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At present, a typical example of paired symmetric tensor is elastic tensor [9, 11]. The
elastic constants of the elastic tensor possess minor and major symmetries. There have been
numerous studies on the fourth-order elastic tensors [10, 13, 17, 18, 24, 28, 33, 36]. The pos-
itive definiteness of elastic tensors and higher-order elastic tensors is called strong ellipticity.
The strong ellipticity property of equilibrium equations is tremendously significant in elas-
ticity theory and has been thoroughly investigated [6, 7, 9, 10, 11, 12, 13, 16, 27, 31, 32, 36].
Owing to its application to higher-order elastic tensors and other domains, the positive def-
initeness of elastic tensors has been an essential topic in discussing the properties of paired
symmetric tensors. However, little research has been done on sixth-order paired symmetric
tensors.

According to references [9, 13, 15, 8, 20, 21] and other pertinent sources, research on
sixth-order paired symmetric tensors is situated at the intersection of advanced mathemat-
ical analysis and applied physics. Theoretical studies have demonstrated that sixth-order
paired symmetric tensors exhibit unique symmetries akin to fourth-order elastic tensors, en-
abling the extension of fundamental properties and determinacy conditions from the fourth
to the sixth order. The practical significance of these tensors lies in their application to
model the mechanical behavior of transversely isotropic elastic materials. In contrast to
fourth-order models, sixth-order tensors offer a more refined representation, intricately link-
ing each component to the six components of stress and strain. This heightened modeling
capability is crucial for comprehending and predicting the intricate responses of materials
in engineering applications. Furthermore, the eigenvalues of sixth-order paired symmetric
tensors are closely linked to their positive definiteness, providing a valuable avenue for deter-
mining physical properties. This relationship facilitates the exploration of the tensors’ pos-
itive definiteness, offering insights into the behavior of materials under different conditions.
The broader context of the study involves the extensive application of high-order tensors in
various scientific and engineering domains. As computational capabilities improve, the ex-
ploration of higher-order tensors becomes increasingly feasible, opening new possibilities for
sophisticated modeling and analysis. In essence, research on sixth-order paired symmetric
tensors contributes to both theoretical intricacies and practical challenges, enriching tensor
analysis and its applications in materials science and engineering.

Motivated by the Cauchy tensor [2, 5, 25] and sixth-order paired symmetric tensor [15],
we discuss a sixth-order Cauchy tensor that satisfies the paired symmetry property. While
previous studies on paired symmetric tensors focused largely on fourth-order elastic ten-
sors, we expand the scope to higher-order tensors by investigating sixth-order paired sym-
metric Cauchy tensors. Because sixth-order Cauchy tensors possess symmetries similar to
those of fourth-order elastic tensors, we extend conditions for the positive definiteness of
elastic tensors to characterize the properties of the sixth-order paired symmetric Cauchy
tensor constructed here. Furthermore, the relationship we establish between the positive
semidefiniteness of these sixth-order Cauchy tensors and the monotonicity of their associ-
ated polynomials could facilitate future investigations into analogous higher-order symmetric
configurations.

On the other hand, higher-order tensor eigenvalues proposed by Lim [19] and Qi [22],
have been an active area of research in recent years [1, 14, 19, 22, 23, 25]. In [10, 24],
the authors introduced the concept of M-eigenvalue for a fourth-order partially symmetric
tensor. In [24], the authors discussed strong ellipticity condition via M-eigenvalues. In [18],
the authors gave sufficient conditions for the M-positive definiteness of partially symmetric
tensors. In [3, 12, 17], the authors studied M-eigenvalue inclusion intervals for a fourth-order
partially symmetric tensor. In [34], Wang, Qi and Zhang propose a practical approach to
determine the largest M-eigenvalue of a fourth-order partially symmetric tensor. In [15],
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the concept of M-eigenvalue was further discussed. The authors extended this concept
and demonstrated the relationship between the M-eigenvalues of sixth-order tensors and
their positive definiteness. While most research on tensor eigenvalues has focused primarily
on fourth-order tensors, this work discusses the M-eigenvalue problem of a higher-order
symmetric tensor. We apply the concept of the M-eigenvalue to the sixth-order Cauchy
tensor, and further discuss related properties. We give three M-eigenvalue inclusion intervals
for a sixth-order Cauchy tensor, which provide upper bound for the M-spectral radius.
Additionally, we discussed the inclusion relationships between the intervals through two
numerical examples.

2 Preliminaries

In this paper, vectors are denoted by lowercase boldface letters, such as x, y, and tensors are
denoted by calligraphic capitals, such as A, B, C. For any x = (x1, x2, · · · , xn)

⊤, x ≥ (>)0
signifies xi ≥ (>)0 for all i ∈ [n], where [n] = {1, 2, · · · , n} for any positive integer n. For
any x = (x1, x2, · · · , xn)

⊤, y = (y1, y2, · · · , yn)⊤, x ≥ y (x ≤ y) means xi ≥ yi (xi ≤ yi )
for all i ∈ [n]. Let R represent the set of reals, Rn signify the n dimensional real Euclidean
space, and Rn

+ denote the set of n dimensional nonnegative vectors. We use Tm,n to signify
the set of mth-order n dimensional real tensors.

