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On the other hand, interval optimization has been widely studied, especially its opti-
mality conditions. More theoretical research work of interval optimization can be found
in [2,7,22,23,25,27] and the references therein. Interval optimization is increasingly used in
practice such as economic planning, energy development, engineering design, environmental
protection and other fields (one can see [9,18,29]). So, it is natural to consider whether the
real-time price for smart grid based on maximizing social welfare can be solved by interval
optimization? Can KKT conditions on interval optimization be applied to solve smart grid
with controllable supply? This is also the motivation of this paper.

The remaining paper is organized as follows. In Section 2, relevant preliminaries about
interval optimization and smart grid problem are introduced. In Section 3, we give the
model of smart grid with controllable supply based on maximizing social welfare. The KKT
optimal conditions for smart grid with controllable supply based on interval optimization are
used to get real-time price. By transforming KKT conditions into an equivalent nonsmooth
optimization problem, we rewrite it into a novel unconstrained optimization problem. In
Section 4, we apply Levenberg-Marquardt method to get the optimal real-time electricity
price and the optimal consumption of the customer-side. And simulation results are also
given. Finally, we make final remarks in Section 5.

2 Preliminaries

Followings are some relevant preliminaries about interval optimization and smart grid model
which can be found in [6, 16,17,19,21–23,26].

Definition 2.1. Λ = [ωL, ωU ] and Ξ = [ψL, ψU ] are closed intervals in R. Λ ⪯LU Ξ ⇔
ωL ≤ ψL together with ωU ≤ ψU . On the other hand, Λ ≺LU Ξ ⇔ Λ ⪯LU Ξ with Λ ̸= Ξ.

Λ ≺LU Ξ if and only if one of the following conditions holds

(i)

{
ωL < ψL

ωU ≤ ψU
(ii)

{
ωL ≤ ψL

ωU < ψU
(iii)

{
ωL < ψL

ωU < ψU

Given ΓL(x) : Rn → R, ΓU (x) : Rn → R, and ΓL(x) < ΓU (x).

Definition 2.2. The interval-valued function Γ(x) = [ΓL(x),ΓU (x)] is differentiable at
x∗ ∈ Rn ⇔ ΓL and ΓU are differentiable at x∗.

Interval optimization problem in general is as follows [23]:

min Γ(x)

s.t. x ∈ Θ = {x|hj(x) ≤ 0, x ≥ 0, j = 1, 2, . . . ,m− 1,m}, (2.1)

where Γ(x) = [ΓL(x),ΓU (x)] : Rn → R and hj(x) : Rn → R is real-valued function,
j = 1, 2, . . . ,m− 1,m.

Definition 2.3. x∗ is a feasible solution for (2.1). If there exists no Γ(x) ⪯LU Γ(x∗), where
x ∈ Θ, x∗ is called a nondominated solution for (2.1) i.e. in this situation, Γ(x∗) is konwn
as the nondominate objective function value for Γ.
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Smart grid based on maximizing social welfare is given as

max (

N∑
i=1

Ui(x
1
i , ω

1
i )−Υ1(ℏ1)) + . . .+ (

N∑
i=1

Ui(x
K
i , ω

K
i )−ΥK(ℏK))

s.t.

N∑
i=1

xki ≤ ℏk, ℏmin
k ≤ ℏk ≤ ℏmax

k , k = 1, . . .K, (2.2)

xki ≥ 0.

In (2.2), there are N electric power customers and one electric power supplier, and each
power cycle is divided into K periods. xki denotes the electricity consumption of user i in
period k. ℏk denotes the production efficiency of the electric power supplier in period k.
Υk(ℏk) denotes the cost for producing power ℏk in time division k for a power provider.
ℏmin
k represents minimum electricity provided by an electric power provider in period k, and

ℏmax
k represents maximum electricity provided by an electric power provider in period k.
U(xki , ω

k
i ) is the utility function which is used to express the satisfaction of electricity user

i in period k. In additon, ωk
i ≥ 0, to represent the experience values of different users.

