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Over the past few decades, there has been a prolific development of numerical methods
aimed at solving the SFP and its multiple-sets variant (MSFP). Byrne firstly developed
the CQ algorithm to solve the SFP, successfully applying it within signal processing and
image reconstruction [1, 2]. Subsequently, a group of enhanced and relaxed CQ algorithms
were developed for SFP [24, 17, 11, 21, 10], as well as the comprehensive analyses of their
convergence [8, 16].

Concurrently, building upon the fundamental work of Censor et al. in solving MSFP [4],
several projection methods have been designed to address this kind of problem [29, 30, 19],
along with the development of self-adaptive projection techniques for MSFP [26, 28, 22].
Additionally, a lot of effective and efficient methods have been investigated to solve MSFPs
in the last two decades. For instance, the variable Krasnosel’skĭı-Mann algorithm by Xu [23],
the efficient simultaneous for the constrained MSFP by Zhang et al. [27], the self-adaptive
CQ algorithm by He et al. [14], the successive projection algorithm by Qu and Chang [18],
the relaxed CQ algorithm involving the inertial technique by Suantai et al. [20], and so
on. Expanding beyond MSFP, self-adaptive projection methods have also been developed
to solve the nonlinear MSFP [15, 13].

Throughout this paper, we assume that the solution set of MSFP (1.1) is nonempty. By
defining a merit function

q(x) =
1

2

s∑
i=1

αi ∥x− PCi
(x)∥2 + 1

2

t∑
j=1

βj

∥∥Ax− PQj
(Ax)

∥∥2 , (1.3)

with

s∑
i=1

αi +

t∑
j=1

βj = 1, αi > 0, βj > 0,

we can see that the MSFP (1.1) is equivalent to the minimization problem

min
x∈Ω

q(x), (1.4)

where Ω is an auxiliary closed convex set. It is known that the merit function q(x) is
continuously differentiable, and its gradient is given by

∇q(x) =
s∑

i=1

αi (x− PCi
(x)) +

t∑
j=1

βjA
T
(
Ax− PQj

(Ax)
)
.

Consequently, a projection algorithm can be established to solve the optimization problem
(1.4) with the following procedure, i.e.,

xk+1 = PΩ (xk − γ∇q(x))

= PΩ

xk − γ

 s∑
i=1

αi (x− PCi
(xk)) +

t∑
j=1

βjA
T
(
Axk − PQj

(Axk)
) (1.5)

for proper selection of γ > 0. It has been proved that the convergence of algorithm (1.5)
is attainable, provided that the condition 0 < γ < 2/L0 is met, where L0 represents the
Lipschitz constant of ∇q. In other words,

L0 =

s∑
i=1

αi + L

t∑
j=1

βj ,
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where L = ρ(ATA) denotes the spectral radius of ATA. This is essentially the projection
method proposed by Censor et al. [4] for solving the MSFP.

Considering the computational aspects involved in the projection step outlined in (1.5),
it’s noteworthy that s+ t projection operations are executed to compute the gradient ∇q at
each iteration. As a consequence of this, the iterative sequences {xk} and {Axk} follow a
trajectory converging towards a solution pair (x∗, Ax∗) of (1.1) along what we can refer to as
the “straight path”, as depicted by the red star points in Figure 1. However, as the sequences
approach the solution, the degree of improvement becomes limited. This phenomenon can
likely be attributed to the cumulative influence of all the terms in the objective function
q(x), which involve ∥x− PCi

(x)∥, i = 1, 2, . . . , s, and ∥Ax− PQj
(Ax)∥, j = 1, 2, . . . , t.
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Figure 1: Convergent trajectories of iterative sequences by projection method and projection
method integrated with selection technique for MSFP.

Recently, based on the insight captured from the fact that x solves (1.1) if and only if it
is the zero point of

q̄(x) =
1

2

∥∥x− PCimax
(x)

∥∥2 + 1

2

∥∥Axk − PQjmax
(Axk)

∥∥2 , (1.6)

where

imax ∈
{
i
∣∣∣ max
1≤i≤s

∥x− PCi
(x)∥

}
, jmax ∈

{
j
∣∣∣ max
1≤j≤t

∥∥Ax− PQj
(Ax)

∥∥} , (1.7)

Yao et al. [25] introduced a novel selection technique aimed at enhancing the projection
method’s efficiency for solving the MSFP (1.1). At each iteration, the selection technique
identifies two sets, namely, Cimax

and Qjmax
, which have the greatest distances from the cur-

rent points xk and Axk, respectively. Subsequently, it formulates a simplified optimization
problem with the objective function defined in (1.6). The new candidate point, denoted
as xk+1, can be obtained by solving this reduced optimization problem. The iteration se-
quences, depicted as green circles in Figure 1, converge more quickly, which implies that the
selection technique results in a faster rate of convergence compared to the standard projec-
tion method. Whereas it’s important to note that this method still encounters challenges in
achieving rapid convergence as the sequences {xk} and {Axk} approach the solution points
x∗ and Ax∗.