Definition 2.1 ([15]). For any B = (bijklpq) ∈ T6,3, if its entries satisfy

bijklpq = bjiklpq = bijlkpq = bijklqp ∀ i, j, k, l, p, q ∈ [3], (2.1)

we call B a paired symmetric tensor. Furthermore, we call the paired symmetric tensor B ∈
T6,3 sixth-order elasticity tensor [11] if its entries satisfy

bijklpq = bklijpq = bijpqkl ∀ i, j, k, l, p, q ∈ [3]. (2.2)

For any tensor B = (bijklpq) ∈ T6,3, the corresponding homogeneous polynomial can be
defined as

Bx2y2z2 =

3∑
i,j,k,l,p,q=1

bijklpqxixjykylzpzq ∀ x,y, z ∈ R3. (2.3)

Definition 2.2 ([25]). Suppose that a real tensor C = (cj1···jm) is defined by

cj1···jm =
1

cj1 + cj2 + · · ·+ cjm
jk ∈ [n], k ∈ [m],

where vector c = (c1, c2, · · · , cn)⊤ ∈ Rn. Then, we call C an mth-order n dimensional
symmetric Cauchy tensor, the vector c ∈ Rn is called the generating vector of C.

From the definition of the Cauchy tensor [25] and fourth-order Cauchy tensor [2], the
sixth-order Cauchy tensor can be represented as follows,

Definition 2.3. Suppose that a real tensor C = (cijklpq) is defined by

cijklpq =
1

ai + aj + bk + bl + cp + cq
i, j ∈ [m], k, l ∈ [n], p, q ∈ [s],

where the vector a = (a1, a2, · · · , am)⊤ ∈ Rm, b = (b1, b2, · · · , bn)⊤ ∈ Rn and c =
(c1, c2, · · · , cs)⊤ ∈ Rs. Then, we say C a sixth-order Cauchy tensor, and the vectors a ∈ Rm,
b ∈ Rn and c ∈ Rs are called the generating vectors of C.
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Obviously, the generating vectors a ∈ Rm,b ∈ Rn and c ∈ Rs should satisfy

ai + aj + bk + bl + cp + cq ̸= 0, i, j ∈ [m], k, l ∈ [n], p, q ∈ [s].

The entries of this sixth-order Cauchy tensor satisfy

cijklpq = cjiklpq = cijlkpq = cijklqp =
1

ai + aj + bk + bl + cp + cq
(2.4)

and

cijklpq = cklijpq = cijpqkl =
1

ai + aj + bk + bl + cp + cq
, (2.5)

where i, j ∈ [m], k, l ∈ [n], p, q ∈ [s]. Thus, it is also a strong paired symmetric tensor.
Furthermore, if a = b = c and m = n = s, the sixth-order paired symmetric Cauchy

tensor reduces to the sixth-order symmetric Cauchy tensor. In the rest of this paper, we
always consider the sixth-order real paired symmetric Cauchy tensor. Therefore, we call
them sixth-order Cauchy tensor for simplicity.

3 Positive Definiteness of Sixth-Order Paired Symmetric Cauchy
Tensor

In this section, we consider the positive definiteness of the sixth-order paired symmetric
Cauchy tensor. We propose several necessary and sufficient conditions under which the
concerned tensors are positive definite.

For any Cauchy tensor C = (cijklpq), the corresponding homogeneous polynomial is
defined by

f(x,y, z) =Cx2y2z2

=
∑

i,j∈[m],k,l∈[n],p,q∈[s]

cijklpqxixjykylzpzq

=
∑

i,j∈[m],k,l∈[n],p,q∈[s]

xixjykylzpzq
ai + aj + bk + bl + cp + cq

,

∀ x ∈ Rm, y ∈ Rn and z ∈ Rs.

(3.1)

Definition 3.1 ([25]). For any vectors x ∈ Rm, y ∈ Rn and z ∈ Rs, the tensor C is called
positive semidefinite if f(x,y, z) ≥ 0. For any vectors x ∈ Rm, x ̸= 0, y ∈ Rn, y ̸= 0
and z ∈ Rs, z ̸= 0, the tensor C is called positive definite if f(x,y, z) > 0. Similarly, for
any vectors x ∈ Rm, y ∈ Rn and z ∈ Rs, the tensor C is called negative semidefinite if
f(x,y, z) ≤ 0. For any vectors x ∈ Rm, x ̸= 0, y ∈ Rn, y ̸= 0 and z ∈ Rs, z ̸= 0, the tensor
C is called negative definite if f(x,y, z) < 0.

First, we give a necessary and sufficient condition under which the concerned tensor is
positive semidefinite.

Theorem 3.2. Let vectors a ∈ Rm, b ∈ Rn and c ∈ Rs be the vectors that generate
the sixth-order Cauchy tensor C. Then, the tensor C is positive semidefinite if and only if
ai + bk + cp > 0 for all i ∈ [m], k ∈ [n], p ∈ [s].

