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1.1 Related work

Over the past decades, there has been a flurry of research activities focused on regulariza-
tion. Regularization strategies typically include limiting the model’s complexity, making
objectives smooth, target-dependent, and simpler to solve (see, e.g., [11, 19, 25, 45] and ref-
erences therein). In this section, a review is provided of diversified regularization techniques,
which have been empirically categorized into data-independent and data-dependent types.

1.1.1 Data-independent regularization

In traditional machine learning, data-independent regularization primarily imposes penal-
ties directly on the variables. Recently, sparse vector-based regularization has garnered
significant attention in practical applications (see, e.g., [32, 5, 21]). Specifically, sparse reg-
ularization essentially entails an ℓ0-norm penalty term, i.e., R(θ) := ∥θ∥0, to constrain the
number of nonzero components. However, this represents an intrinsically NP-hard combi-
natorial optimization problem. To promote sparsity, ℓ1-norm regularization is utilized to
facilitate favorable convex optimization problem [34]. With narrowing the gap between ℓ0-
norm and ℓ1-norm, ℓp-norm becomes a significant regularization [34]. The special case of
p = 2 proves beneficial for certain learning models [8], which prevents excessive fluctua-
tion of the objective function value. Furthermore, Tikhonov regularization, also known as
ridge regression, has been extensively discussed in the context of ill-posed problems [11]. It
is characterized by a Tikhonov matrix Γ with a square-norm penalty, i.e., R(θ) := ∥Γθ∥22.
When Γ = αI, with α > 0 and I being the identity matrix, Tikhonov regularization becomes
equivalent to ℓ2-norm regularization.

Additionally, motivated by advancements in low-rank matrix recovery, low-rank matrix
regularization has captured increasing research interest (see, e.g., [9, 23, 46]). The original
form of low-rank regularization is represented by rank(Θ), indicating the rank of the pa-
rameter matrix Θ in (1.1). It is a prohibitively challenging nonconvex problem. A popular
convex relaxation method for approximating the rank function is the nuclear norm ∥Θ∥∗
(see (2.1) for definition), which is the sum of singular values of Θ. In contrast, the Schat-
ten p-norm of a matrix (defined by the ℓp-norm of the singular value vector) offers a more
accurate approximation of the original rank function, yielding improved practical results.

In the context of deep learning, data-independent regularization can improve the gen-
eralization performance by limiting the model’s complexity. DropOut method [38] and
DropConnect method [44] can be considered as computationally inexpensive ways to train
an exponentially large ensemble of DNN. Besides, weight decay [16] and batch normalization
technique [14] can alleviate overfitting by reducing the magnitude of the weights and the
features.

1.1.2 Data-dependent regularization

Data-dependent regularization techniques typically incorporate the inherent data structure
to facilitate penalty terms. Data compression [2], tensor dropout [17], and tensor decom-
position [33] are classical techniques of structural regularization. Besides, manifold learning
is currently gaining importance [47, 26] based on the assumption that data possesses some
inherent structure. More concretely, the observed data lies on a low-dimensional manifold
embedded in a higher-dimensional space, which states that the shape of data is relatively
simple. Intuitively, manifold learning regularization primarily imposes penalties on func-
tions related to the intrinsic geometry of the data manifold. For instance, smoothness on
the manifold, and low-dimensionality of the manifold.
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In image processing, the patch of an image represents a sub-image with a fixed size and
the patch set is the collection of all patches with the same size of image. And the patch set can
sample a low-dimensional smooth manifold, which is called the patch manifold of the image.
In [30, 31], researchers have discovered the fact that patch manifolds of many natural images
exhibit a low-dimensional structure. Subsequently, the dimension of the patch manifold
was proposed as a regularizer in image reconstruction using the low-dimensional manifold
model (LDMM) [29]. Recently, LDMNet [49] has extended the manifold learning model to
study the geometry of both the input data and the output features. Benefitting from the
observation that input data and output features may sample a collection of low-dimensional
manifolds, LDMNet encourages the learning of geometrically meaningful features through a
dimensional penalty.