It’s worth reiterating that the selection technique represents a constructive strategy for
transforming the MSFP into a set of SFPs, a transformation that undeniably simplifies the
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original optimization challenge. Furthermore, existing empirical evidence in the literature
underscores the effectiveness and efficiency of the CQ algorithm when employed to address
SFPs, as illustrated in the example shown in Figure 2. Consequently, the utilization of
the CQ algorithm to solve the SFP subproblem at each iteration is a valid and justified
approach.
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Figure 2: Convergent trajectory of iterative sequence by CQ algorithm for SFP.

In this paper, we propose an extended CQ algorithm integrated with a selection tech-
nique to solve the MSFP. The core of our approach lies in the construction of a SFP within
the framework of the MSFP at each iteration through the application of the selection tech-
nique. Subsequently, we utilize the CQ algorithm to solve the resultant SFP, presenting the
corresponding convergence results. To substantiate the practical efficiency of our extended
CQ algorithm, we create a series of illustrative examples. Our experimental results firmly
establish the advantages of the proposed method, evident from both a reduced number of
iterations required and decreased computational costs.

The rest of this paper is organized as follows. Section 2 provides an intricate exposition of
the extended CQ algorithm, augmented by the selection technique for MSFP. In Section 3, we
establish the convergence results for the proposed extended CQ algorithm. To corroborate
the performance of our proposed algorithm, Section 4 offers a set of illustrative examples.
Finally, we conclude this paper with some concluding remarks in Section 5.

2 The Extended CQ Algorithm

In this section, we begin by revisiting fundamental properties of the projection operator,
as previously discussed. Following this, we delve into the presentation of the extended CQ
algorithm, integrated with the selection technique for the solving of MSFP.

Let Rn be an n-dimensional Euclidean space, ⟨·, ·⟩ be the inner product in Rn, and
∥x∥ =

√
⟨x, x⟩ be the ℓ2-norm in Rn. In the following, we first recall some fundamental

properties of the projection operator from Rn onto a set Ω ⊂ Rn defined by

PΩ(x) = argmin
z∈Ω

∥z − x∥ (2.1)

in summary.

Lemma 2.1. Let Ω ⊂ Rn be a nonempty closed convex set, for any x, y ∈ Rn and z ∈ Ω,
the following properties hold:
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(1) x ∈ Ω ⇔ PΩ(x) = x,

(2) ⟨x− PΩ(x), z − PΩ(x)⟩ ≤ 0,

(3) ∥PΩ(x)− PΩ(y)∥2 ≤ ⟨x− y, PΩ(x)− PΩ(y)⟩,

(4) ∥PΩ(x)− z∥2 ≤ ∥x− z∥2 − ∥PΩ(x)− x∥2,

(5) ∥PΩ(x)− PΩ(y)∥ ≤ ∥x− y∥.

Proof. See proof by Facchinei and Pang in [12]. □

Lemma 2.2. For any nonempty closed convex set Ω ⊂ Rn, the inequality (5) in Lemma 2.1
holds with equality only if the following condition holds, i.e.,

∥PΩ(x)− x∥ = ∥PΩ(y)− y∥.

Proof. See proof by Cheney and Goldstein in [9]. □

Denote by Cimax
and Qjmax

the selected sets with greatest distances from x and Ax,
respectively, we establish a constrained optimization problem for the MSFP as

min
x∈Cimax

p(x), (2.2)

where the merit function is defined as

p(x) =
1

2

∥∥Ax− PQjmax
(Ax)

∥∥2 . (2.3)

It is noted that the merit function p(x) defined in (2.3) is continuously differentiable [4], and
its gradient is given by

∇p(x) = AT (I − PQjmax
)Ax. (2.4)

In addition, the above gradient function ∇p(x) is Lipschitz continuous with constant L.
Below, we present the extended CQ algorithm for solving MSFP in detail.