Proof. First, we assume that ai + bk + cp > 0 for all i ∈ [m], k ∈ [n], p ∈ [s]. For any
x ∈ Rm, y ∈ Rn,
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z ∈ Rs, we have

f(x,y, z) =Cx2y2z2

=
∑

i,j∈[m],k,l∈[n],p,q∈[s]

cijklpqxixjykylzpzq

=
∑

i,j∈[m],k,l∈[n],p,q∈[s]

xixjykylzpzq
ai + aj + bk + bl + cp + cq

=
∑

i,j∈[m],k,l∈[n],p,q∈[s]

∫ 1

0

tai+aj+bk+bl+cp+cq−1xixjykylzpzqdt

=

∫ 1

0

(
∑
i∈[m]

tai− 1
6xi)

2(
∑
k∈[n]

tbk−
1
6 yk)

2(
∑
p∈[s]

tcp−
1
6 zp)

2dt

≥0,

which means that the tensor C is positive semidefinite.
Next, let us assume the sixth-order Cauchy tensor C is positive semidefinite. Taking

x = ei ∈ Rm, y = ek ∈ Rn, z = ep ∈ Rs, then,

f(ei, ek, ep) = Ce2i e2ke2p =
1

2(ai + bk + cp)
≥ 0, i ∈ [m], k ∈ [n], p ∈ [s].

where ei, ek and ep are the ith, kth and pth coordinate vectors, respectively. Obviously, we
have ai + bk + cp > 0 for all i ∈ [m], k ∈ [n], p ∈ [s].

Next, we give a necessary and sufficient condition for the sixth-order Cauchy tensor C to
be positive definite.

Theorem 3.3. Let vectors a ∈ Rm, b ∈ Rn and c ∈ Rs be the vectors that generate the sixth-
order Cauchy tensor C. Then, the tensor C is positive definite if and only if ai + bk + cp > 0
for all i ∈ [m], k ∈ [n], p ∈ [s], and the elements of generating vectors a, b, c are mutually
distinct.

Proof. First, suppose that the tensor C is positive definite. Thereby, the tensor C is positive
semidefinite. By Theorem 3.2, ai + bk + cp > 0 for all i ∈ [m], k ∈ [n], p ∈ [s]. Without loss
of generality, we assume that two elements of the vector a are equal, and it can be assumed
that a1 = a2 = ã.

Let x = (1,−1, 0, · · · , 0)⊤ ∈ Rm, y = (1, 0, 0, · · · , 0)⊤ ∈ Rn, and z = (0, 1, 0, · · · , 0)⊤ ∈
Rs. We have:

Cx2y2z2

=
∑

i,j∈[m],k,l∈[n],p,q∈[s]

cijklpqxixjykylzpzq

=
∑

i,j∈[m],k,l∈[n],p,q∈[s]

xixjykylzpzq
ai + aj + bk + bl + cp + cq

=
1

2(ã+ b1 + c2)
(x2

1y
2
1z

2
2 + x1x2y

2
1z

2
2 + x1x2y

2
1z

2
2 + x2

2y
2
1z

2
2)

=
1

2(ã+ b1 + c2)
[1 + (−1) + (−1) + 1]

=0.
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This is in contradiction with the assumption that the tensor C is positive definite. Thus,
the elements of generating vectors a,b, c are mutually distinct.

Next, we assume ai + bk + cp > 0 for all i ∈ [m], k ∈ [n], p ∈ [s], and the elements of
generating vectors a,b, c are mutually distinct. From Theorem 3.2, the sixth-order Cauchy
tensor C is positive semidefinite. Assume that there exists nonzero vectors x ∈ Rm, y ∈ Rn,
and z ∈ Rs such that

f(x,y, z) = Cx2y2z2 = 0

From the proof of Theorem 3.2, we can obtain:∫ 1

0

(
∑
i∈[m]

tai− 1
6xi)

2(
∑
k∈[n]

tbk−
1
6 yk)

2(
∑
p∈[s]

tcp−
1
6 zp)

2dt = 0,

which implies ∑
i∈[m]

tai− 1
6xi = 0 t ∈ (0, 1],

or ∑
k∈[n]

tbk−
1
6 yk = 0 t ∈ (0, 1],

or ∑
p∈[s]

tcp−
1
6 zp = 0 t ∈ (0, 1].

Without losing generality, we assume that:∑
i∈[m]

tai− 1
6xi = 0 t ∈ (0, 1],

that is,

ta1− 1
6x1 + ta2− 1

6x2 + · · ·+ tam− 1
6xm ≡ 0, t ∈ (0, 1].

Thus,

x1 + ta2−a1x2 + · · ·+ tam−a1xm ≡ 0, t ∈ (0, 1].

Due to continuity and the condition that all components of a are mutually distinct, it follows
readily that x1 = 0. Then, we have

x2 + ta3−a2x3 + · · ·+ tam−a2xm ≡ 0, t ∈ (0, 1],

which implies x2 = 0.
By repeating this process, we can gradually obtain:

x1 = x2 = · · · = xm = 0,

this contradicts x ̸= 0. Hence, the sixth-order Cauchy tensor C is positive definite. Thus,
the conclusion is established, and the proof is complete.

Next, we show the relationship between the positive definite of the sixth-order Cauchy
tensor and the monotonicity of a homogeneous polynomial with respect to the proposed
Cauchy tensor. First, we express the definition of the monotonicity of a homogeneous
polynomial with respect to the sixth-order Cauchy tensor.
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Definition 3.4. For any x, x̂ ∈ Rm, y, ŷ ∈ Rn, and z, ẑ ∈ Rs, f(x,y, z) is called monoton-
ically increasing (or monotonically decreasing) if f(x,y, z) ≥ f(x̂, ŷ, ẑ) when x ≥ x̂, y ≥ ŷ,
and z ≥ ẑ (or x ≤ x̂, y ≤ ŷ, and z ≤ ẑ). f(x,y, z) is called strictly monotonically increasing
(or strictly monotonically decreasing) if f(x,y, z) > f(x̂, ŷ, ẑ) when x ≥ x̂, x ̸= x̂, y ≥ ŷ,
y ̸= ŷ and z ≥ ẑ, z ̸= ẑ (or x ≤ x̂, x ̸= x̂, y ≤ ŷ, y ̸= ŷ and z ≤ ẑ, z ̸= ẑ).

