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settings, Guerraggio et al. [3] gave some relations among properly efficient solutions. We
know that Henig properly efficient solution not only has many desirable properties, but also
has much weaker existence conditions than other properly efficient solutions.

The recent contributions in [10, 12] motivate the present work where the sequential
optimality conditions are stated, via sequential subdifferential calculus, in terms of limits
of sequences by using the approximate subdifferential or exact subdifferential at neabry
points. So, the purpose of this paper is to establish sequential optimality conditions for a
fractional optimization problem without any constraint qualifications characterizing com-
pletely a Henig properly efficient solution. Firstly, we establish a sequential Henig subd-
ifferential calculus rule of the sums of m (m ≥ 2) proper convex vector valued mappings
with a composition of two convex vector valued mappings. This is achieved by employing
a scalarization process and the epigraph of the conjugate of the sums of m (m ≥ 2) proper
convex lower semicontinuous functions. Secondly, since a multiobjective fractional problem
is transformed equivalently into a nonfractional convex multiobjective problem, we apply the
sequential Henig subdifferential calculus rule to obtain three different kinds of sequential op-
timality conditions. The first is expressed in terms of the epigraphs of the conjugate of data
functions, the second is obtained by means of a sequence of ϵ-subdifferentials at a minimizer
and the last kind is described, by means of the Brøndsted-Rockafellar theorem, in terms of
the exact subdifferentials of the functions involved at nearby points to the minimizer.

This paper is organized as follows. In Section 2, we recall some notions and we give some
preliminary results. In Section 3, we establish a sequential Henig subdifferential calculus
rule of the sums of m (m ≥ 2) proper convex vector valued mappings with a composition
of two convex vector valued mappings. In Section 4, we provide some sequential efficient
optimality conditions characterizing a Henig proper solution for a vector fractional opti-
mization problem. In order to present an example illustrating our main result, we will need
to establish the standard optimality conditions of a multiobjective fractional problem under
a constraint qualification.

2 Preliminaries and Basic Definitions

In this section, we give some definitions and preliminary results which will be used through-
out this paper. Let X, Y and Z be three real topological vector spaces and their respective
continuous dual spaces X∗, Y ∗ and Z∗ with duality paring denoted by 〈., .〉. We will use the
symbol w∗ for the weak-star topology on the dual space and τR for the Euclidian topology
on the real line R. Let Z+ ⊂ Z be a nontrivial convex cone and we assume in addition that
Z+ is pointed (i.e. −Z+ ∩ Z+ = {0}). The nonnegative orthant of Rm is denoted by Rm

+ .
The polar cone and strict polar cone are defined respectively as

Z∗
+ := {z∗ ∈ Z∗ : 〈z∗, z〉 ≥ 0, ∀z ∈ Z+} (2.1)

and

(Z∗
+)

◦ := {z∗ ∈ Z∗ : 〈z∗, z〉 > 0, ∀z ∈ Z+\{0}}. (2.2)

On Z we define for any z1, z2 ∈ Z the following relations

z1 ≤Z+
z2 ⇐⇒ z2 − z1 ∈ Z+,

z1 ≨Z+
z2 ⇐⇒ z2 − z1 ∈ Z+\{0}.

We attach to Z an abstract maximal element, denoted by +∞Z , with respect to ” ≤Z+
”

and we denote Z = Z ∪ {+∞Z}. Then for every z ∈ Z one has z ≤Z+ +∞Z . The algebraic
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operations of Z are extended as follows

z + (+∞Z) = (+∞Z) + z = +∞Z , ∀z ∈ Z ∪ {+∞Z}, (2.3)

α · (+∞Z) = +∞Z , ∀α ≥ 0. (2.4)

If Z = R and K = R+ then R = R ∪ {+∞}, where +∞ = +∞R.
For a given mapping f : X −→ Z, we denote respectively the effective domain and the

epigraph of f by domf and epif, i.e.,

domf := {x ∈ X : f(x) ∈ Z} (2.5)

epif := {(x, z) ∈ X × Z : f(x) ≤Z+
z}. (2.6)

We say that f is proper if domf 6= ∅ and Z+-epi-closed if its epigraph is closed. Let us
note for each z∗ ∈ Z∗

+, we put by convention 〈z∗, f(x)〉 = +∞, for any x /∈ domf. Thus,

z∗ ◦ f : X −→ R and dom(z∗ ◦ f) = domf and we say that f is strict star Z+-lower
semicontinuous if z∗ ◦ f is lower semicontinuous for all z∗ ∈ (Z∗

+)
◦. Moreover, we recall that

the mapping f is Z+-convex if for every λ ∈ [0, 1] and x1, x2 ∈ X we have

f(λx1 + (1− λ)x2) ≤Z+
λf(x1) + (1− λ)f(x2). (2.7)

Let ”≤Y+
” be the partial order on Y induced by a nonempty convex cone Y+ ⊂ Y . We say

that the mapping g : Y −→ Z is (Y+, Z+)-nondecreasing if for each y1, y2 ∈ Y we have

y1 ≤Y+
y2 =⇒ g(y1) ≤Z+

g(y2). (2.8)

Let h : X −→ Y be a mapping, then the composed mapping g ◦h : X −→ Z is defined by

(g ◦ h)(x) :=


g(h(x)), if x ∈ dom h,

+∞Z , otherwise.

(2.9)

It is easy to see that if g : Y −→ Z is Z+-convex, (Y+, Z+)-nondecreasing and h : X −→ Y
is Y+-convex, then the composed mapping g ◦ h is Z+-convex.

Now, we consider the following vector minimization problem

(VMP) min
x∈C

f(x) (2.10)

where f : X −→ Z is a mapping and C is a nonempty subset of X.

Definition 2.1. Let x be a feasible point of (VMP) i.e. x ∈ C. The point x is called properly
efficient solution of the problem (VMP) in the sense of Henig if there exists a convex cone
Ẑ+ ⊂ Z such that Z+ \ {0} ⊂ intẐ+ and

∄x ∈ C, f(x) ≨Ẑ+
f(x). (2.11)

The set of Henig properly efficient solutions will be denoted by Ep(f, C). The above
notion of Henig properly efficient solution leads us to define the notion of Henig proper
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subdifferential of a vector valued mapping f : X −→ Z at x ∈ domf (see [4]). For
A ∈ L(X,Z)

A ∈ ∂pf(x̄) if there exists Ẑ+ ⊊ Z convex cone such that Z+ \ {0} ⊆ intẐ+,

∄x ∈ C, f(x)− f(x̄) ≨Ẑ+
A(x− x), ∀x ∈ X

where L(X,Z) denotes the space of linear continuous operators from X to Z. This definition
is justified by the importance of the following immediate property

x̄ ∈ Ep(f,X) ⇐⇒ 0 ∈ ∂pf(x̄). (2.12)

For a given function f : X −→ R, the conjugate function f∗ : X∗ −→ R ∪ {−∞} is
defined by

f∗(x∗) := sup
x∈X

{〈x∗, x〉 − f(x)}. (2.13)

Recall that, for ϵ ≥ 0, the ϵ-subdifferential of f at x ∈ domf is defined by

∂ϵf(x) := {x∗ ∈ X∗ : 〈x∗, x− x〉+ f(x)− ϵ ≤ f(x), ∀x ∈ X}. (2.14)

If ϵ = 0, the set ∂f(x) := ∂0f(x) is the classical subdifferential of convex analysis, that is

∂f(x) := {x∗ ∈ X∗ : 〈x∗, x− x〉+ f(x) ≤ f(x), ∀x ∈ X}. (2.15)

For any subset C ⊂ X, the vector indicator mapping δvC : X −→ Z of C is defined by

δvC(x) :=

{
0 if x ∈ C

+∞Z otherwise.
(2.16)

When Z = R, the scalar indicator function is denoted by δC . The vector indicator mapping
appears to possess properties like the scalar one. For ϵ ≥ 0, the ϵ-normal at x ∈ C is defined
by

Nϵ(x,C) := {x∗ ∈ X∗ : 〈x∗, x− x〉 ≤ ϵ, ∀x ∈ C}. (2.17)

If ϵ = 0, N(x,C) := N0(x,C) is the usual normal cone at x. Moreover, it is easy to see that
the ϵ-normal of C at x is defined as the ϵ-subdifferential of δC at x.

