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On the other hand, since ||z;||4 # 0, it is clear that 0 ¢ J|/z;||,- The only value of y satisfying
y € 0%°(-)P(||zillq) with 0 € O(y|| - ||¢)(z;) is y = 0. Therefore, by Theorem 5.1,

Allally < {0yl - llg) (o) [y = pllzillF ™"} = yOlzill,-
Overall, we have established the chain of inclusions
yollzilly € Wl - [lg)(x:) € O - 1) (@) = ydilly,

which confirms that R
Ol - llg) (i) = O(yll - llg)(ws) = yO|willq-
Using [22, Proposition 10.5], the subgradients of ||z;||,,, are given by

Allzillgp = Blxillgp = C1 X ... X Crn,

where
C; = pllzillb= Nzl if @ # 0,
R™ otherwise.
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