Theorem 3.5. Let a ∈ Rm, b ∈ Rn and c ∈ Rs be the vectors that generate the sixth-order
Cauchy tensor C. Then, the sixth-order Cauchy C is positive semidefinite if and only if the
homogeneous polynomial f(x,y, z) is monotonically increasing in Rm

+ × Rn
+ × Rs

+.

Proof. First, when the tensor C is positive semidefinite, suppose x, x̂ ∈ Rm
+ , y, ŷ ∈ Rn

+, z,
ẑ ∈ Rs

+, and x ≥ x̂, y ≥ ŷ, z ≥ ẑ. It can be obtained from Theorem 3.2 that ai+ bk+ cp > 0
for all i ∈ [m], k ∈ [n], p ∈ [s]. Furthermore,

f(x,y, z)− f(x̂, ŷ, ẑ)

=Cx2y2z2 − Cx̂2ŷ2ẑ2

=
∑

i,j∈[m],k,l∈[n],p,q∈[s]

1

ai + aj + bk + bl + cp + cq
(xixjykylzpzq − x̂ix̂j ŷkŷlẑpẑq)

≥0,

which implies that f(x,y, z) is monotonically increasing in Rm
+ × Rn

+ × Rs
+.

On the other hand, if the homogeneous polynomial f(x,y, z) is monotonically increasing
in Rm

+ × Rn
+ × Rs

+. Let x = ei ∈ Rm
+ , x̂ = 0 ∈ Rm

+ , y = ek ∈ Rn
+, ŷ = 0 ∈ Rn

+, and
z = ep ∈ Rs

+, ẑ = 0 ∈ Rs
+, we have

1

2(ai + bk + cp)
= Cxxyyzz = f(x,y, z) ≥ f(x̂, ŷ, ẑ) = Cx̂x̂ŷŷẑẑ = 0,

which implies that ai + bk + cp > 0 for all i ∈ [m], k ∈ [n], p ∈ [s]. By Theorem 3.2, the
tensor C is positive semidefinite and the proof is complete.

Theorem 3.6. Let a ∈ Rm, b ∈ Rn and c ∈ Rs be the vectors that generate the sixth-
order Cauchy tensor C. If the tensor C is positive definite, then the homogeneous polynomial
f(x,y, z) is strictly monotonically increasing in Rm

+ × Rn
+ × Rs

+.

Proof. Suppose the tensor C is positive definite. From Theorem 3.3, we have ai+bk+cp > 0
for all i ∈ [m], k ∈ [n], p ∈ [s]. For any x ≥ x̂, x ̸= x̂, x ∈ Rm

+ , y ≥ ŷ, y ̸= ŷ, y ∈ Rn
+ and

z ≥ ẑ, z ̸= ẑ, z ∈ Rs
+, there exist indexes i0 ∈ [m], k0 ∈ [n], p0 ∈ [s] such that xi0 > x̂i0 ≥ 0,

yk0
> ŷk0

≥ 0 and zp0
> ẑp0

≥ 0.
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Then,

f(x,y, z)− f(x̂, ŷ, ẑ)

=Cx2y2z2 − Cx̂2ŷ2ẑ2

=
∑

i,j∈[m],k,l∈[n],p,q∈[s]
(i,j,k,l,p,q) ̸=(i0,i0,k0,k0,p0,p0)

cijklpq(xixjykylzpzq − x̂ix̂j ŷkŷlẑpẑq)

+ ci0i0k0k0p0p0
(x2

i0y
2
k0
z2p0

− x̂2
i0 ŷ

2
k0
ẑ2p0

)

=
∑

i,j∈[m],k,l∈[n],p,q∈[s]
(i,j,k,l,p,q) ̸=(i0,i0,k0,k0,p0,p0)

1

ai + aj + bk + bl + cp + cq
(xixjykylzpzq − x̂ix̂j ŷkŷlẑpẑq)

+
1

2(ai0 + bk0
+ cp0

)
(x2

i0y
2
k0
z2p0

− x̂2
i0 ŷ

2
k0
ẑ2p0

)

>0.

That is, the homogeneous polynomial f(x,y, z) is strictly monotonically increasing in Rm
+ ×

Rn
+ × Rs

+.

Next, we propose an example to show the strictly monotonically increasing property of
the polynomial f(x,y, z) is not a sufficient condition for the positive definiteness of the
sixth-order Cauchy tensor.

Example 3.7. Let A be a sixth-order Cauchy tensor with generating vectors a = (3, 3, 3)⊤,
b = (6, 6, 6, 6)⊤ and c = (9, 9, 9, 9)⊤. Then, we have

aijklpq =
1

2(3 + 6 + 9)
=

1

36
, i, j ∈ [3], k, l, p, q ∈ [4]

and the homogeneous polynomial

f(x,y, z) = Ax2y2z2 =
1

36

∑
i,j∈[3],k,l∈[4],p,q∈[4]

xixjykylzpzq.

It can be readily verified that the polynomial f(x,y, z) is strictly monotonically increas-
ing in R3

+ ×R4
+ ×R4

+. However, according to Theorem 3.3, the tensor A does not qualify as
positive definite.