As discussed in [29, 49], calculating the manifold’s dimension entails discretization and
the associated minimization requires solving a series of variational subproblems. It is ex-
tremely complicated for algorithmic solvers and theoretical analysis. Accordingly, this paper
is dedicated to improving the regularization aspects of LDMNet.

1.2 Motivation and contribution

In this paper, pursuing the track of regularization modeling in [29, 49], we propose a cou-
pled tensor norm regularizer, which is an alternative representation of characterizing low-
dimensionality. Considering the tensor representation of datasets, input data and output
features can be regarded as the coupled tensor, which is the concatenation of a third-order
tensor and matrix in this paper. Differing from the dimensional penalty in [49], the main
idea of our regularization is built upon the low-rankness of the above coupled tensor. Ac-
cordingly, the coupled tensor norm is the approximation of coupled tensor’s rank function
with elegant computable properties. The contributions of this paper are summarized as
follows:

(i) We devise a coupled tensor norm regularization based on the fact that both the input
tensor and the output feature matrix possess low-dimensional structure.

(ii) A related analysis of the convexity and smoothness properties of this regularization
is presented.

(iii) We evaluate this regularization for multinomial logistic regression (MLR) and deep
neural networks (DNN) via theoretical algorithm analysis and numerical experiments.

The rest of this paper is organized as follows. In Section 2, we summarize some prelimi-
naries, which will be useful for subsequent modeling and analysis. In Section 3, we present
the proposed regularization and analyze its related properties. For multinomial logistic
regression, a convergent gradient descent approach is adopted to solve the whole model.
For deep neural networks, we devise an alternating minimization method and establish the
theoretical convergence. In Section 4, we evaluate multinomial logistic regression and deep
neural networks on a series of real datasets to demonstrate the numerical performance of
the proposed regularization. Finally, conclusions are drawn in Section 5.
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2 Preliminaries

For a vector, x = (x1, · · · , xn)⊤ ∈ Rn, let ∥x∥p := (
n∑

i=1

|xi|p)1/p(0 < p < ∞) denote the

ℓp-norm of x. At the extreme, the ℓ0-norm is defined by the number of non-zero elements.
For brevity, we denote the ℓ2-norm of x by ∥x∥. Let 0 (resp., I) denote the zero (resp.,
identity) matrix whose dimension can be clear from the context. For a matrix X ∈ Rm×n

with rank(X) = r, the singular value decomposition (SVD) of matrix X is X = UΣV ⊤,
where U ∈ Rn×r and V ∈ Rn×r have orthonormal columns, and Σ = diag(σ1, . . . , σr) has
positive singular values. We denote the vectorized singular values of X in nonincreasing
order by σ(X) := (σ1, · · · , σr)⊤ ∈ Rr. The Schatten norm of X, denoted by ∥X∥∗,p, is the
ℓp-norm of σ(X), i.e.,

∥X∥∗,p := ∥σ(X)∥p, ∀ p ∈ [0,∞]. (2.1)

Particularly, ∥X∥∗,0(resp., ∥X∥∗,1,∥X∥∗,2, and ∥X∥∗,∞) corresponds to the rank (resp.,
nuclear, Frobenius, and spectral norm) of X. For brevity, the Frobenius norm of matrix

X is denoted by ∥X∥F . For a tensor X ∈ RI1×···×IN , X(n) ∈ RIn×Jn with Jn =
N∏

i=1,i ̸=n

Ii

denotes the mode-n unfolding matrix. Tucker decomposition of X is defined by X = G ×1

U1 ×2 U2 ×3 · · · ×N UN , or equivalently,

X(n) = UnG(n) (UN ⊗ · · · ⊗ Un+1 ⊗ Un−1 · · · ⊗ U1)
⊤
, ∀n = 1, . . . , N,

where Un ∈ RIn×Rn is the factor matrix (which is usually orthogonal) and G ∈ RR1×···×RN

is the core tensor, G(n) is the mode-n unfolding matrix of G. Accordingly, the Tucker rank of
tensor X (also called multilinear rank) is defined by rankT (X ) := (rank(X(1)), · · · , rank(X(N))).