Theorem 2.2 ([1]). Let fi : X −→ R be m (m ≥ 2) proper, convex and lower semicontin-
uous functions such that

∩m
i=1 domfi 6= ∅. Then

epi

(
m∑
i=1

fi

)∗

= clw∗×τR

(
m∑
i=1

epif∗
i

)
(2.18)

where clw∗×τR denotes the weak closure on the product space X∗ × R.

Theorem 2.3 ([5]). Let f : X −→ R be a proper convex lower semicontinuous function
and let x ∈ domf. Then

epif∗ =
∪
ϵ≥0

{(x∗, 〈x∗, x〉+ ϵ− f(x)) : x∗ ∈ ∂ϵf(x)}. (2.19)
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Theorem 2.4 ([16]). Let X be a Banach space and f : X −→ R be a proper, convex
and lower semicontinuous function. Then for any real ϵ > 0 and x∗ ∈ ∂ϵf(x), there exist
x ∈ domf and x∗ ∈ ∂f(x) such that

1. ‖x − x‖ ≤
√
ϵ,

2. ‖x∗ − x∗‖ ≤
√
ϵ,

3. |f(x)− f(x)− 〈x∗, x − x〉| ≤ 2ϵ.

Let us recall the following important scalarization theorem can be found in [4].

Theorem 2.5. Let X, Z be two Hausdorff topological vector spaces and f : C ⊆ X −→ Z
be Z+-convex vector valued mapping with Z+ is a closed convex pointed cone of Z and C is
a nonempty convex subset of X. Then

1.

Ep(f, C) =
⊔

z∗∈(Z∗
+)◦

argmin
x∈C

〈z∗, f(x)〉. (2.20)

2. For x̄ ∈ X, we have

∂pf(x̄) =
∪

z∗∈(Z∗
+)◦

{A ∈ L(X,Z) : z∗ ◦A ∈ ∂(z∗ ◦ f)(x̄)}. (2.21)

Proof. 1. Let us show the direct inclusion in (2.20). Let x ∈ Ep(f, C), then there exists a
convex cone Ẑ+ ⊊ Z satisfies Z+\{0} ⊆ intẐ+ and ∄x ∈ C such that f(x) ⪇Ẑ+

f(x).

Since, f being Z+-convex and Z+\{0} ⊆ intẐ+, obviously f remains Ẑ+-convex. So,
the direct inclusion is obtained.

For the reverse inclusion, let z∗ ∈ (Z∗
+)

◦ and x ∈ argmin
x∈C

〈z∗, f(x)〉. The pointed convex

cone

Ẑ+ := {z ∈ Z : 〈z∗, z〉 > 0} ∪ {0}

satifies Ẑ+ 6= Z and Z+\l(Z+) ⊆ intẐ+. If x /∈ Ep(f, C), there exist x ∈ C such
that f(x) ⪇Ẑ+

f(x), i.e, f(x) − f(x) ∈ Ẑ+\{0}, and hence, 〈z∗, f(x) − f(x)〉 > 0
contradicting the choice of x.

2. If x /∈ domf , then all the previous sets are empty. Suppose that x ∈ domf . By
applying (2.20) and by using scalarization formula (2.12), we obtain

A ∈ ∂pf(x) ⇔ A ∈ L(X,Z) : x ∈ Ep(f −A,X)

⇔ A ∈ L(X,Z), ∃z∗ ∈ (Z∗
+)

◦ : z∗ ◦A ∈ ∂(z∗ ◦ f)(x)

⇔ A ∈
∪

z∗∈(Z∗
+)◦

{A ∈ L(X,Z) : z∗ ◦A ∈ ∂(z∗ ◦ f)(x̄)}.

□



290 A. RIKOUANE, M. LAGHDIR AND M.B. MOUSTAID

3 Sequential Pareto Proper Subdifferential of the Sums of Convex
Vector Valued Mappings with a Composition of Two Convex
Vector Valued Mappings

In what follows (X, ‖.‖X) and (Y, ‖.‖Y ) stand for two real reflexive Banach spaces, (Z, ‖.‖Z)
be a real normed vector space and (X∗, ‖.‖X∗), (Y ∗, ‖.‖Y ∗), (Z∗, ‖.‖Z∗) their respective
topological dual spaces. On X × Y we use the norm ‖(x, y)‖ =

√
‖x‖2 + ‖y‖2 for any

(x, y) ∈ X × Y. Similarly, we define the norm on X∗ × Y ∗. Further, let (xn)n∈N be a
sequence in X (resp. (x∗

n)n∈N be a sequence in X∗) and x ∈ X (resp. x∗ ∈ X∗), we write

xn
‖.‖X−−−→ x (resp. x∗

n

‖.‖X∗−−−−→ x∗) if ‖xn−x‖X −→ 0 (resp. ‖x∗
n−x∗‖X∗ −→ 0) as n 7−→ +∞.

Our aim in this section is to formulate in the absence of constraint qualifications, a formula
for the Henig proper subdifferential of the convex mapping

∑m
i=1(fi + g ◦ h), where fi :

X −→ Z (i = 1, . . . ,m) be a proper and Z+-convex mappings, h : X −→ Y be a proper and
Y+-convex mapping, and g : Y −→ Z be a proper, Z+-convex and (Z+, Y+)-nondecreasing
mapping. Let us consider the following auxiliary mappings

Fi : X × Y −→ Z
(x, y) −→ Fi(x, y) := fi(x),

(i = 1, . . . ,m) (3.1)

G : X × Y −→ Z
(x, y) −→ G(x, y) := g(y),

(3.2)

H : X × Y −→ Z
(x, y) −→ H(x, y) := δvepih(x, y).

(3.3)

Lemma 3.1. Let z∗ ∈ (Z∗
+)

◦ and (x∗, y∗, s) ∈ X∗ × Y ∗ × R. Then, we have

1. (x∗, y∗, s) ∈ epi(z∗ ◦ Fi)
∗ ⇐⇒ (x∗, s) ∈ epi(z∗ ◦ fi)∗ and y∗ = 0, (i = 1, . . . ,m).

2. (x∗, y∗, s) ∈ epi(z∗ ◦G)∗ ⇐⇒ x∗ = 0 and (y∗, s) ∈ epi(z∗ ◦ g)∗.

3. (x∗, y∗, s) ∈ epi(z∗ ◦H)∗ ⇐⇒ (x∗, s) ∈ epi(−y∗ ◦ h)∗and − y∗ ∈ Y ∗
+.

Proof. It is easy to see that the conjugate functions associated to the functions z∗ ◦ Fi (i =
1, . . . ,m), z∗ ◦G and z∗ ◦H are given for any (x∗, y∗) ∈ X∗ × Y ∗, by

(z∗ ◦ Fi)
∗(x∗, y∗) = (z∗ ◦ fi)∗(x∗) + δ{0}(y

∗), (i = 1, . . . ,m) (3.4)

(z∗ ◦G)∗(x∗, y∗) = (z∗ ◦ g)∗(y∗) + δ{0}(x
∗) (3.5)

(z∗ ◦H)∗(x∗, y∗) = (−y∗ ◦ h)∗(x∗) + δY ∗
+
(−y∗). (3.6)

1) Let (x∗, y∗, s) ∈ epi(z∗ ◦ Fi)
∗, (i = 1, . . . ,m), then we have

(z∗ ◦ Fi)
∗(x∗, y∗) ≤ s (3.7)

and by (3.4) we get

(z∗ ◦ fi)∗(x∗) + δ{0}(y
∗) ≤ s, (i = 1, . . . ,m), (3.8)

i.e.