4 M-Eigenvalue and M-Eigenvalue Inclusion Intervals

In this section, we apply the concept of M-eigenvalue for the sixth-order three dimensional
paired symmetric tensor introduced in Huang and Qi [15] to the sixth-order Cauchy tensor
C with generating vectors a ∈ Rm,b ∈ Rn and c ∈ Rs. Then we discuss several related
properties.

For any sixth-order Cauchy tensor C, the corresponding homogeneous polynomial is given
in (3.1). For any x ∈ Rm, y ∈ Rn and z ∈ Rs, We can represent Cxyyzz, Cxxyzz, Cxxyyz



POSITIVE DEFINITENESS OF SIXTH-ORDER CAUCHY TENSORS 259

as follows

(Cxyyzz)i :=
∑

j∈[m],k,l∈[n],p,q∈[s]

cijklpqxjykylzpzq, ∀i ∈ [m],

(Cxxyzz)k :=
∑

i,j∈[m],l∈[n],p,q∈[s]

cijklpqxixjylzpzq, ∀k ∈ [n],

(Cxxyyz)p :=
∑

i,j∈[m],k,l∈[n],q∈[s]

cijklpqxixjykylzq, ∀p ∈ [s].

(4.1)

Obviously, for any x ∈ Rm, y ∈ Rn and z ∈ Rs, we have

⟨x, Cxyyzz⟩ = Cxxyyzz, ⟨y, Cxxyzz⟩ = Cxxyyzz, ⟨z, Cxxyyz⟩ = Cxxyyzz.

Definition 4.1 ([15]). For any sixth-order Cauchy tensor C, if there exist x ∈ Rm, y ∈ Rn

and z ∈ Rs and λ ∈ R such that 

Cxyyzz = λx,
Cxxyzz = λy,
Cxxyyz = λz,
x⊤x = 1,
y⊤y = 1,
z⊤z = 1,

(4.2)

where (Cxyyzz)i, (Cxxyzz)k, and (Cxxyyz)p are defined in (4.1). Then, we call λ an
M-eigenvalue of C, and x, y, z are the eigenvectors of C associated with λ.

According to Theorem 3.2 in reference [15], we know that for any sixth-order Cauchy
tensor C generated by the vectors a ∈ Rm, b ∈ Rn and c ∈ Rs, its M-eigenvalue always
exists. Moreover, if x, y, z are the eigenvectors of C associated with the M-eigenvalue λ,
then, λ = Cxxyyzz.

Furthermore, we also know that a sixth-order Cauchy tensor C with generating vectors
a ∈ Rm, b ∈ Rn and c ∈ Rs is positive definite if and only if the smallest M-eigenvalue of C
is positive.

Theorem 4.2. Let C be a sixth-order Cauchy tensor with generating vectors a ∈ Rm, b ∈ Rn

and c ∈ Rs, and the elements of a, b, c are mutually distinct. If λ is an M-eigenvalue of
the tensor C with eigenvectors x ∈ Rm

+\{0}, y ∈ Rn
+\{0}, z ∈ Rs

+\{0}, then, λ ̸= 0.

Proof. We employ a proof by contradiction by assuming that the tensor C has an M-
eigenvalue λ = 0 with eigenvector z. Since z ≥ 0 and z ̸= 0, there exists at least one
nonzero element zd > 0.

Combining (4.1) and (4.2), it follows that

λzd = 0 =(Cxxyyz)d
=

∑
i,j∈[m],k,l∈[n],p∈[s]

cijklpdxixjykylzp

=
∑

i,j∈[m],k,l∈[n],p∈[s]

xixjykylzp
ai + aj + bk + bl + cp + cd

=
∑

i,j∈[m],k,l∈[n],p∈[s]

∫ 1

0

tai+aj+bk+bl+cp+cd−1xixjykylzpdt

=

∫ 1

0

(
∑
i∈[m]

tai− 1
6xi)

2(
∑
k∈[n]

tbk−
1
6 yk)

2(
∑
p∈[s]

tcp−
1
6 zp)t

cd− 1
6 dt.
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It can be concluded that

(
∑
i∈[m]

tai− 1
6xi)

2(
∑
k∈[n]

tbk−
1
6 yk)

2(
∑
p∈[s]

tcp−
1
6 zp) = 0, t ∈ (0, 1].

Thus, ∑
i∈[m]

tai− 1
6xi = 0, t ∈ (0, 1],

or
∑
k∈[n]

tbk−
1
6 yk = 0, t ∈ (0, 1],

or
∑
p∈[s]

tcp−
1
6 zp = 0, t ∈ (0, 1].

Without losing generality, we assume that
∑

p∈[s]

tcp−
1
6 zp = 0, t ∈ (0, 1], that is,

tc1−
1
6 z1 + tc2−

1
6 z2 + · · ·+ tcs−

1
6 zs = 0, t ∈ (0, 1].

Hence,
z1 + tc2−c1z2 + · · ·+ tcs−c1zs = 0, t ∈ (0, 1].

By the continuity and the condition that all components of c are mutually distinct, it follows
that z1 = 0. Then we have

z2 + tc3−c2z3 + · · ·+ tcs−c2zs = 0, t ∈ (0, 1],

which implies z2 = 0.
By repeating the above process, we have

z1 = z2 = · · · = zs = 0,

which is a contradiction with z ̸= 0. Hence, the sixth-order Cauchy tensor C has no zero
M-eigenvalue. Similarly, if x ≥ 0, x ̸= 0 or y ≥ 0, y ̸= 0, we can also obtain that the
sixth-order Cauchy tensor C has no zero M-eigenvalue, and the desired result holds.