The coupled tensor denotes the concatenation of tensors and the coupling between tensors
occurs when they share a common mode, where one tensor can provide side information for
others or they both mutually share information (see e.g., [43, 1, 35] and references therein).
For instance, given an N -th order of tensor X ∈ RI1×···×IN and an M -th order tensor
Y ∈ RJ1×···×JM with the dimension of the n-th mode of X equals the m-th mode of Y, the
coupled tensor of X and Y, denoted by [X ,Y](n,m). For brevity, we simplify the notation by
[X ,Y] whenever there is no confusion. Please see Figure 1 for an example of the coupling
of a third-order tensor and a matrix at the first mode.

The coupled low-rank decomposition of [X , A](n,1) [35] factorizes a matrix A ∈ RIn×J

and tensor X ∈ RI1×···×IN as the form of

A = UnV
⊤ and X = G×1U1 ×2 U2 ×3 · · · ×N UN ,

where Un ∈ RIn×Rn is shared between X and A with a coupled rank Rn. Therein, Un can
provide features for both X and A, which may increase the extracted information from both
data sets. Naturally, the coupled tensor rank of [X , A] is defined as an extension of Tucker
rank, i.e.,

rank([X , A]) := (rank(X(1)), · · · , rank([X(n), A]), · · · , rank(X(N))).

The coupled tensor norm is a convex approximation of low-rankness for the coupled
tensor, which may be used in the coupled tensor completion. Interested readers can refer to
[43, 42] for more details. Concretely, the coupled tensor norm of [X , A] is defined by

∥[X , A]∥c := ∥[X(n), A]∥∗ +

N∑
i=1,i ̸=n

∥X(i)∥∗, (2.2)
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Figure 1: Illustration of the coupling between a tensor X and matrix A at the first mode.

where X(n) is the mode-n unfolding matrix.

Remark 2.1. In this paper, we only consider the case of M = 2, namely, the concatenation
of a tensor and a matrix. However, our discussions may be extended to an arbitrary tensor
coupling.

Let f : Rn → R∞ := R ∪ {+∞} be an extended value function. f is said to be proper
(resp. closed) if dom(f) := {x ∈ Rn | f(x) < +∞} is nonempty (resp. epi(f) := {(x, r) ∈
Rn × R | f(x) ≤ r} is closed). f is called regular at x̄ if the set epi(f) is Clarke regular at
(x̄, f(x̄)).

Some preliminaries on subdifferential definitions and calculus are stated as follows (see
e.g., the monograph [40]).

Definition 2.2. Let f : Rn → R∞ be a proper, closed function.

(i) The Fréchet subdifferential of f at x ∈ dom(f), denoted by ∂̂f(x), is the set of vectors
p ∈ Rn which satisfy

f(y) ≥ f(x) + ⟨p, y − x⟩+ o(∥y − x∥).

(ii) The limiting subdifferential of f at x ∈ dom(f), is defined by

∂f(x) := {p ∈ Rn | ∃ xk → x, f(xk)→ f(x), pk ∈ ∂̂f(xk)→ p, as k →∞}.

Notationally, ∂̂f(x) = ∂f(x) = ∅ for all x /∈ dom(f). It is follows from above definition

that ∂̂f(x) ⊂ ∂f(x) for any x ∈ dom(f). The first set is closed and convex while the second
one is closed. Moreover, if f is convex, then

∂̂f(x) = ∂f(x) = {p ∈ Rn | f(y) ≥ f(x) + ⟨p, y − x⟩, ∀y ∈ Rn}.

If f is convex and differential, then ∂̂f(x) = ∂f(x) = ∇f(x). The subdifferential of matrix
nuclear norm can be referred to, e.g., [10, Theorem 2.1], which is useful for sequel analysis.

Lemma 2.3. Let X ∈ Rm×n be an arbitrary matrix and USV ⊤ be the SVD of X, then the
nuclear norm function of matrix X ∈ Rm×n is convex and nonsmooth and its subdifferential
is

∂∥X∥∗ = {UV ⊤ + Z | U⊤Z = 0, ZV = 0, ∥Z∥ ≤ 1}.
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The following subdifferential calculus rule for regular function can be referred to, e.g.,
[40, 10.9 Corollary].