(x∗, s) ∈ epi(z∗ ◦ fi)∗ and y∗ = 0, (i = 1, . . . ,m). (3.9)

By applying the same arguments as above we obtain easily 2) and 3). □
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Now, we state the sequential Henig proper subdifferential of the convex mapping
∑m

i=1 fi+
g ◦ h by means of the epigraphs of the conjugate of data vector valued mappings.

Theorem 3.2. Let f1, . . . , fm : X −→ Z be m (m ≥ 2) proper, Z+-convex and strict
star Z+-lower semicontinuous mappings, g : Y −→ Z be proper, Z+-convex, strict star
Z+-lower semicontinuous and (Y+, Z+)-nondecreasing mapping and h : X −→ Y be proper,
Y+-convex and Y+-epi-closed mapping. Let x ∈ (

∩m
i=1 domfi) ∩ domh ∩ h−1(domg). Then,

A ∈ ∂p (
∑m

i=1 fi + g ◦ h) (x) if and only if, there exist z∗ ∈ (Z∗
+)

◦, (x∗
i,n, ri,n) ∈ epi(z∗ ◦ fi)∗,

(i = 1, . . . ,m), (y∗n, sn) ∈ epi(z∗ ◦ g)∗, v∗n ∈ −Y ∗
+ and (u∗

n, tn) ∈ epi(−v∗n ◦ h)∗ such that



m∑
i=1

x∗
i,n + u∗

n

‖.‖X∗−−−−→
n 7−→+∞

z∗ ◦A

y∗n + v∗n
‖.‖Y ∗−−−−→

n 7−→+∞
0

m∑
i=1

ri,n + sn + tn −−−−→
n 7−→+∞

(z∗ ◦A)(x)−
m∑
i=1

(z∗ ◦ fi)(x)− (z∗ ◦ g)(h(x)).

Proof. Let A ∈ ∂p (
∑m

i=1 fi + g ◦ h) (x). According to scalarization Theorem 2.5, there exists
z∗ ∈ (Z∗

+)
◦ such that

z∗ ◦A ∈ ∂

(
m∑
i=1

z∗ ◦ fi + z∗ ◦ g ◦ h

)
(x). (3.10)

By introducing the scalar indicator function δepih and by adopting the convention z∗(+∞Z) =
+∞, it easy to check that z∗ ◦ δvepih = δepih and by using the monotonicity of the mapping
g it follows that (3.10) becomes equivalent to

(z∗ ◦A, 0) ∈ ∂

(
m∑
i=1

z∗ ◦ Fi + z∗ ◦G+ z∗ ◦H

)
(x, h(x)) (3.11)

i.e.(
m∑
i=1

z∗ ◦ Fi + z∗ ◦G+ z∗ ◦H

)∗

(z∗ ◦A, 0) +

(
m∑
i=1

z∗ ◦ Fi + z∗ ◦G+ z∗ ◦H

)
(x, h(x))

= 〈(z∗ ◦A, 0), (x, h(x))〉 = 〈z∗ ◦A, x〉

and hence we get(
(z∗ ◦A, 0), 〈z∗ ◦A, x〉 −

(
m∑
i=1

z∗ ◦ Fi + z∗ ◦G+ z∗ ◦H

)
(x, h(x))

)

∈ epi

(
m∑
i=1

z∗ ◦ Fi + z∗ ◦G+ z∗ ◦H

)∗

. (3.12)

It is easy to see that the mappings Fi, (i = 1, . . . ,m), G and H are proper, Z+-convex and
strict star Z+-lower semicontinuous on X×Y and as z∗ is Z+-nondecreasing, it follows that
the scalar functions z∗ ◦ Fi, (i = 1, . . . ,m), z∗ ◦G and z∗ ◦H are proper, convex and lower
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semicontinuous. Let us note that dom(z∗ ◦ Fi) = domfi × Y, (i = 1, . . . ,m), dom(z∗ ◦G) =
X×domg and dom(z∗ ◦H) = epih and the condition x ∈ (

∩m
i=1 domfi)∩domh∩h−1(domg)

can be written equivalently as (x, h(x)) ∈ (
∩m

i=1 domFi)∩domG∩domH. Thus, the functions
z∗ ◦ Fi (i = 1, . . . ,m), z∗ ◦ G and z∗ ◦H, satisfy together all the assumptions of Theorem
2.2 and hence it follows from (3.12) that(

(z∗ ◦A, 0), 〈z∗ ◦A, x〉 −

(
m∑
i=1

z∗ ◦ Fi + z∗ ◦G+ z∗ ◦H

)
(x, h(x))

)

∈ clw∗×τR

(
m∑
i=1

epi(z∗ ◦ Fi)
∗ + epi(z∗ ◦G)∗ + epi(z∗ ◦H)∗

)

= cl‖.‖X∗×Y ∗×τR

(
m∑
i=1

epi(z∗ ◦ Fi)
∗ + epi(z∗ ◦G)∗ + epi(z∗ ◦H)∗

)
and therefore there exist

(
(x∗

i,n, y
∗
i,n), ri,n

)
, (i = 1, . . . ,m), ((x∗

n, y
∗
n), sn) and ((u∗

n, v
∗
n), tn) ∈

X∗ × Y ∗ × R, satisfying(
(x∗

i,n, y
∗
i,n), ri,n

)
∈ epi(z∗ ◦ Fi)

∗, (i = 1, . . . ,m)

((x∗
n, y

∗
n), sn) ∈ epi(z∗ ◦G)∗

((u∗
n, v

∗
n), tn) ∈ epi(z∗ ◦H)∗

 (3.13)

such that

m∑
i=1

(
(x∗

i,n, y
∗
i,n), ri,n

)
+ ((x∗

n, y
∗
n), sn) + ((u∗

n, v
∗
n), tn)

‖.‖X∗×Y ∗
−−−−−−→

(
(z∗ ◦A, 0), 〈z∗ ◦A, x〉 −

(
m∑
i=1

z∗ ◦ Fi + z∗ ◦G+ z∗ ◦H

)
(x, h(x))

)
. (3.14)

By applying Lemma 3.1, (3.13) may be rewritten as

(
(x∗

i,n, y
∗
i,n), ri,n

)
∈ epi(z∗ ◦ Fi)

∗ ⇐⇒ (x∗
i,n, ri,n) ∈ epi(z∗ ◦ fi)∗ and y∗i,n = 0,

((x∗
n, y

∗
n), sn) ∈ epi(z∗ ◦G)∗ ⇐⇒ x∗

n = 0 and (y∗n, sn) ∈ epi(z∗ ◦ g)∗

((u∗
n, v

∗
n), tn) ∈ epi(z∗ ◦H)∗ ⇐⇒ (u∗

n, tn) ∈ epi(−v∗n ◦ h)∗ and − v∗n ∈ Y ∗
+.

Since x∗
n = 0, y∗i,n = 0, (i = 1, . . . ,m) and (x, h(x)) ∈ epih, then the expression (3.14)

becomes equivalent to



m∑
i=1

x∗
i,n + u∗

n

‖.‖X∗−−−−→ z∗ ◦A

y∗n + v∗n
‖.‖Y ∗−−−−→ 0

m∑
i=1

ri,n + sn + tn −→ 〈z∗ ◦A, x〉 −
m∑
i=1

z∗ ◦ fi(x)− z∗ ◦ g(h(x)).