Next, we shall present a theorem concerning the M-eigenvalue inclusion interval of the
sixth-order Cauchy tensor. Denote σ(C) as the spectrum of tensor C, which contains all
M-eigenvalues of tensor C. The spectral radius ρ(C) of tensor C is defined as

ρ(C) = {max | λ |: λ ∈ σ(C)}.

Theorem 4.3. Suppose C = (cijklpq) is a sixth-order Cauchy tensor with generating vectors
a ∈ Rm, b ∈ Rn and c ∈ Rs. If λ is an M-eigenvalue of C, then,

λ ∈ σ(C) ⊆Φ(C)
={z ∈ C : |z| ≤ min{max

i∈[m]
{Ri(C)},max

k∈[n]
{Sk(C)},max

p∈[s]
{Tp(C)}},

where

Ri(C) =
∑
j∈[m]

∑
k,l∈[n]

∑
p,q∈[s]

| 1

ai + aj + bk + bl + cp + cq
|,

Sk(C) =
∑

i,j∈[m]

∑
l∈[n]

∑
p,q∈[s]

| 1

ai + aj + bk + bl + cp + cq
|,

Tp(C) =
∑

i,j∈[m]

∑
k,l∈[n]

∑
q∈[s]

| 1

ai + aj + bk + bl + cp + cq
|.
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Proof. Let λ be an M-eigenvalue of tensor C with eigenvectors x ∈ Rm\{0}, y ∈ Rn\{0},
z ∈ Rs\{0}. Since x⊤x = 1, y⊤y = 1, z⊤z = 1, there exists index u ∈ [m], v ∈ [n], w ∈ [s],
such that

0 < |xu| = max
i∈[m]

{|xi|} ≤ 1,

0 < |yv| = max
k∈[n]

{|yk|} ≤ 1,

0 < |zw| = max
p∈[s]

{|zp|} ≤ 1.

(4.3)

From (4.1) and (4.2), we can obtain

λxu = (Cxyyzz)u

=
∑
j∈[m]

∑
k,l∈[n]

∑
p,q∈[s]

xjykylzpzq
au + aj + bk + bl + cp + cq

. (4.4)

Taking absolute values on both sides of (4.4), using inequality (4.3) above, we obtain

|λ||xu| = |(Cxyyzz)u|

≤
∑
j∈[m]

∑
k,l∈[n]

∑
p,q∈[s]

| xu

au + aj + bk + bl + cp + cq
|. (4.5)

Thus,

|λ| ≤
∑
j∈[m]

∑
k,l∈[n]

∑
p,q∈[s]

| 1

au + aj + bk + bl + cp + cq
| = Ru(C) ≤ max

i∈[m]
{Ri(C)}. (4.6)

In the same way, the vth equation of

λy = Cxxyzz

is

λyv = (Cxxyzz)v

=
∑

i,j∈[m]

∑
l∈[n]

∑
p,q∈[s]

xixjylzpzq
ai + aj + bv + bl + cp + cq

. (4.7)

Taking absolute values on both sides of (4.7), using inequality (4.3) above, we can obtain

|λ||yv| = |(Cxxyzz)v|

≤
∑

i,j∈[m]

∑
l∈[n]

∑
p,q∈[s]

| yv
ai + aj + bv + bl + cp + cq

|. (4.8)

Thus,

|λ| ≤
∑

i,j∈[m]

∑
l∈[n]

∑
p,q∈[s]

| 1

ai + aj + bv + bl + cp + cq
| = Sv(C) ≤ max

k∈[n]
{Sk(C)}. (4.9)

The wth equation of
λz = Cxxyyz
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is

λzw = (Cxxyyz)w

=
∑

i,j∈[m]

∑
k,l∈[n]

∑
q∈[s]

xixjykylzq
ai + aj + bk + bl + cw + cq

. (4.10)

Taking absolute values on both sides of (4.10), using inequality (4.3) above, we obtain

|λ||zw| = |(Cxxyyz)w|

≤
∑

i,j∈[m]

∑
k,l∈[n]

∑
q∈[s]

| zw
ai + aj + bk + bl + cw + cq

|. (4.11)

Thus,

|λ| ≤
∑

i,j∈[m]

∑
k,l∈[n]

∑
q∈[s]

| 1

ai + aj + bk + bl + cw + cq
| = Tw(C) ≤ max

p∈[s]
{Tp(C)}. (4.12)

Combined with (4.6), (4.9) and (4.12), we have

|λ| ≤ min{max
i∈[m]

{Ri(C)},max
k∈[n]

{Sk(C)},max
p∈[s]

{Tp(C)}}.

Thus, λ ∈ Φ(C), and the desired result holds.

Theorem 4.4. Suppose C = (cijklpq) is a sixth-order Cauchy tensor with generating vectors
a ∈ Rm, b ∈ Rn and c ∈ Rs. If λ is an M-eigenvalue of C, then,

λ ∈ σ(C) ⊆ Ψ(C) = U(C)
∩

V (C)
∩

W (C),

where

U(C) =
∪

i∈[m]

(
∩

j∈[m],j ̸=i

Ui,j(C)),

Ui,j(C) = {z ∈ C : (|z| − (Ri(C)−Rj
i (C)))|z| ≤ Rj

i (C)Rj(C)},

Ri(C) =
∑

j∈[m],k,l∈[n],p,q∈[s]

| 1

ai + aj + bk + bl + cp + cq
|,

Rj
i (C) =

∑
k,l∈[n],p,q∈[s]

| 1

ai + aj + bk + bl + cp + cq
|.