Lemma 2.4. If each fi (1 ≤ i ≤ n) is regular at x̄, then f =
n∑

i=1

fi is regular at x̄ and

∂f(x̄) = ∂f1(x̄) + · · ·+ ∂fn(x̄). (2.3)

The Kurdyka- Lojasiewicz (K L) property is a powerful tool in the field of nonconvex and
nonsmooth optimization (see, e.g. [7]). For any −∞ < c1 < c2 ≤ ∞, a sublevel set of f is
defined by

[c1 < f < c2] := {x ∈ Rn | c1 < f(x) < c2}.

For η ∈ (0,∞], let Φη denote the class of concave and continuous function φ : [0, η) → R+

satisfying:

(i) φ is continuous at origin and φ(0) = 0;

(ii) φ is continuously differential on (0, η);

(iii) φ′(t) > 0 for all t ∈ (0, η).

Definition 2.5. A proper closed function f : Rn → R∞ admits the K L property at x̄ ∈
dom(∂f) := {x ∈ Rn | ∂f(x) ̸= ∅} if there exist η ∈ (0,∞], φ ∈ Φη, and neighbourhood of
x̄ (denoted by B(x̄)) such that

φ′(f(x)− f(x̄))dist(0, ∂f(x)) ≥ 1, ∀x ∈ B(x̄) ∩ [f(x̄) < f(x) < f(x̄) + η]. (2.4)

Moreover, f is called a K L function if it admits the K L property at any x̄ ∈ dom(∂f).

3 Model and Algorithm

In this section, we present the coupled tensor norm regularizer and analyze its properties.
Afterwards, this regularizer is applied to multinomial logistic regression (MLR) and deep
neural networks (DNN), respectively.

Throughout this section, we focus on the multi-classification problem with n samples and
c disjoint classes. Let S = {(Xi, yi)}ni=1 denote the independent and identically distributed
training dataset, where Xi ∈ RI1×···×IN represents the input data information and yi ∈ Rc

the corresponding label. Specifically, m =
∏N

i=1 Ii denotes the number of input features

and yi = (y
(1)
i , y

(2)
i , · · · , y(c)i )⊤ is defined as the one-bit vector with y

(k)
i = 1 if Xi belongs

to the k-th class and y
(k)
i = 0 otherwise. For convenience, let fθ(Xi) ∈ Rc represent the

output feature of Xi, where fθ is the learning model with respect to parameter θ. Let
X ∈ Rn×I1×···×IN (resp,. Y ∈ Rn×c, fθ(X ) ∈ Rn×c) correspond to the concatenation of Xi

(resp., yi, fθ(Xi) ), i = 1, · · · , n at the first mode.
Accordingly, the loss function of the classification model in (1.1) is

L(θ) =
1

n

n∑
i=1

l(fθ(Xi), yi), (3.1)

where l(·) is the loss function, such as the cross entropy loss.
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As discussed in [49], the concatenation X and fθ(X ) can sample a collection of low-
dimensional manifolds, and the regularizer in [49] is the dimensionality of the manifold.
Actually, the low-dimensional manifold model can be applied to surface patches in the point
cloud, which uses the patch manifold prior to seeking self-similar patches and removing
noise. Alternatively, for coupled tensor data [X , fθ(X )], the low-dimensional property can
naturally be characterized by low-rankness. Hence, the new regularizer is defined as the
rank of coupled tensor as follows,

R(θ) = rank([X , fθ(X )]).

Furthermore, utilizing the classical convex approximation of the rank function for matrices,
the coupled tensor norm based on the overlapped approach in (2.2) is adopted to characterize
low-rankness, and we have

∥[X , fθ(X )]∥c = ∥[X(1), fθ(X )]∥∗ +

N∑
i=2

∥X(i)∥∗.

By ignoring the terms that are not related to θ, we propose the following regularization
function,

R(θ) = ∥[X(1), fθ(X )]∥∗. (3.2)

The following theorem states the properties of the matrix concatenation function, which
will be useful for subsequent analysis.