3 Smart Grid with Controllable Supply

Firstly, we give the model of smart grid with controllable supply, and then give the KKT
conditions for it. We present the model for smart grid with controllable supply as follows

min
[
ℜL(z),ℜU (z)

]
s.t.

N∑
i=1

xki − ℏk ≤ 0, i = 1, . . . , N, k = 1, . . .K, (3.1)

xki ≥ 0,

where

ℜL(z) = (Υ1(ℏmin
1 )−

N∑
i=1

Ui(x
1
i , ω

1
i )) + . . .+ (ΥK(ℏmin

K )−
N∑
i=1

Ui(x
K
i , ω

K
i )), (3.2)

ℜU (z) = (Υ1(ℏmax
1 )−

N∑
i=1

Ui(x
1
i , ω

1
i )) + . . .+ (ΥK(ℏmax

K )−
N∑
i=1

Ui(x
K
i , ω

K
i )).

In (3.1) and (3.2), z = (x11, . . . x
1
N , x

2
1, . . . x

2
N , . . . , x

K
1 , . . . x

K
N , L1, L2, . . . LK)T , xki denotes the

electricity consumption of user i in period k. ωk
i ≥ 0. ℏk represents production efficiency

for the power provider in time division k. ℏmin
k represents minimum electricity provided in

time division k, and ℏmax
k represents maximum electricity provided in time division k.

Here, the utility function is

U(x, ω) =

{
ln(ωx) + d , x > 0

0 , x = 0

ω and d are two non-negative parameters according to different demands and satisfaction of
electricity consumption. And the cost function is choosed as

Υk(ℏk) = akℏ2k + bkℏk + ck,
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where ak > 0 and bk > 0, ck > 0 are pre-determined parameters.
From [23], we know that the nondominated solution for minimization problem (3.1) is

the optimal solution for minimization problem as follows:

min ℜ(z) = ℜL(z) + ℜU (z)

s.t. h̃k(z) =

N∑
i=1

xki − ℏk ≤ 0, i = 1, . . . , N, k = 1, . . .K, (3.3)

xki ≥ 0,

where ℜL(z), ℜU (z), xki , h̃k(z), ℏk are defined as (3.1) and (3.2).

According to [5], we know h̃k(z), k = 1, . . . ,K in (3.3) satisfying the linear independent
constraint specification.

Now, denote hk(z) = −h̃k(z), we have the theorem as follows.

Theorem 3.1. Assume z∗ is an optimal solution for problem (3.3) (also a nondominated
solution for problem (3.1)), and ℜ, hk, k = 1, . . . ,K, have differentiability at z∗. And for
hk, k = 1, . . . ,K satisfying the linear independent constraint qualification, then we can get
multipliers µk ≥ 0 for k = 1, . . . ,K satisfying

∇ℜL(z∗) +∇ℜU (z∗)− µ1∇h1(z∗)− µ2∇h2(z∗)− . . .− µK∇hK(z∗) = 0,

µkhk(z
∗) = 0,

µk ≥ 0,

hk(z
∗) ≥ 0,

(3.4)

where k = 1, . . . ,K − 1,K.

Proof. According to (3.2), ℜL(z) and ℜU (z) have differentiability at z∗, which can be said
ℜ(z) = ℜL(z) + ℜU (z) has differentiability at z∗. Next, we give a proof by contradiction.
Assume

∇ℜ(z∗)d < 0, (3.5)

∇hi(z∗)d ≤ 0 i ∈ ∅(z∗),

where d ∈ Rn, ∅(z∗) = {i|hi(z) = 0} be indicator set with effective constraints. Since hk, k =
1, . . . ,K satisfy the linear independent constraint qualification and ℜ(z) has differentiability
at z∗, we have

ℜ(♮(t)) = ℜ(z∗) +∇ℜ(z∗)T (♮(t)− z∗) + ∥♮(t)− z∗∥ · δ(♮(t), z∗)
= ℜ(z∗) +∇ℜ(z∗)T (♮(t)− ♮(0)) + ∥♮(t)− ♮(0)∥ · δ(♮(t), ♮(0))