V (C) =
∪

k∈[n]

(
∩

l∈[n],l ̸=k

Vk,l(C)),

Vk,l(C) = {z ∈ C : (|z| − (Sk(C)− Sl
k(C)))|z| ≤ Sl

k(C)Sl(C)},

Sk(C) =
∑

i,j∈[m],l∈[n],p,q∈[s]

| 1

ai + aj + bk + bl + cp + cq
|,

Sl
k(C) =

∑
i,j∈[m],p,q∈[s]

| 1

ai + aj + bk + bl + cp + cq
|.
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W (C) =
∪
p∈[s]

(
∩

q∈[s],q ̸=p

Wp,q(C)),

Wp,q(C) = {z ∈ C : (|z| − (Tp(C)− T q
p (C)))|z| ≤ T q

p (C)Tq(C)},

Tp(C) =
∑

i,j∈[m],k,l∈[n],q∈[s]

| 1

ai + aj + bk + bl + cp + cq
|,

T q
p (C) =

∑
i,j∈[m],k,l∈[n]

| 1

ai + aj + bk + bl + cp + cq
|.

Proof. Let λ be an M-eigenvalue of tensor C with eigenvectors x ∈ Rm\{0}, y ∈ Rn\{0},
z ∈ Rs\{0}. Since x⊤x = 1, there exists an index u ∈ [m] such that

|xu| = max
i∈[m]

{|xi|} > 0.

Therefore,

λxu =(Cxyyzz)u

=
∑

j∈[m],k,l∈[n],p,q∈[s]

xjykylzpzq
au + aj + bk + bl + cp + cq

=
∑

j∈[m],j ̸=t,k,l∈[n],p,q∈[s]

xjykylzpzq
au + aj + bk + bl + cp + cq

+
∑

k,l∈[n],p,q∈[s]

xtykylzpzq
au + at + bk + bl + cp + cq

,

where t ∈ [m], t ̸= u, which is equivalent to

|λ| ≤
∑

j∈[m],j ̸=t,k,l∈[n],p,q∈[s]

| 1

au + aj + bk + bl + cp + cq
|

+
∑

k,l∈[n],p,q∈[s]

| 1

au + at + bk + bl + cp + cq
| |xt|
|xu|

.

(4.13)

If |xt| = 0, then,

|λ| −
∑

j∈[m],j ̸=t,k,l∈[n],p,q∈[s]

| 1

au + aj + bk + bl + cp + cq
| ≤ 0,

which implies λ ∈ Uu,t(C) ⊆ U(C).
If |xt| > 0, we have

λxt = (Cxyyzz)t =
∑

j∈[m],k,l∈[n],p,q∈[s]

xjykylzpzq
at + aj + bk + bl + cp + cq

,

then,

|λ| ≤
∑

j∈[m],k,l∈[n],p,q∈[s]

| 1

at + aj + bk + bl + cp + cq
||xj

xt
|

≤
∑

j∈[m],k,l∈[n],p,q∈[s]

| 1

at + aj + bk + bl + cp + cq
||xu

xt
|.

(4.14)
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Multiplying (4.13) and (4.14) yields

(|λ| −
∑

j∈[m],j ̸=t,k,l∈[n],p,q∈[s]

| 1

au + aj + bk + bl + cp + cq
|)|λ|

≤
∑

k,l∈[n],p,q∈[s]

| 1

au + at + bk + bl + cp + cq
|

∑
j∈[m],k,l∈[n],p,q∈[s]

| 1

at + aj + bk + bl + cp + cq
|.

Consequently,
(|λ| − (Ru(C)−Rt

u(C)))|λ| ≤ Rt
u(C)Rt(C),

which implies λ ∈ Uu,t(C). Due to the arbitrariness of t, it follows that λ ∈
∩

j∈[m],j ̸=i

Ui,j(C),

and hence λ ∈
∪

i∈[m]

(
∩

j∈[m],j ̸=i

Ui,j(C)).

Similar to above, we can obtain

λ ∈
∪

k∈[n]

(
∩

l∈[n],l ̸=k

Vk,l(C)) and λ ∈
∪
p∈[s]

(
∩

q∈[s],q ̸=p

Wp,q(C)).

Thus, λ ∈ Ψ(C) = U(C)
∩
V (C)

∩
W (C), and the desired result holds.

The following conclusion will show the relationship between σ(C), Φ(C) and Ψ(C).

Theorem 4.5. Let C be defined as in Theorem 4.3 and Theorem 4.4. Then,

σ(C) ⊆ Ψ(C) ⊆ Φ(C).

Proof. By Theorem 4.3 and Theorem 4.4, we only need to prove Ψ(C) ⊆ Φ(C). Without loss
of generality, for any λ ∈ Ψ(C), there exists an index u ∈ [m], such that λ ∈ Uu,t(C), for all
t ̸= u. Then,

(|λ| − (Ru(C)−Rt
u(C)))|λ| ≤ Rt

u(C)Rt(C).
Obviously, according to the conditions described in Theorem 4.4, Rt

u(C) > 0, Rt(C) > 0 and
Rt

u(C)Rt(C) > 0. Thus,
|λ| − (Ru(C)−Rt

u(C))
Rt

u(C)
|λ|

Rt(C)
≤ 1,

which implies
|λ| − (Ru(C)−Rt

u(C))
Rt

u(C)
≤ 1,

or
|λ|

Rt(C)
≤ 1.