The proof is complete. □
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4 Sequential Proper Efficiency Optimality Conditions

In this section, we are concerned with the general multiobjective fractional programming
problem

(P) inf
x∈C

h(x)∈−Y+

{(
f1(x)

g1(x)
, . . . ,

fm(x)

gm(x)

)}
,

with C ⊂ X be a nonempty, closed and convex subset and Y+ ⊂ Y be a nonempty closed
convex cone. The functions fi, -gi : X −→ R, (i = 1, . . . ,m) are convex, lower semicontin-
uous and h : X −→ Y is a proper, Y+-convex and Y+-epi-closed mapping. We assume that
fi(x) ≥ 0, gi(x) > 0 (i = 1, . . . ,m). Let ei denote the ith unit coordinate vector and e the
vector of ones in Rm . For ϵ ≥ 0, the positive hull of the subset S := {ei+ ϵe : i = 1, · · · ,m}
is defined by

Kϵ :=

{
m∑
i=1

αi(ei + ϵe) : αi ≥ 0

}
. (4.1)

In fact Kϵ is a convex cone and the origin belongs to Kϵ. The positive polar cone of Kϵ is
denoted by

K∗
ϵ := {v ∈ Rm : 〈v, y〉 ≧ 0, ∀y ∈ Kϵ}. (4.2)

It is easy to see that

Kϵ\{0} ⊂ int(Rm
+ ) ⊂ Rm

+\{0} ⊂ int(K∗
ϵ ). (4.3)

We endow the finite-dimensional space Z := Rm with its natural order induced by the
nonnegative orthant Z+ := Rm

+ , and we shall use the following characterization of proper
efficiency (see Luc-Soleimani-damaneh [9]).

Proposition 4.1. A point x ∈ C ∩ h−1(−Y+) is properly efficient solution of the problem
(P ) if and only if there exists some ϵ > 0 and there is no x ∈ C ∩ h−1(−Y+) such that(

f1(x)

g1(x)
− f1(x)

g1(x)
, . . . ,

fm(x)

gm(x)
− fm(x)

gm(x)

)
∈ −K∗

ϵ . (4.4)

We associate to problem (P) the multiobjective convex minimization problem

(Px) inf
x∈C∩h−1(−Y+)

{(f1(x)− v1g1(x), . . . , fm(x)− vmgm(x))} , (4.5)

where x ∈ C ∩ h−1(−Y+) and νi :=
fi(x)
gi(x)

(i = 1, . . . ,m). The problem (Px) is intimately

related to (P ). The crucial relationship between (P ) and (Px), which will serve our purposes,
is stated in the following lemma

Lemma 4.2. A point x ∈ C ∩ h−1(−Y+) is Henig properly efficient solution for problem
(P) if and only if, x is Henig properly efficient solution for problem (Px).

Proof. (=⇒). Suppose in the contrary that x is not Henig proper efficient solution for (Px),
then it follows from Proposition 4.1 that for any ϵ > 0, there exists some x0 ∈ C∩h−1(−Y+)
such that

(f1(x0)− ν1g1(x0), . . . , fm(x0)− νmgm(x0)) ∈ −K∗
ϵ , (4.6)
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i.e.
m∑
i=1

(fi(x0)− νigi(x0))

αi + ϵ

m∑
j=1

αj

 ≤ 0, ∀(α1, . . . , αm) ∈ Rm
+ . (4.7)

By using the fact that gi(x0) > 0 (i = 1, . . . ,m) and by substituting respectively in (4.7) αi

and αj by αi

gi(x0)
and

αj

gi(x0)
(j = 1, . . . ,m) we obtain that for any ϵ > 0, we have

m∑
i=1

(
fi(x0)

gi(x0)
− νi

)αi + ϵ

m∑
j=1

αj

 ≤ 0, ∀(α1, . . . , αm) ∈ Rm
+ , (4.8)

which means for any ϵ > 0(
f1(x0)

g1(x0)
− ν1, . . . ,

fm(x0)

gm(x0)
− νm

)
∈ −K∗

ϵ .

According to Proposition 4.1 this contradicts the fact that x is Henig proper efficient solution
for the problem (P ).

(⇐=). We proceed by contradiction. Assume that x is not Henig proper efficient solution
of the problem (P ), then according to Proposition 4.1, we have for any ϵ > 0, there exists
some x0 ∈ C ∩ h−1(−Y+) such that(

f1(x0)

g1(x0)
− ν1, . . . ,

fm(x0)

gm(x0)
− νm

)
∈ −K∗

ϵ .

So, for any (α1, . . . , αm) ∈ Rm
+ , we have

m∑
i=1

(
fi(x0)− νigi(x0)

gi(x0)

)αi + ϵ

m∑
j=1

αj

 ≤ 0. (4.9)

Since gi(x0) > 0 (i = 1, . . . ,m), then by substituting respectively in (4.9) αi and αj by
αigi(x0) and αjgi(x0) (j = 1, . . . ,m) we get that for any ϵ > 0,

m∑
i=1

(fi(x0)− νigi(x0))

αi + ϵ

m∑
j=1

αj

 ≤ 0, ∀(α1, . . . , αm) ∈ Rm
+ , (4.10)

which yields that ϵ > 0,

(f1(x0)− ν1g1(x0), . . . , fi(x0)− νigi(x0)) ∈ −K∗
ϵ , (4.11)

this contradicts, by virtue of Proposition 4.1 the fact that x is Henig proper efficient solution
of the problem (Px).

□

Now, by using this equivalence result in conjunction with Theorem 3.2, we can establish
the first characterization of sequential optimality conditions for problem (P) by means of
the epigraphs of the conjugate of data functions.
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Theorem 4.3. Let x ∈ C ∩ h−1(−Y+) and νi := fi(x)
gi(x)

(i = 1, . . . ,m). Then, x is a

properly efficient solution of the problem (P) in the sense of Henig, if and only if, there
exist (λ1, . . . , λm) ∈ (R+ \ {0})m, (x∗

i,n, ai,n) ∈ epi(λifi)
∗, (w∗

i,n, bi,n) ∈ epi(λiνi(−gi))
∗,

(c∗n, dn) ∈ epiδ∗C , y
∗
n ∈ Y ∗

+, sn ∈ R+, v
∗
n ∈ −Y ∗

+ and (u∗
n, tn) ∈ epi(−v∗n ◦ h)∗ such that

m∑
i=1

x∗
i,n +

m∑
i=1

w∗
i,n + c∗n + u∗

n

‖.‖X∗−−−−→ 0

y∗n + v∗n
‖.‖Y ∗−−−−→ 0

m∑
i=1

ai,n +

m∑
i=1

bi,n + dn + tn + sn −−−−→ 0.

Proof. According to Lemma 4.2, x is Henig properly efficient solution for problem (P) if and
only if, x is Henig properly efficient solution for problem (Px). By introducing the vector
indicator mappings δvC and δv−Y+

, the problem (Px) may be written equivalently as

inf
x∈X

{
Fx(x) + δvC(x) + (δv−Y+

◦ h)(x)
}

(4.12)

where Fx : X −→ Rm is defined for any x ∈ X, by

Fx(x) := (f1(x)− ν1g1(x), . . . , fm(x)− νmgm(x)) . (4.13)

Hence x is Henig properly efficient solution for problem (P) if and only if,

0 ∈ ∂p
(
Fx + δvC + δv−Y+

◦ h
)
(x). (4.14)

Let us consider the following vector mappings Li : X −→ Rm, (i = 1, . . . , 2m + 1) defined
by

Li(x) :=


(0, . . . , fi(x), . . . , 0) if (i = 1, . . . ,m)

(0, . . . , νm−i(−gm−i(x)), . . . , 0) if (i = m, . . . , 2m)

δvC(x) if i = 2m+ 1,

(4.15)

where the effective domain of the mappings Li, (i = 1, . . . , 2m+ 1) are given by

domLi :=


domfi = X if (i = 1, . . . ,m)

dom[νi−m(−gi−m)] = X if (i = m+ 1, . . . , 2m)

domδvC = C if i = 2m+ 1.