= ℜ(z∗) +∇ℜ(z∗)T ( ♮(0 + t)− ♮(0)

t
) + ∥♮(t)− ♮(0)∥ · δ(♮(t), ♮(0))

where δ(♮(t), ♮(0)) → 0 as ∥♮(t) − ♮(0)∥ → 0. So, as t → 0+, ∥♮(t) − ♮(0)∥ → 0 and
♮(0+t)−♮(0)

t → ♮
′

+(0) = βd, where β > 0.
Since ∇ℜ(z∗)T d < 0, we have ℜ(♮(t0)) < ℜ(z∗) for an arbitrarily small t0 > 0, which is

contrary to z∗ being optimal solution for problem (3.3). Therefore, assumption (3.5) does



L-M METHOD FOR SMART GRID 241

not hold and we can get that there exists no d satisfying the inequalities in (3.5). By Tucker’s
theorem in [24], we have

λ∇ℜ(z∗)−
∑

i∈∅(z∗)

µi∇hi(z∗) = 0

or equivalently

∇ℜ(z∗)−
∑

i∈∅(z∗)

µi∇hi(z∗) = 0,

where λ > 0 and µi ≥ 0 for i ∈ ∅(z∗). Denote µi = µi/λ, thus, the proof is completed.

Define Φ maps from Rn × Ω to Rn as

Φ(z) =


ϕ(µ1, h1(z))
ϕ(µ2, h2(z))

...
ϕ(µK , hK(z))

,

where ϕ is NCP function with properties as follows [3],

ϕ(ϱ,ϖ) = 0 ⇔ ϱ ≥ 0, ϖ ≥ 0, ϱϖ = 0,

where ϱ,ϖ ∈ R.
From [3], we know that the complementary problem aims to find x ∈ Rn, satisfying

x ≥ 0, ℑ(x) + κ ≥ 0, ηT (ℑ(x) + κ) = 0,

where ℑ(x) maps from Rn to Rn and κ ∈ Rn.
Accordingly,

µ ≥ 0, h(z) ≥ 0, µTh(z) = 0

is a complementarity problem, where µ = (µ1, µ2, . . . , µK)T , h(z) = (h1(z), . . . , hK(z)).T

Thereafter, we can transform µk ≥ 0, hk(z) ≥ 0, µkhk(z) = 0. k = 1, . . . ,K in (3.4)
into

Φ(µ, h(z)) =


ϕ(µ1, h1(z))
ϕ(µ2, h2(z))

...
ϕ(µK , hK(z))

 =0,

where

ϕ(µi, hi(z)) =
µi + hi(z)

2
− |µi − hi(z)|

2
, i = 1, . . . ,K, (3.6)

ϕ is NCP function [20].
Let G : Rn → Rn be a locally-Lipschitzian function. The B-subdifferential of G at x is

∂BG(x) = {V ∈ Rm×n|∃xk ⊆ DG : {xk} → x,G′(xk) → V

where DG is the differentiable points set and G′(x) is the Jacobian of G at a point x ∈ Rn.
The Clarke generalized Jacobian of G is defined as

∂G(x) = conv{V ∈ Rm×n|∃xk ⊆ DG : {xk} → x,G′(xk) → V },

we have
∂CG(x) = ∂G1(x)× ∂G2(x)× . . .×Gm(x)

denoting the C-subdifferential of G at x.
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Definition 3.2. G is semi-smooth at x if

lim
V ∈∂G(x+th′),h′→h,t→0+

V h′

exists for any h ∈ Rm.

Proposition 3.3. ϕ(µ, h(z)) is semismooth, if ϕ(µ, h(z)) is defined as (3.6), and ∂ΦC(µ, h(z))
is a K-dimensional diagonal matrix with diagonal elements of { 1

2 − 1
2v,

1
2 − 1

2v}, where

v ∈ ∂|µi − hi(z)| =

 1 , µi > hi(z), i = 1, . . . ,K,
−1 , µi < hi(z), i = 1, . . . ,K,

[−1, 1] , µi = hi(z), i = 1, . . . ,K.