Algorithm 1 Extended CQ algorithm for MSFP

Initialization. Given ε > 0, 0 < γ < 2/L, and an initial point x0, set k = 0.
Step 1. Select sets Cimax and Qjmax with greatest distances from xk and Axk, and record

the index pair {ik, jk}.
Step 2. Compute {

zk = PCik
(xk),

yk = AT (I − PQjk
)Axk.

(2.5)

Step 3. If

∥xk + yk − zk∥ < ε, (2.6)

return xk; otherwise, set

xk+1 = PCik

(
xk + γAT (PQjk

− I)Axk

)
. (2.7)

Step 4. Set k = k + 1, and go to Step 1.
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In the context of Step 2 within the preceding Algorithm 1, we introduce a temporary
iteration point denoted as zk. This intermediary point assumes a pivotal role in the formu-
lation of the stopping criteria, as detailed in Step 3. To elucidate the connection between
the solution of the MSFP denoted as (1.1), and the stipulated stopping rule denoted as (2.6)
in Algorithm 1, we present the following lemma.

Lemma 2.3. The iteration point xk generated by Algorithm 1 is a solution of MSFP (1.1)
if and only if

∥xk + yk − zk∥ = 0. (2.8)

Proof. First, assume the equality (2.8) holds, for any z ∈ C be a solution of MSFP (1.1), it
follows

0 = ⟨xk + yk − zk, xk − z⟩
= ⟨xk − PCik

(xk), xk − z⟩+ ⟨AT (I − PQjk
)Axk, xk − z⟩

= ⟨xk − PCik
(xk), xk − z⟩+ ⟨Axk − PQjk

(Axk), Axk −Az⟩
= ⟨xk − PCik

(xk), xk − PCik
(xk)⟩+ ⟨xk − PCik

(xk), PCik
(xk)− z⟩

+⟨Axk − PQjk
(Axk), Axk − PQjk

(Axk)⟩+ ⟨Axk − PQjk
(Axk), PQjk

(Axn)−Az⟩
≥ ∥xk − PCik

(xk)∥2 + ∥Axk − PQjk
(Axk)∥2,

the last inequality is obtained by the second property in Lemma 2.1. Then we have

∥xk − PCik
(xk)∥ = 0 and ∥Axk − PQjk

(Axk)∥ = 0. (2.9)

According to the definitions of ik and jk, from (2.9) it follows that

∥xk − PCi
(xk)∥ = 0, 1 ≤ i ≤ s, and ∥Axk − PQj

(Axk)∥ = 0, 1 ≤ j ≤ t.

Hence

xk ∈
s⋂

i=1

Ci, Axk ∈
t⋂

j=1

Qj , (2.10)

which implies that xk is a solution of MSFP (1.1).
Conversely, let xk be a solution of MSFP (1.1), then condition (2.10) holds, and

PCik
(xk) = xk, PQjk

(Axk) = Axk.

From (2.5), we get

zk = PCik
(xk) = xk,

and

yk = AT (I − PQjk
)Axk = AT

(
Axk − PQjk

Axk

)
= 0.

Therefore,

xk + yk − zk = 0,

which completes the proof.
□
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As stipulated by Lemma 2.3, it becomes evident that condition (2.8) can be interpreted
as an optimality criterion for the MSFP (1.1). Therefore, adopting rule (2.6) as the ter-
mination criteria for the extended CQ algorithm carries significant meaning and relevance.
Furthermore, it’s noteworthy that the convergence results of the classical CQ algorithm have
been well-established under the condition that the relaxation parameter γ falls within the
range of (0, 2/L) [1]. In a similar vein, we can confidently establish the convergence result
of the proposed extended CQ Algorithm 1 under the same conditions.

3 Convergence Analysis

In this section, we will delve into the convergence analysis of the proposed Algorithm 1.
The foundation for this analysis will be built upon the convergence framework established
for the CQ algorithm, as expounded in [1].

Denote by

S(x) = x+ γAT (PQ − I)Ax, (3.1)

and

Sj(x) = x+ γAT (PQj − I)Ax, j = 1, 2, . . . , t, (3.2)

the iterative scheme (2.7) in Algorithm 1 can be rewritten as

xk+1 = PCik
(Sjk(xk)).

Lemma 3.1. Suppose A has full column rank, then the vector ĉ ∈ C is a fixed point of
mapping S, i.e., S(ĉ) = ĉ if and only if ĉ is a minimizer of function ∥PQ(Ac)−Ac∥ defined
on C, and the minimum value is zero.