(4.16)

It is easy to see that the mappings Li : X −→ Rm, (i = 1, . . . , 2m+1) are proper, Rm
+ -convex

and strict star Rm
+ -lower semicontinuous. By means of these notations the expression (4.14)

may be written equivalently as

0 ∈ ∂p

(
2m+1∑
i=1

Li + δv−Y+
◦ h

)
(x). (4.17)

Let us note that the mapping δv−Y+
is proper, Rm

+ -convex and strict star Rm
+ -lower semicon-

tinuous since Y+ is a nonempty convex and closed cone. Moreover, let us recall that δv−Y+
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is (Y+,Rm
+ )-nondecreasing (see [4]) and the condition x̄ ∈ C ∩ h−1(−Y+), can be equiva-

lently rewritten as x̄ ∈ (
∩2m+1

i=1 domLi) ∩ domh ∩ h−1(domδv−Y+
). Hence, the mapping Li

(i = 1, . . . , 2m + 1), δv−Y+
and h satisfy together all the assumptions of Theorem 3.2 and

then there exist z∗ = (λ1, . . . , λm) ∈ ((Rm
+ )∗)◦ = (R+ \{0})m, (x∗

i,n, ri,n) ∈ epi(z∗ ◦Li)
∗ (i =

1, . . . , 2m+ 1), (y∗n, sn) ∈ epi(z∗ ◦ δv−Y+
)∗, v∗n ∈ −Y ∗

+ and (u∗
n, tn) ∈ epi(−v∗n ◦ h)∗ such that

2m+1∑
i=1

x∗
i,n + u∗

n

‖.‖X∗−−−−→ 0 (4.18)

y∗n + v∗n
‖.‖Y ∗−−−−→ 0

2m+1∑
i=1

ri,n + tn + sn −−−→ −
2m+1∑
i=1

(z∗ ◦ Li)(x)− (z∗ ◦ δv−Y+
)(h(x)). (4.19)

It is easy to check that z∗◦δvC = δC and z∗◦δv−Y+
= δ−Y+

. Therefore, for each i = 1, . . . , 2m+1

the conditions (x∗
i,n, ri,n) ∈ epi(z∗◦Li)

∗, (y∗n, sn) ∈ epi(z∗◦δv−Y+
)∗ and (4.19) can be rewritten

by means of data functions fi, gi, δC and δ−Y+
as follows

(x∗
i,n, ri,n) ∈ epi(z∗ ◦ Li)

∗ ⇐⇒



(x∗
i,n, ai,n) := (x∗

i,n, ri,n) ∈ epi(λifi)
∗,
if i ∈ {1, . . . ,m}

(w∗
i,n, bi,n) := (x∗

i+m,n, ri+m,n) ∈ epi(λiνi(−gi))
∗,

if i ∈ {1, . . . ,m}
(c∗n, dn) := (x∗

2m+1,n, r2m+1,n) ∈ epi(z∗ ◦ δvC)∗ =
epi(δC)

∗, if i = 2m+ 1,

(4.20)

(y∗n, sn) ∈ epi(z∗ ◦ δv−Y+
)∗ = epi(δ−Y+

)∗ = epi(δY ∗
+
) = Y ∗

+ × R+ (4.21)

and

(4.19) ⇐⇒
m∑
i=1

ai,n+

m∑
i=1

bi,n+dn+ tn+sn −−−→ −
m∑
i=1

λifi(x)−
m∑
i=1

λiνi(−gi)(x)− δC(x)

− δ−Y+
(h(x))

= −
m∑
i=1

λi(fi(x) + νi(−gi)(x))− δC(x)− δ−Y+(h(x)).

Since fi(x) + νi(−gi)(x) = 0, x ∈ C and h(x) ∈ −Y+ then the above limit reduces to

m∑
i=1

ai,n +

m∑
i=1

bi,n + dn + tn + sn −−−→ 0. (4.22)

Moreover, (4.18) can be written as follows

m∑
i=1

x∗
i,n +

m∑
i=1

w∗
i,n + c∗n + u∗

n

‖.‖X∗−−−−→ 0. (4.23)

This completes the proof. □
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For the second characterization, by applying Theorem 4.3 and Theorem 2.3 we ex-
press the sequential optimality conditions of the problem (P ) in terms of limits for the
ϵ-subdifferential (ϵ ≥ 0) of the functions involved at the minimizer.

Theorem 4.4. Let x ∈ C∩h−1(−Y+) and νi :=
fi(x)
gi(x)

(i = 1, . . . ,m). Then, x is Henig prop-

erly efficient solution for problem (P), if and only if, there exist (λ1, . . . , λm) ∈ (R+ \{0})m,
γn ≥ 0, x∗

i,n ∈ ∂γn
(λifi)(x), w∗

i,n ∈ ∂γn
(λiνi(−gi))(x) (i = 1, . . . ,m), c∗n ∈ Nγn

(x,C),
v∗n ∈ −Y ∗

+, y
∗
n ∈ Y ∗

+ ∩Nγn
(h(x),−Y+) and u∗

n ∈ ∂γn
(−v∗n ◦ h)(x) such that


γn −→ 0
m∑
i=1

x∗
i,n +

m∑
i=1

w∗
i,n + c∗n + u∗

n

‖.‖X∗−−−−→ 0

y∗n + v∗n
‖.‖Y ∗−−−−→ 0.

Proof. By virtue of Theorem 4.3, x is properly efficient solution of the problem (P ) in
the sense of Henig, if and only if, there exist (λ1, . . . , λm) ∈ (R+ \ {0})m, (x∗

i,n, ai,n) ∈
epi(λifi)

∗, (w∗
i,n, bi,n) ∈ epi(λiνi(−gi))

∗ (i = 1, . . .m), (c∗n, dn) ∈ epiδ∗C , y
∗
n ∈ Y ∗

+, sn ∈ R+,
v∗n ∈ −Y ∗

+ and (u∗
n, tn) ∈ epi(−v∗n ◦ h)∗ such that



m∑
i=1

x∗
i,n +

m∑
i=1

w∗
i,n + c∗n + u∗

n

‖.‖X∗−−−−→ 0 (4.24)

y∗n + v∗n
‖.‖Y ∗−−−−→ 0 (4.25)

m∑
i=1

ai,n +

m∑
i=1

bi,n + dn + tn + sn −−−→ 0. (4.26)

Since (y∗n, sn) ∈ epiδY ∗
+

= epiδ∗−Y+
, it follows according to Theorem 2.3, there exist αi,n,

βi,n, ηn, θn, ϵn ∈ R+ such that x∗
i,n ∈ ∂αi,n

(λifi)(x), w∗
i,n ∈ ∂βi,n

(λiνi(−gi))(x), c∗n ∈
Nηn

(x,C), y∗n ∈ Nθn(h(x),−Y+), u
∗
n ∈ ∂ϵn(−v∗n ◦ h)(x) and



ai,n = 〈x∗
i,n, x〉+ αi,n − (λifi)(x), i = 1, . . . ,m

bi,n = 〈w∗
i,n, x〉+ βi,n − (λiνi(−gi))(x), i = 1, . . . ,m

dn = 〈c∗n, x〉+ ηn

sn = 〈y∗n, h(x)〉+ θn

tn = 〈u∗
n, x〉+ ϵn − (−v∗n ◦ h)(x).