Theorem 3.1. Let X ∈ Rn×m and ξ ∈ Rn×c, the matrix row concatenation function,
defined by g(ξ) = ∥[X, ξ]∥∗, is not a norm. Further, it is a convex but nondifferentiable
function in terms of ξ, and its subdifferential is

∂g(ξ) = {UV ⊤
2 + Z2 |U⊤Z = 0, ZV = 0, ∥Z∥ ≤ 1},

where UΣV ⊤ is the SVD of [X , ξ], r is the rank of [X , ξ], U ∈ Rn×r, Σ ∈ Rr×r, V ∈
R(m+c)×r, V2 ∈ Rc×r is the last c rows of V , and Z2 ∈ Rn×c is the last c columns of
Z ∈ Rn×(m+c).

Proof. Note that when ξ is equal to zero, g(ξ) may not equal zero. Hence, g(ξ) is not a
norm.

Further, by rewriting the concatenation of X and ξ as a linear function of ξ,

[X, ξ] = ξA + [X,0], (3.3)

where A = [0, I] with 0 ∈ Rc×m, I ∈ Rc×c and [X,0] with 0 ∈ Rn×c. Obviously, g(ξ) is
convex provided that g(ξ) is the composition of convex and linear functions. Suppose the
SVD of matrix [X, ξ] is USV ⊤. Then the subdifferentiable of the nuclear norm at [X, ξ] is

∂∥[X, ξ]∥∗ = {UV ⊤ + Z | U⊤Z = 0, ZV = 0, ∥Z∥ ≤ 1}.

Through the chain rule and equation (3.3), we have

∂g(ξ) =
∂g(ξ)

∂[X, ξ]
· ∂[X, ξ]

∂ξ
= (UV ⊤ + Z)A⊤ = UV ⊤

2 + Z2, (3.4)

where V2 is the last c rows of V and Z2 is the last c columns of Z. This completes the
proof.
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Based on Theorem 3.1, we can analyze the properties of our proposed regularizer, which
is the composition of matrix nuclear norm, matrix concatenation, and the classification
model.

Theorem 3.2. Let R(·) be the regularizer defined by (3.2). Then,

(i) if the learning model fθ is linear with respect to θ, then R(·) is convex for θ. Further,
if fθ(X ) = X(1)θ or fθ(X ) = X(1)θ

⊤, then R(·) is also differential for θ;

(ii) if the learning model fθ is nonconvex and nondifferentiable with respect to θ, then
R(·) is nonconvex and nondifferentiable for θ.

Proof. If ξ = fθ(X ) in Theorem 3.1 is a linear model for θ, then R(·) is the composition
of convex and linear functions, and is convex consequently. On the other hand, when the
learning model fθ(·) is a nonconvex and nondifferentiable model for θ, R(·) is nonconvex and
nondifferentiable. Furthermore, based on SVD of matrix [X(1), fθ(X )], i.e., [X(1), fθ(X )] =

USV ⊤, we have

X(1) = USV ⊤
1 , fθ(X ) = USV ⊤

2 ,

where V1, V2 are the front m rows and the last c rows of V , respectively. From (3.4) in the
proof of Theorem 3.1, we have that, if fθ(X ) = X(1)θ,

∇R(θ) = V1SU
⊤(UV ⊤

2 + Z2) = V1SV
⊤
2 ,

and if fθ(X ) = X(1)θ
⊤,

∇R(θ) = (UV ⊤
2 + Z2)⊤USV ⊤

1 = V2SV
⊤
1 . (3.5)

Hence, R(·) is differential in these two cases. The proof is thus completed.

3.1 Multinomial logistic regression

Multinomial logistic regression (MLR) is a classical learning method for classification tasks.
Let xi ∈ Rm represent the vectorized form of the input tensor Xi, and X ∈ Rn×m denote
the matrix of all input features from n training samples, which corresponds to the unfolding
of X along the first mode. Suppose that the posterior probability that xi belongs to the
k-th class is modeled by the softmax function as follows,

P (y
(k)
i = 1 | xi,W ) :=

exp(w⊤
k xi)

c∑
j=1

exp(w⊤
j xi)

,

where wj ∈ Rm is the j-th column of the weight matrix, and W := (w1, w2, · · · , wc)
⊤ ∈ Rc×m

is the weight matrix to be estimated from the training set. The MLR model estimates the
parameter W using the maximum likelihood, or equivalently minimizing the negative log-
likelihood,

min
W∈Rc×m

L(W ) = − 1

n

n∑
i=1

( c∑
j=1

y
(j)
i w⊤

j xi − log

c∑
j=1

exp(w⊤
j xi)

)
,
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where L(W ) is called an average multinomial logistic loss function. The interested readers
can refer to [18, 4] for more details on multinomial logistic regression. Obviously, it falls
into a special case of (3.1) with θ = W , fθ(X ) := XW⊤.