Proof. Assume that ĉ minimizes the function ∥PQ(Ac)−Ac∥ over c ∈ C with the minimum
value zero, i.e.,

∥PQ(Aĉ)−Aĉ∥ = 0,

which means

PQ(Aĉ) = Aĉ.

Therefore

S(ĉ) = ĉ+ γAT (PQ(Aĉ)−Aĉ) = ĉ.

Conversely, assume that S(ĉ) = ĉ, it follows

ĉ+ γAT (PQ(Aĉ)−Aĉ) = ĉ,

which implies

γAT (PQ(Aĉ)−Aĉ) = 0.

Due to γ > 0 and A has full column rank, we have

PQ(Aĉ)−Aĉ = 0, (3.3)

i.e.,

∥PQ(Aĉ)−Aĉ∥ = 0.

This completes the proof. □
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From the above Lemma 3.1, we have the following convergence results.

Corollary 3.2. Let E be the set of all c ∈ C at which the function ∥PQ(Ac)− Ac∥ attains
its minimum value zero over C. Then every element in E is the solution of MSFP (1.1).

Proof. The proof can be obtained directly from the definitions of C and Q. □

Theorem 3.3. Suppose that A has full column rank and E ̸= ∅, the sequence {xk} generated
by the iterative scheme (2.7) from Algorithm 1 converges to a member of E.

Proof. Let ĉ ∈ E , then

ĉ = S(ĉ),

and

ĉ ∈ C ⊂ Cik .

By Lemma 2.1 and Lemma 3.1, it follows

∥ĉ− xk+1∥ = ∥PCik
(ĉ)− PCik

(Sjk(xk))∥
= ∥PCik

(Sjk ĉ)− PCik
(Sjk(xk))∥ (3.4)

≤ ∥Sjk ĉ− Sjk(xk)∥.

From the definition of Sjk(·), we have

∥Sjk(ĉ)− Sjk(xk)∥2 = ∥ĉ− xk + γAT (PQjk
− I)Aĉ− γAT (PQjk

− I)Axk∥2.

By expanding and rearranging the right-hand side of the above equation, we get

∥Sjk(ĉ)− Sjk(xk)∥2 = ∥ĉ− xk∥2 + 2γ⟨Aĉ−Axk, PQjk
(Aĉ)− PQjk

(Axk) +Axk −Aĉ⟩

+ γ2∥AT (PQjk
− I)Aĉ−AT (PQjk

− I)Axk∥2

≤ ∥ĉ− xk∥2 − 2γ∥Aĉ−Axk∥2 + 2γ⟨Aĉ−Axk, PQjk
(Aĉ)− PQjk

(Axn)⟩
+ γ2L∥(PQjk

− I)Aĉ− (PQjk
− I)Axk∥2.

Notice that

∥(PQjk
− I)Aĉ− (PQjk

− I)Axk∥2
= ∥PQjk

(Aĉ)− PQjk
(Axk)∥2 − 2⟨Aĉ−Axk, PQjk

(Aĉ)− PQjk
(Axk)⟩+ ∥Aĉ−Axk∥2,

it follows that

∥Sjk(ĉ)− Sjk(xk)∥2
≤ ∥ĉ− xk∥2 − (2γ − γ2L)(∥Aĉ−Axk∥2)

+γ2L(∥PQjk
(Aĉ)− PQjk

(Axk)∥2 − γ2L⟨Aĉ−Axk, PQjk
(Aĉ)

−PQjk
(Axk⟩)) + (2γ − γ2L)⟨Aĉ−Axk, PQjk

(Aĉ)− PQjk
(Axk)⟩

= ∥ĉ− xk∥2 − (2γ − γ2L)(∥Aĉ−Axk∥2 − ⟨Aĉ−Axk, PQjk
(Aĉ)− PQjk

(Axk)⟩)
−γ2L(⟨Aĉ−Axk, PQjk

(Aĉ)− PQjk
(Axk)⟩ − ∥PQjk

(Aĉ)− PQjk
(Axk)∥2).

(3.5)

From the third inequality in Lemma 2.1, we have

∥PQjk
(Aĉ)− PQjk

(Axk)∥2 − ⟨Aĉ−Axk, PQjk
(Aĉ)− PQjk

(Axk)⟩ ≤ 0, (3.6)
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by Cauchy’s inequality and the non-expansiveness of projection operator, so that

⟨Aĉ−Axk, PQjk
(Aĉ)− PQjk

(Axk)⟩ ≤ ∥Aĉ−Axk∥2. (3.7)

Since 0 < γ < 2/L, combined with (3.5) - (3.7), it follows

2γ − γ2L > 0,

and

∥Sjk(ĉ)− Sjk(xk)∥2 ≤ ∥ĉ− xk∥2.