By adding the terms of the above equalities and using the fact that fi(x) + νi(−gi)(x) = 0,
we obtain
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m∑
i=1

ai,n +

m∑
i=1

bi,n + dn + tn + sn =

m∑
i=1

[〈x∗
i,n, x〉+ αi,n − (λifi)(x)]

+

m∑
i=1

[〈w∗
i,n, x〉+ βi,n − (λiνi(−gi))(x)]

+〈c∗n, x〉+ ηn + 〈y∗n, h(x)〉+ θn + 〈u∗
n, x〉+ ϵn

−(−v∗n ◦ h)(x).

=

⟨
m∑
i=1

x∗
i,n +

m∑
i=1

w∗
i,n + c∗n + u∗

n, x

⟩
+ 〈y∗n + v∗n, h(x)〉

+

m∑
i=1

αi,n +

m∑
i=1

βi,n + ηn + θn + ϵn.

It follows from (4.24), (4.25) and (4.26) that

m∑
i=1

αi,n +

m∑
i=1

βi,n + ηn + ϵn −→ 0, n 7−→ +∞. (4.27)

Moreover, since αi,n, βi,n, ηn, θn, ϵn ∈ R+, we get from (4.27) that αi,n −→ 0, βi,n −→ 0,
ηn −→ 0, θn −→ 0, ϵn −→ 0 as n 7−→ +∞. By setting γn := max1≤i≤m{αi,n, βi,n, ηn, θn, ϵn},
it follows that x∗

i,n ∈ ∂γn
(λifi)(x), w∗

i,n ∈ ∂γn
(λiνi(−gi))(x), c∗n ∈ Nγn

(x,C),
Nγn

(h(x),−Y+), u
∗
n ∈ ∂γn

(−v∗n ◦ h)(x) with γn −→ 0, as n 7−→ +∞.
Conversely, suppose that there exist (λ1, . . . , λm) ∈ (R+ \ {0})m, γn ≥ 0, x∗

i,n ∈
∂γn(λifi)(x), w∗

i,n ∈ ∂γn(λiνi(−gi))(x) (i = 1, . . . ,m), c∗n ∈ Nγn(x,C), v∗n ∈ −Y ∗
+,

y∗n ∈ Y ∗
+ ∩Nγn(h(x),−Y+), u

∗
n ∈ ∂γn(−v∗n ◦ h)(x) and
γn −→ 0
m∑
i=1

x∗
i,n +

m∑
i=1

w∗
i,n + c∗n + u∗

n

‖.‖X∗−−−−→ 0

y∗n + v∗n
‖.‖Y ∗−−−−→ 0.

For any x ∈ C ∩ h−1(−Y+), y ∈ −Y+ and any positive integer n, we have

λifi(x)− λifi(x) ≥ 〈x∗
i,n, x− x〉 − γn, (i = 1, . . . ,m)

λiνi(−gi)(x)− λiνi(−gi)(x) ≥ 〈w∗
i,n, x− x〉 − γn, (i = 1, . . . ,m)

0 ≥ 〈c∗n, x− x〉 − γn

0 ≥ 〈y∗n, y − h(x)〉 − γn

(−v∗n ◦ h)(x)− (−v∗n ◦ h)(x) ≥ 〈u∗
n, x− x〉 − γn.

By adding them up and by taking y := h(x), we get

m∑
i=1

λi(fi + νi(−gi))(x)−
m∑
i=1

λi(fi + νi(−gi))(x) + 〈v∗n + y∗n, h(x)− h(x)〉

≥ 〈
m∑
i=1

x∗
i,n +

m∑
i=1

w∗
i,n + c∗n + u∗

n, x− x〉 − 5γn.
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By taking the limit as n 7−→ +∞ in both terms of the above inequality, we deduce that

m∑
i=1

λi(fi + νi(−gi))(x)−
m∑
i=1

λi(fi + νi(−gi))(x) ≥ 0, ∀x ∈ C ∩ h−1(−Y+) (4.28)

i.e.

m∑
i=1

λi(fi + νi(−gi))(x) + δC(x) + (δ−Y+ ◦ h)(x)−
m∑
i=1

λi(fi + νi(−gi))(x)− δC(x̄)

− δ−Y+
◦ h(x̄) ≥ 0, ∀x ∈ X.

By setting z∗ := (λ1, . . . , λm), it is clear that z∗ ∈ (R+\{0})m = ((Rm
+ )∗)◦. As z∗ ◦ δvC = δC

and z∗ ◦ δv−Y+
= δ−Y+

, it follows that

0 ∈ ∂
(
z∗ ◦ (f1 + ν1(−g1), . . . , fm + νm(−gm)) + z∗ ◦ δvC + z∗ ◦ δv−Y+

◦ h
)
(x) (4.29)

i.e.

0 ∈ ∂
(
z∗ ◦

(
(f1 − ν1g1, . . . , fm − νmgm) + δvC + δv−Y+

◦ h
))

(x). (4.30)

The mapping
(
(f1 − ν1g1, . . . , fm − νmgm) + δvC + δv−Y+

◦ h
)
is obviously Rm

+ -convex and by

virtue of scalarization Theorem 2.5, we get

0 ∈ ∂p
(
(f1 − ν1g1, . . . , fm − νmgm) + δvC + δv−Y+

◦ h
)
(x), (4.31)

which means that x is Henig properly efficient solution for problem (Px) and by Lemma 4.2,
x is Henig properly efficient solution for problem (P ). The proof is complete. □

Similarly, we establish the sequential optimality conditions for (P ) in terms of the sub-
differentials of the functions involved.

Theorem 4.5. Let x ∈ C∩h−1(−Y+) and νi :=
fi(x)
gi(x)

(i = 1, . . . ,m). Then, x is Henig prop-

erly efficient solution for problem (P ), if and only if, there exist (λ1, . . . , λm) ∈ (R+ \{0})m,
xi,n ∈ X, wi,n ∈ X, cn ∈ C, un ∈ dom(−v∗n ◦ h), yn ∈ −Y+, x∗

i,n ∈ ∂(λifi)(xi,n), w∗
i,n ∈

∂(λiνi(−gi))(wi,n), c∗n ∈ N(cn, C), y∗n ∈ N(yn,−Y+), v∗n ∈ −Y ∗
+ and u∗

n ∈ ∂(−v∗n ◦ h)(un)
such that 

xi,n
‖.‖X−−−→ x, wi,n

‖.‖X−−−→ x, cn
‖.‖X−−−→ x, un

‖.‖X−−−→ x,
m∑
i=1

x∗
i,n +

m∑
i=1

w∗
i,n + c∗n + u∗

n

‖.‖X∗−−−−→ 0, y∗n + v∗n
‖.‖Y ∗−−−−→ 0,

λifi(xi,n)− 〈x∗
i,n, xi,n − x〉 −→ λifi(x) (i = 1, . . . ,m)

λiνi(−gi)(wi,n)− 〈w∗
i,n, wi,n − x〉 −→ λiνi(−gi)(x) (i = 1, . . . ,m)

〈c∗n, cn − x〉 −→ 0, 〈y∗n, yn − h(x̄)〉−→0

〈u∗
n, un − x〉+ 〈v∗n, h(un)− h(x)〉 −→ 0.