Proof. Since
µ+h(z)

2
is smooth function, and from [15],

|µ−h(z)|
2

is semismooth function,
ϕ(µ, h(z)) is semismooth function. Further, owing to diag(∂|µi−hi(z)|) a diagonal matrice,
i = 1, . . . ,K, we can get ∂ϕ(µ, h(z)). We complete the proof.

Therefore, solving (3.4) is transformed into solving the equation system as follows

Π(z) = 0, (3.7)

where

Π(z) =

(
∇ℜL

k (z) +∇ℜU
k (z)− µ1∇h1(z∗)− µ2∇h2(z∗)− . . .− µK∇hK(z∗)

Φ(µ, h(z))

)
.

So solving (3.7) is equivalent to solving the following optimization problem

minB(z) =
1

2
∥Π(z)∥2, z ∈ RK(N+2). (3.8)

The function Π(z) constructed via Φ(z) is semismooth on RK(N+2). If Π(z) is locally
Lipschitz continuous for z ∈ U(z∗), where z∗ ∈ RK(N+2), then Π(z) is semismooth at z∗.
B(z) in (3.8) has continuous differentiability on RK(N+2) and

∇B(z) =

(
∇2ℜL

k (z) +∇2ℜU
k (z)−

∑K
k=1 µk∇2hk(z)

Vϕ

)T

Π(z), (3.9)

where Vϕ ∈ ∂CΦ(µ, h(z)).

4 Levenberg-Marquardt Method

In this section, the transformation problem (3.8) is considered. As the problem involves the
structure for nonsmooth equations, the Levenberg-Marquardt method, as an important op-
timization method, has important applications in solving nonsmooth optimization problems
and related problems (such as [1, 4, 8, 11–14,28]).

Denote dt as the search direction and αt as step size, τ̃t denotes parameter.
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Algorithm 1

Initial: Given starting point z0 ∈ RK(N+2) and τ̃0 > 0. Choose paraments ρ, σ, 0 < ρ, σ < 1.
Let 0 < ε << 1, ∇B(zt) = ∇Π(zt)

TΠ(zt). Set t := 0.
Step 0: If ∥∇B(zt)∥ < ε, stop.
Step 1: Solve the following equation

((∇Π(zt)
T∇Π(zt) + τ̃tI)dt = −∇B(zt),

Set τ̃0 := ∥Π(z0)∥2, where

τ̃t+1 :=


0.1τ̃t , ηt > 0.75,

τ̃t , 0.25 ≤ ηt ≤ 0.75,

10τ̃t , ηt ≤ 0.25.

and ηt =
Π(zt+1)−Π(zt)

(∇Π(zt)TΠ(zt))T dt+
1
2d

T
t (∇Π(zt)TΠ(zt))dt

.

Step 2: Let mt be the minimum nonnegative integer that satisfies the following inequality

B(zt + ρmtdt) ≤ B(zt) + σρmt∇B(zt)
T dt,

where αt = ρmt .
Step 3: Set zt+1 = zt + αtdt. t := t+ 1, return to Step 0.

Now, we get the convergent analysis of the algorithm.

Theorem 4.1. Suppose that {zt} is generated by Algorithm 1. And {zt, τ̃t} → {z∗, τ̃∗}, if
{z∗, τ̃∗} satisfies ∇Π(z∗)T∇Π(z∗)+ τ̃∗I positive definite, z∗ is the stationary point for (3.8).