In addition, from (3.4) to (3.5) we find that

∥ĉ− xk∥2 − ∥ĉ− xk+1∥2 ≥ γ2L⟨Aĉ−Axk, PQjk
(Aĉ)− PQjk

(Axk)⟩
+ (2γ − γ2L)(∥Aĉ−Axk∥2

− ⟨Aĉ−Axk, PQjk
(Aĉ)− PQjk

(Axk)⟩).
(3.8)

Therefore, the sequence {∥ĉ− xk∥2} is decreasing (so the sequence {xk} is bounded), and

⟨Aĉ−Axk, PQjk
(Aĉ)− PQjk

(Axk)⟩ − ∥PQjk
(Aĉ)− PQjk

(Axk)∥2 → 0, (3.9)

and

∥Aĉ−Axk∥2 − ⟨Aĉ−Axk, PQjk
(Aĉ)− PQjk

(Axk)⟩ → 0, (3.10)

since both sequences are non-negative.
Let x∗ be an arbitrary cluster point of the sequence {xk}, then x∗ ∈ C. There exists

an index pair (i∗, j∗) corresponding to Ci∗ and Qj∗ with the greatest distances from x∗ and
Ax∗, respectively. In particular, we have

⟨Aĉ−Ax∗, PQj∗ (Aĉ)− PQj∗ (Ax∗)⟩ = ∥PQj∗ (Aĉ)− PQj∗ (Ax∗)∥2, (3.11)

and

⟨Aĉ−Ax∗, PQj∗ (Aĉ)− PQj∗ (Ax∗)⟩ = ∥Aĉ−Ax∗∥2. (3.12)

From the above equations (3.11) and (3.12), we get

∥Aĉ−Ax∗∥ = ∥PQj∗ (Aĉ)− PQj∗ (Ax∗)∥.

By Lemma 2.2, it follows that

∥PQj∗ (Ax∗)−Ax∗∥ = ∥PQj∗ (Aĉ)−Aĉ∥ = 0. (3.13)

Therefore, x∗ is in the set E . Replacing the generic ĉ ∈ E with x∗, it implies that the
sequence {∥x∗ − xk∥} is decreasing, and a subsequence converges to zero, thus the entire
sequence converges to zero. This completes the proof. □

4 Numerical Experiments

This section is dedicated to the practical evaluation of the proposed extended CQ algorithm
(Algorithm 1) through a series of numerical examples. All the program codes, which are
available for reference1 , have been meticulously compiled and executed on the Matlab
R2020b platform, running on a Windows 10-based PC. The hardware configuration includes
a CPU processor operating at 2.5GHz, and a memory capacity of 8GB.

1The Matlab codes can be accessed at
http://pan.csu.edu.cn:80/link/6928B4B88951B11178761E4528E9553E.
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4.1 Example 1

In the first, we construct a simple MSFP with a class of convex sets

Ci = {x ∈ R2 | ∥x− di∥ ≤ ri}, i = 1, 2, 3, (4.1)

where

d1 = (1, 1)T , d2 = (2.5, 2.5)T , d3 = (3, 1)T , r1 = 2, r2 = 1, r3 = 1.

By taking a point

x∗ = (2.5, 1.6)T ∈ C :=

3⋂
i=1

Ci,

and generating a matrix A ∈ R2×2 randomly, we construct the convex sets Qj based on the
vector y∗ = Ax∗ as

Qj = {y ∈ R2|Lj ≤ y ≤ Uj}, j = 1, 2, (4.2)

where

L1 = ⌊y⌋ − (1, 1)T , U1 = ⌈y⌉, L2 = ⌊y⌋, U2 = ⌈y⌉+ (2, 2)T .

Therefore,

y∗ ∈ Q :=

2⋂
j=1

Qj ,

and x∗ is a solution of MSFP (1.1), i.e., the solution set of (1.1) is nonempty.
To empirically assess the numerical efficacy of the proposed extended CQ algorithm,

denoted as ‘ExtendCQ’, for solving the created MSFP, we conduct a range of experiments.
These experiments involve the application of Algorithm 1 to different initial points x0.
We draw comparisons between our extended CQ approach, the projection method (‘Proj’)
initially introduced by Censor and his collaborators in [4], and the projection method aug-
mented with a selection technique (‘Projselect’) proposed by Yao et al. in [25]. For consistency,
the termination criterion in all the algorithms employed in the following examples is set to
ε = q(x) = 10−4.