Proof. According to Theorem 4.4, x is Henig properly efficient solution for problem (P ), if
and only if, there exist (λ1, . . . , λm) ∈ (R+ \ {0})m, γn ≥ 0, x∗

i,n ∈ ∂γn(λifi)(x), w∗
i,n ∈
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∂γn(λiνi(−gi))(x), c
∗
n ∈ Nγn(x,C), v∗n ∈ −Y ∗

+, y
∗
n ∈ Y ∗

+ ∩Nγn(h(x),−Y+), u
∗
n ∈ ∂γn(−v∗n ◦

h)(x) and


γn −→ 0

y∗n + v∗n
‖.‖Y ∗−−−−→ 0 (4.32)

m∑
i=1

x∗
i,n +

m∑
i=1

w∗
i,n + c∗n + u∗

n

‖.‖X∗−−−−→ 0. (4.33)

As x∗
i,n ∈ ∂γn(λifi)(x), w

∗
i,n ∈ ∂γn(λiνi(−gi))(x), c

∗
n ∈ Nγn(x,C), y∗n ∈ Nγn(h(x),−Y+),

u∗
n ∈ ∂γn

(−v∗n ◦ h)(x) then by applying Theorem 2.4, we obtain the existence of xi,n ∈
dom(λifi) = X, wi,n ∈ dom(λiνi(−gi)) = X, cn ∈ C, yn ∈ −Y+, un ∈ dom(−v∗n ◦ h),
x∗
i,n ∈ ∂(λifi)(xi,n), w

∗
i,n ∈ ∂(λiνi(−gi))(wi,n), c

∗
n ∈ N(cn, C), y∗n ∈ N(yn,−Y+), u

∗
n ∈

∂(−v∗n ◦ h)(un) such that



‖xi,n − x̄‖X ≤ √
γn, ‖wi,n − x̄‖X ≤ √

γn, ‖cn − x̄‖X ≤ √
γn, ‖un − x̄‖X ≤ √

γn

‖yn − h(x̄)‖Y ≤ √
γn,

(4.34)

‖x∗
i,n − x̄∗

i,n‖X∗ ≤ √
γn, ‖w∗

i,n − w̄∗
i,n‖X∗ ≤ √

γn, ‖c∗n − c̄∗n‖X∗ ≤ √
γn

‖u∗
n − ū∗

n‖X∗ ≤ √
γn, ‖y∗n − ȳ∗n‖Y ∗ ≤ √

γn,
(4.35)

| λifi(xi,n)− 〈x∗
i,n, xi,n − x̄〉 − λifi(x̄) |≤ 2γn

| −λiνigi(wi,n)− 〈w∗
i,n, wi,n − x̄〉+ λiνigi(x̄) |≤ 2γn

| δC(cn)− 〈c∗n, cn − x̄〉 − δC(x̄) |≤ 2γn
| δ−Y+

(yn)− 〈y∗n, yn − h(x̄)〉 − δ−Y+
(h(x̄)) |≤ 2γn

| (−v∗n ◦ h)(un)− 〈u∗
n, un − x̄〉 − (−v∗n ◦ h)(x̄) |≤ 2γn

 . (4.36)

By letting n 7−→ +∞, we get from (4.34) and (4.36) that



xi,n
‖.‖X−→ x̄, wi,n

‖.‖X−→ x̄, cn
‖.‖X−→ x̄, un

‖.‖X−→ x̄, yn
‖.‖Y−→ h(x̄)

λifi(xi,n)− 〈x∗
i,n, xi,n − x̄〉 −→ λifi(x̄),

−λiνigi(wi,n)− 〈w∗
i,n, wi,n − x̄〉 −→ −λiνigi(x̄),

δC(cn)− 〈c∗n, cn − x̄〉 −→ δC(x̄).
δ−Y+

(yn)− 〈y∗n, yn − h(x̄)〉−→δ−Y+
(h(x̄))

}
(4.37)

(−v∗n ◦ h)(un)− 〈u∗
n, un − x̄〉 − (−v∗n ◦ h)(x̄)−→0.

Since cn ∈ C, yn ∈ −Y+ and x ∈ C ∩ h−1(−Y+), the expression (4.37) reduces to

〈c∗n, cn − x̄〉 −→ 0, 〈y∗n, yn − h(x̄)〉−→0. (4.38)

Moreover, we have

‖y∗n + v∗n‖Y ∗ = ‖y∗n − y∗n + v∗n + y∗n‖Y ∗ ≤ ‖y∗n − y∗n‖Y ∗ + ‖y∗n + v∗n‖Y ∗ ,
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and

‖
m∑
i=1

x∗
i,n +

m∑
i=1

w∗
i,n + c∗n + u∗

n‖X∗

= ‖
m∑
i=1

x∗
i,n −

m∑
i=1

x∗
i,n +

m∑
i=1

w∗
i,n −

m∑
i=1

w∗
i,n + c∗n − c∗n + u∗

n − u∗
n

+

m∑
i=1

x∗
i,n +

m∑
i=1

w∗
i,n + c∗n + u∗

n‖X∗

≤
m∑
i=1

‖x∗
i,n − x∗

i,n‖X∗ +

m∑
i=1

‖w∗
i,n − w∗

i,n‖X∗ + ‖c∗n − c∗n‖X∗ + ‖u∗
n − u∗

n‖X∗

+‖
m∑
i=1

x∗
i,n +

m∑
i=1

w∗
i,n + c∗n + u∗

n‖X∗ .

and hence by letting n −→ +∞, it follows from (4.32), (4.33) and (4.35) that


y∗n + v∗n

‖.‖Y ∗−−−−→ 0,
m∑
i=1

x∗
i,n +

m∑
i=1

w∗
i,n + c∗n + u∗

n

‖.‖X∗−−−−→ 0.

Conversely, assume that the preceding sequential optimality conditions hold. Then, for any
x ∈ C ∩ h−1(−Y+), y ∈ −Y+ and any positive integer n, we have

λifi(x) ≥ λifi(xi,n) + 〈x∗
i,n, x− xi,n〉, (i = 1, . . . ,m)

λiνi(−gi)(x) ≥ λiνi(−gi)(wi,n) + 〈w∗
i,n, x− wi,n〉, (i = 1, . . . ,m)

0 ≥ 〈c∗n, x− cn〉
0 ≥ 〈y∗n, y − yn〉
0 ≥ −(−v∗n ◦ h)(x) + (−v∗n ◦ h)(un) + 〈u∗

n, x− un〉.

By adding these inequalities and taking for all x ∈ C ∩ h−1(−Y+), y := h(x), we get

m∑
i=1

λifi(x) +

m∑
i=1

λiνi(−gi)(x) ≥
m∑
i=1

(
λifi(xi,n)− 〈x∗

i,n, xi,n − x〉
)

+

m∑
i=1

(
λiνi(−gi)(wi,n)− 〈w∗

i,n, wi,n − x〉
)

−〈c∗n, cn − x〉 − 〈y∗n, yn − h(x)〉 − 〈u∗
n, un − x〉

−〈v∗n, h(u∗
n)− h(x)〉+ 〈y∗n + v∗n, h(x)− h(x)〉

+

⟨
m∑
i=1

x∗
i,n +

m∑
i=1

w∗
i,n + c∗n + u∗

n, x− x

⟩
.

Passing to the limit as n 7−→ +∞, we obtain

m∑
i=1

λi(fi + νi(−gi))(x)−
m∑
i=1

λi(fi + νi(−gi))(x) ≥ 0, ∀x ∈ C ∩ h−1(−Y+) (4.39)
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i.e.

m∑
i=1

λi(fi + νi(−gi))(x) + δC(x) + δ−Y+
◦ h(x)−

m∑
i=1

λi(fi + νi(−gi))(x)− δC(x̄)

− δ−Y+
◦ h(x̄) ≥ 0, ∀x ∈ X.