Proof. Since τ̃t > 0 and dt is descent direction, we know that {ztj} → z∗ satifying

∇ΠT
tj∇Πtj → ∇Π(z∗)T∇Π(z∗),

where τ̃tj → τ̃∗.
And v(∇Π(z∗)T∇Π(z∗) + τ̃∗I)vT > 0, v ∈ Rn, v ̸= 0, if ∇B(z∗) ̸= 0, we have

dtj → d∗ = −[∇Π(z∗)T∇Π(z∗) + τ̃∗I]−1∇Π(z∗)TΠ(z∗),

since d∗ is descent direction of z∗, there exists m∗ ≥ 0 such that

B(z∗ + ρm
∗
d∗) < B(z∗) + σρm

∗
∇B(z∗)T d∗,

where ρ ∈ (0, 1).
When j is sufficiently large, and ztj → z∗, we get

B(ztj + ρm
∗
dtj ) < B(ztj ) + σρm

∗
∇B(ztj )

T dtj .

By line search we know m∗ ≥ mtj , i.e.,

B(ztj+1) = B(ztj + ρmtj dtj )

≤ B(ztj ) + σρmtj∇B(ztj )
T dtj

≤ B(ztj ) + σρm
∗
∇B(ztj )

T dtj ,

(4.1)
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so for j (sufficiently large), we have

B(ztj+1) ≤ B(ztj ) + σρm
∗
∇B(ztj )

T dtj .

Also since when j → ∞,ztj+1 → z∗, we get

lim
j→∞

B(ztj+1) = lim
j→∞

B(ztj ) = B(z∗).

By (4.1), we get

B(z∗) ≤ B(z∗) + σρm
∗
∇B(z∗)T d∗,

which is contradictory with ∇B(z∗)T d∗ < 0. So ∇B(z∗) = 0. The proof is completed.

Corollary 4.2. Since Q in (3.9) is nonsingular. By Theorem 3.1 and Theorem 4.1, we get
z∗ is the KKT point of (3.3), i.e., z∗ is the nondominated solution of (3.1).

In the following, we give the numerical simulation for smart grid with controllable supply.

Example 1. we consider the social welfare of a single period of 24 time periods in the
whole day, and there are 6 commercial users. We take ω = 4, d = 5, ρ = 0.55, σ = 0.4,
ε = 10−4, The cost parameters are set as ak = 0.001, bk = 0, ck = 0. All codes are run in
Matlab Version R2018b. The results of this numerical simulation experiment are given by
the following figures.

Figure 1: Electricity consumption
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Figure 2: Optimal electricity price

Figure 3: Cost of optimal electricity price

From the simulation results, we can see that data obtained meets the actual requirements.
Algorithm 1 can solve the smart grid with controllable supply efficiently. The electricity
consumption and optimal price are shown in Figure 1 and Figure 2. From Figure 1 we can
see that the upper limit periods of the whole day are 8 : 00 ∼ 9 : 00, 14 : 00 ∼ 15 : 00,
18 : 00 ∼ 19 : 00, 20 : 00 ∼ 21 : 00 and the periods of low power consumption in the
whole day are 1 : 00∼ 2 : 00, 6 : 00∼ 7 : 00, 15 : 00∼ 16 : 00, 23 : 00∼ 24 : 00. From
Figure 2, we can see the real-time price for the time division k. We can see the cost, utility
of electricity consumption and the social welfare value in Figure 3-5. From Figure 1-5, we
can conclude that the smart grid can achieve balanced operation for the power grid through
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Figure 4: Utility of optimal electricity price

Figure 5: Social welfare value

timely adjustment and peak load shifting.

5 Conclusion

We propose the model of smart grid with controllable supply based on social welfare max-
imization firstly. Based on KKT conditions of the model, we transform it into semismooth
equation system using NCP function, and then transform into an equivalent unconstrained
optimization problem. We apply Levenberg-Marquardt method to solve it. From the nu-
merical results, it can be seen that Levenberg-Marquardt method can effectively solve this
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problem. Our model can better reflect the real-time multi-user, power supply and demand
relations. The research on this kind of problem further enriches the research work in the
field of real-time price of smart grid based on maximizing social welfare, and it can be used
to solve related optimization problems with interval conditions.
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