Therefore, we can obtain |λ| ≤ Ru(C) or |λ| ≤ Rt(C). Thus, λ ∈ Φ(C). As a result,
σ(C) ⊆ Ψ(C) ⊆ Φ(C). The proof is complete.

Next, we validate the inclusion relationships between the intervals through two numerical
examples.

Example 4.6. We consider a sixth-order paired symmetric Cauchy tensor with generating
vectors a = (1, 6, 9)⊤, b = (2, 9, 15)⊤, and c = (16, 6, 9)⊤. According to Theorem 4.3, we
can compute the range of λ by designing the corresponding program, λ ∈ σ(C) ⊆ Φ(C) =
{z : |z| ≤ 5.79315445223860}. According to Theorem 4.4, by designing the corresponding
computational program, we can determine that the range of λ is λ ∈ σ(C) ⊆ Ψ(C) =
U(C)

∩
V (C)

∩
W (C) = (−1.67611448534124, 5.79315445223860). Obviously, Ψ(C) ⊆ Φ(C).
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Example 4.7. We consider a sixth-order paired symmetric Cauchy tensor with gener-
ating vectors a = (3, 8, 29)⊤, b = (2, 9, 15, 26)⊤, and c = (16, 6, 9, 35)⊤. According to
Theorem 4.3, we can compute the range of λ by designing the corresponding program,
λ ∈ σ(C) ⊆ Φ(C) = {z : |z| ≤ 8.54677573831066}. According to Theorem 4.4, by de-
signing the corresponding computational program, we can determine that the range of λ
is λ ∈ σ(C) ⊆ Ψ(C) = U(C)

∩
V (C)

∩
W (C) = (−1.61376831328198, 8.54677573831066).

Obviously, Ψ(C) ⊆ Φ(C).

Below, based on the polynomial structural characteristics of the sixth-order Cauchy
tensor C, we also obtained a bound for its M-eigenvalue.

Theorem 4.8. Suppose C = (cijklpq) is a sixth-order Cauchy tensor with generating vectors
a ∈ Rm, b ∈ Rn and c ∈ Rs. If λ is an M-eigenvalue of C, then

|λ| ≤ mnsL(a, b, c),

where

L(a, b, c) = max{ 1

|ai + aj + bk + bl + cp + cq|
}.

Proof. Let λ be an M-eigenvalue of the tensor C with eigenvectors x ∈ Rm\{0}, y ∈ Rn\{0},
z ∈ Rs\{0}, then

|λ| =|Cxxyyzz|

=|
m∑

i,j=1

n∑
k,l=1

s∑
p,q=1

xixjykylzpzq
ai + aj + bk + bl + cp + cq

|

≤
m∑

i,j=1

n∑
k,l=1

s∑
p,q=1

|xi||xj ||yk||yl||zp||zq|
|ai + aj + bk + bl + cp + cq|

≤L(a,b, c)

m∑
i,j=1

n∑
k,l=1

s∑
p,q=1

|xi||xj ||yk||yl||zp||zq|

=L(a,b, c)∥x∥21∥y∥21∥z∥21
≤mnsL(a,b, c),

where

L(a,b, c) =max{ 1

|ai + aj + bk + bl + cp + cq|
}.

Next, we use the method of Theorem 4.8 to calculate Example 4.6 and Example 4.7.
In Example 4.6, the generating vectors of the tensor C are a = (1, 6, 9)⊤, b = (2, 9, 15)⊤,

and c = (16, 6, 9)⊤. Then L(a,b, c) = 1
18 . Hence, |λ| ≤ 3×3×3

18 = 1.5.
In Example 4.7, the generating vectors of the tensor C are a=(3, 8, 29)⊤,b=(2, 9, 15, 26)⊤,

and c = (16, 6, 9, 35)⊤. Then L(a,b, c) = 1
22 . Hence, |λ| ≤ 3×4×4

22 ≈ 2.18.
Clearly, from the comparison of the numerical examples in Theorem 4.8 and Theorem

4.4, the obtained eigenvalue intervals do not always represent absolute inclusion relations.
However, the interval length obtained using Theorem 4.8 is slightly smaller than the one
obtained using Theorem 4.4, and the computation process of Theorem 4.8 is simpler.
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5 Conclusions

In this paper, we consider a sixth-order Cauchy tensor. First, according to the structural
characteristics of the sixth-order Cauchy tensor, some conditions for judging the positive
definiteness of the sixth-order Cauchy tensor are given. In other words, we obtain the strong
elliptic condition of the sixth-order Cauchy tensor. Moreover, we show the relationship
between the positive definiteness of the sixth-order Cauchy tensor and the monotonicity of
a homogeneous polynomial with respect to the proposed Cauchy tensor. In addition, we
apply the concept of the M-eigenvalue to the sixth-order paired symmetric Cauchy tensor,
and further discuss related properties. We give three M-eigenvalue inclusion intervals for
the sixth-order paired symmetric Cauchy tensor, and the inclusion relations between them
are also discussed.
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