From the illustration of iterative sequences generated by different methods shown in
Figure 3 and Figure 4, we can see that the proposed extended CQ algorithm with selec-
tion technique employs fewer iterations to achieve a solution than the other methods. It
implies that the proposed method makes improvements to accelerate the convergence of the
algorithm to solve MSFP. More comparison results on the number of iterations and CPU
times are recorded in Table 1. From the reported results, it demonstrated that the proposed
extended CQ algorithm with selection technique has better performance than other methods
in terms of number of iterations and CPU costs.

4.2 Example 2

In this subsection, we set out to evaluate the efficacy of the proposed extended CQ algorithm.
To do this, a spectrum of MSFP of varying problem sizes have been constructed. Our
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Figure 3: Convergent trajectories of iterative sequences by different methods with initial
points (6, 4)T .
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Figure 4: Convergent trajectories of iterative sequences by different methods with randomly
generated initial points.

Table 1: Computational results of various methods to solve MSFP in Example 4.1.

Initial point
Iterations CPU time (s)

Proj Projselect Extend CQ Proj Projselect Extend CQ

(0, 0)T 28 7 3 0.0191 0.0160 0.0027

(1, 0)T 28 14 5 0.0246 0.0176 0.0080

(1, 1)T 27 13 4 0.0191 0.0163 0.0030

(4, 1)T 19 6 2 0.0194 0.0152 0.0020

(6, 4)T 22 10 2 0.0184 0.0167 0.0021

(2, −1)T 24 13 4 0.0187 0.0171 0.0030

(−2, −1)T 29 7 1 0.0190 0.0154 0.0017

randn(2,1) 28 7 4 0.0186 0.0159 0.0032
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approach involves the selection of a randomly generated point x∗ ∈ Rn and a matrix A ∈
Rn×n to formulate the convex sets Ci and Qj , following a pattern similar to that outlined
in (4.1) and (4.2) with

di = x∗ + 10ξi, ri = ∥di − x∗∥+ 0.1, i = 1, 2, . . . , s,

and

Lj = y∗ − 10µj , Uj = y∗ + 10νj , j = 1, 2, . . . , t,

where y∗ = Ax∗, and ξ, µ, ν ∈ Rn are randomly generated vectors. From the construction
of the above MSFPs, x∗ has always been a solution to them, which implies that the solution
sets of the constructed MSFPs are nonempty.

To comprehensively evaluate the performance of the introduced methods in address-
ing the different kinds of MSFPs, we systematically vary the problem size, setting n =
2, 3, . . . , 20, and s = t = n to establish a diverse set of MSFP instances. In order to pro-
vide a holistic assessment, we initialize the algorithms with 100 randomly generated vectors
as the initial points x0. Subsequently, we record and calculate the average results for the
number of iterations and CPU times, as summarized in Table 4.2. The symbol “ / ” in the
Table 4.2 indicates instances where the algorithm failed to meet the stopping criteria within
1000-iteration limit, and thus, the corresponding CPU time is not recorded. The results in
Table 4.2 underscore that the proposed extended CQ algorithm with the selection technique,
consistently outperforms the other methods in terms of both the number of iterations and
computational efficiency. This reaffirms its effectiveness and competitiveness.

Table 2: Computational results of various methods to solve MSFP in Example 4.2.

s = t = n
Iterations CPU time (s)

Proj Projselect Extend CQ Proj Projselect Extend CQ

2 94.92 36.97 25.53 0.0016 0.0028 0.0017

3 173.11 100.74 14.15 0.0038 0.0108 0.0011

4 618.49 256.53 45.27 0.0100 0.0131 0.0036

5 425.55 167.45 32.08 0.0089 0.0120 0.0028

6 695.19 483.46 54.13 0.0157 0.0233 0.0041

7 / / 160.19 / / 0.0084

8 / 677.61 84.71 / 0.0356 0.0059

9 / 997.62 166.25 / 0.0555 0.0106

10 / 979.69 219.81 / 0.0587 0.0139

15 / / 162.92 / / 0.0150

20 / / 355.97 / / 0.0394

5 Conclusion

In this paper, we propose an extended CQ algorithm to address the MSFP integrated with
a selection technique. We also provide an analysis of the convergence properties of the
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extended CQ algorithm under relatively lenient conditions. Our empirical findings unequiv-
ocally validate that the extended CQ algorithm integrated with the selection technique,
yields superior results when applied to solve the MSFP.
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