By using the similar arguments used in the proof of the converse of Theorem 4.4, we get

0 ∈ ∂p
(
(f1 − ν1g1, . . . , fm − νmgm) + δvC + δv−Y+

◦ h
)
(x), (4.40)

which means that x is Henig properly efficient solution for problem (Px) and by Lemma 4.2,
x is Henig properly efficient solution for problem (P ). The proof is complete. □

We now illustrate the above results with the help of an example of multiobjective frac-
tional programming problem, where the standard Lagrange multiplier condition can not be
derived due to the lack of constraint qualification and the sequential conditions hold. For
this, we will need to establish the standard necessary and sufficient optimality conditions for
a feasible point x to be an efficient solution for problem (P) under a constraint qualification.

Theorem 4.6. Let fi, −gi : X −→ R be 2m convex functions such that fi(x) ≥ 0 for any
x ∈ C ∩ h−1(−Y+) (i = 1, . . . ,m) and h : X −→ Y ∪ {+∞Y } be a proper and Y+-convex
mapping. Let us consider the following constraint qualification

(C.Q.M0.R0)


(X, ‖.‖X) and (Y, ‖.‖Y ) are two real reflexive Banach spaces,

∃a ∈ C ∩ domh such that

h(a) ∈ −intY+.

Suppose that intY+ 6= ∅ (intY+ stands for the topological interior of Y+) and the constraint
qualification (C.Q.M0.R0) is satisfied. Then x ∈ C ∩ h−1(−Y+) is Henig properly efficient
solution for problem (P), if and only if, there exists y∗ ∈ Y ∗

+ such that 〈y∗, h(x)〉 = 0 and

0 ∈ ∂

(
m∑
i=1

(λi(fi − νigi) + δC + y∗ ◦ h

)
(x). (4.41)

Proof. Following the proof of Theorem 4.3, we have x is Henig properly efficient solution of
(P ) if and only if,

0 ∈ ∂p
(
Fx + δvC + δv−Y+

◦ h
)
(x) (4.42)

where Fx : X −→ Rm is defined for any x ∈ X by

Fx(x) := (f1(x)− ν1g1(x), . . . , fm(x)− νmgm(x)) . (4.43)

According to scalarization Theorem 2.5, there exists z∗ = (λ1, . . . , λm) ∈ (R+ \ {0})m such
that

0 ∈ ∂(z∗ ◦ Fx + z∗ ◦ δvC + z∗ ◦ δv−Y+
◦ h)(x). (4.44)

Since z∗ ◦ δvC = δC and z∗ ◦ δv−Y+
= δ−Y+ , therefore we obtain

0 ∈ ∂

(
m∑
i=1

(λi(fi − νigi) + δC + δ−Y+
◦ h

)
(x). (4.45)
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The constraint qualification (C.Q.M0.R0) show that the indicator function δ−Y+ is continu-
ous at h(a) and by applying a formula in [2] by Combari-Laghdir-Thibault, concerning the
computation of the subdifferential of the composite of a nondecreasing convex function with
a convex mapping taking values in a partially ordered topological vector space, there exists
y∗ ∈ ∂δ−Y+

(h(x)) = N(h(x),−Y+) such that

0 ∈ ∂

(
m∑
i=1

(λi(fi − νigi) + δC + y∗ ◦ h

)
(x). (4.46)

The condition y∗ ∈ N(h(x),−Y+) is equivalent to y∗ ∈ Y ∗
+ and 〈y∗, h(x)〉 = 0. □

We now give an example of multiobjective fractional programming problem, where the
standard optimality condition can not be derived due to the lack of constraint qualification
and the sequential optimality conditions hold.

Example 4.7. Let us consider the following multiobjective fractional problem

(Q)


inf
(

2x
y+3 ,

2x
y2+1

)(
(max {0, x})2 ,

√
x2 + y2 − y

)
∈ −R2

+

(x, y) ∈ R+ × [0, 1],

where h(x, y) =
(
(max {0, x})2 ,

√
x2 + y2 − y

)
, f1(x, y) = 2x, f2(x, y) = −2x, g1(x, y)

= y + 3, g2(x, y) = −y2 − 1 and C = R+ × [0, 1]. The euclidian space Y = R2 is equipped
with the natural order induced by the nonnegative orthant Y+ = R2

+. Obviously Y ∗
+ = R2

+.

Let (x, y) =
(
0, 1

2

)
be a feasible point and νi = fi(x,y)

gi(x,y)
(i = 1, 2). Then ν1 = ν2 = 0.

Let us observe that for any (x, y) ∈ C, we have h(x, y) ∈ R2
+, and hence the feasible set

of problem (Q) is given by S = {0} × [0, 1] which yields that the constraint qualification
(C.Q.M0.R0) does not hold. By taking (λ1, λ2) := (1, 1), v∗n := (0, 0), it follows that
the epigraph of the conjugate functions turn out to be epi(λ1f1)

∗ = epif∗
1 = {(2, 0)} ×

[0,+∞[, epi(λ2f2)
∗ = epif∗

2 = {(−2, 0)} × [0,+∞[, epi(λiνi(−gi))
∗ = {(0, 0)} × [0, +∞[,

epiδ∗C =
∪

α>0{((0, α), α)} ∪ {0} × R × [0, +∞[, epi(−v∗n ◦ h)∗ = {(0, 0)} × [0,+∞[. For
i = 1, 2, by taking (x∗

1,n, a1,n) := ((2, 0), 1
n ) ∈ epi(λ1f1)

∗, (x∗
2,n, a2,n) := ((−2, 0), 1

n ) ∈
epi(λ2f2)

∗, (w∗
i,n, bi,n) := ((0, 0), 1

n ) ∈ epi(λiνi(−gi))
∗, (c∗n, dn) := ((0, 1

n ),
1
n ) ∈ epiδ∗C ,

y∗n := (0, 0) ∈ (R+)
2, sn := 1

n ∈ R+, and (u∗
n, tn) = ((0, 0), 0) ∈ epi(−v∗n ◦ h)∗ such that

2∑
i=1

x∗
i,n +

2∑
i=1

w∗
i,n + c∗n + u∗

n = (0,
1

n
)

‖.‖R2−−−→ 0

y∗n + v∗n = (0, 0)
‖.‖R2−−−→ 0

2∑
i=1

ai,n +

2∑
i=1

bi,n + dn + tn + sn =
6

n
−−−→ 0.

Therefore, by Theorem 4.3 the point (x, y) is a Henig efficient solution for (Q).

Conclusion and Discussions. In this paper, we consider sequential necessary and suffi-
cient optimality conditions for a constrained multiobjective fractional programming problem
characterizing a Henig proper efficient solution in terms of the subdifferentials of the data
functions. To get these optimality conditions, we formulate a corresponding equivalent scalar
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convex problem by using a parametric approach and sequential subdifferential calculus. Let
us recall [4] that the set of Henig proper efficient solutions Ep(f, C), the set of efficient
solutions Ee(f, C) and the set of weakly efficient solutions Ew(f, C) satisfy the following
inclusions

Ep(f, C) ⊆ Ee(f, C) ⊆ Ew(f, C),

which means that our paper can be considered as an extension of earlier papers [10] and
[12].

Let us note that the subdifferential calculus have been established in the convex frame-
work by using the crucial Brondsted-Rockafellar theorem.

To the best of our knowledge, we have not explored any work dealing with sequential
subdifferential calculus in the non-convex framework. In a forthcoming work, we will try to
study the same problem (P) where all the data functions g1, . . . , gm are supposed convex.
In this case, by using a parametric approach we transform the problem (P) equivalently as a
DC programming problem. Also, we will attempt to examine the robustness of the problem
(P) from optimality conditions and duality point of view.

We would like to express our gratitude to the referee for valuable comments and sugges-
tions, which certainly contribute to improve the quality of the paper.
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