Previous studies, such as [48], have demonstrated that MLR may not generalize effec-
tively on test datasets when the number of samples n is significantly smaller than the number
of features m. To improve the generalization, the MLR model with the proposed regularizer
(3.2) can be reformulated as the minimization problem

min
W∈Rc×m

G(W ) := L(W ) + λ∥[X,XW⊤]∥∗. (3.6)

The nuclear norm function is typically nondifferentiable; however, the coupled nuclear
norm regularizer introduced in this context is differentiable for W . More details are presented
in the following lemma.

Lemma 3.3. Given the regularizer term R(W ) = ∥[X,XW⊤]∥∗ in model (3.6), and let
USV ⊤ be the SVD of matrix [X,XW⊤]. Suppose rank([X,XW⊤]) = r, by dividing V as
[V1;V2] with V1 ∈ Rm×r and V2 ∈ Rc×r, it holds that

(i) R(·) is differentiable with respect to W and its gradient is V2SV
⊤
1 ;

(ii) ∇R(·) is Lipschitz continuous if all singular values of matrix XW⊤ are nonzero.

Proof. Actually, the regularizer ∥[X,XW⊤]∥∗ in model (3.6) is a special case of (3.2). It
follows from (3.5) that ∇R(W ) = V2SV

⊤
1 . Hence, for any matrices W, Ŵ ∈ Rc×m, we have

∥∇R(W )−∇R(Ŵ )∥F = ∥V2SV
⊤
1 − V̂ ⊤

2 ŜV̂ ⊤
1 ∥F = ∥CB∥F ,

where B =

(
USV ⊤

1

−Û ŜV̂ ⊤
1

)
, C = (V2U

⊤, V̂2Û
⊤). Furthermore, by the fact that the largest

singular value of C satisfies σmax(C) ≤ 1, we deduce

∥∇R(W )−∇R(Ŵ )∥F ≤ ∥B∥F . (3.7)

Let E =
(
V2SU

⊤, V̂2ŜÛ
⊤
)

=
(
WX⊤, ŴX⊤

)
, we obviously obtain

∥X⊤XW⊤ −X⊤XŴ⊤∥F =∥V2S
2V ⊤

1 − V̂2Ŝ
2V̂ ⊤

1 ∥F
=∥V2SU

⊤USV ⊤
1 − V̂2ŜÛ

⊤Û ŜV ⊤
1 ∥F

=∥EB∥F
≥σmin(E)∥B∥F , (3.8)

where σmin(E) denotes the smallest singular value of E. It follows from the assumption that
all singular values of XW⊤ are nonzero for all W and the fact that E is the concatenation
of WX⊤ and ŴX⊤ that σmin(E) > 0. Combining (3.7) and (3.8), we derive

∥∇R(W )−∇R(Ŵ )∥F ≤∥B∥F

≤ 1

σmin(E)
∥X⊤XW⊤ −X⊤XŴ⊤∥F

≤λmax(X⊤X)

σmin(E)
∥W − Ŵ∥F .

Hence, it means that ∇R(·) is Lipschitz continuous and this completes the proof.
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The inherent convexity and differentiability of model (3.6) suggest the use of gradient-
based optimization methods. Although the number of training samples may be small, the
presence of numerous features can result in a substantial computational burden. The current
work employs the classical gradient descent algorithm with line search to resolve this issue.
The iterative process for updating W k+1 is based on following procedure,

W k+1 = W k − αk∇G(W k). (3.9)

Here, αk is determined by a line search algorithm that guarantees a sufficient decrease, as
described in [22].

For a given threshold ε ≥ 0, the termination criterion is ∥∇G(W )∥2 ≤ ε. The convergence
analysis is illuminated in the next theorem.

Theorem 3.4. Suppose all singular values of output matrix XW⊤ are nonzero. For the
convex differential minimization problem (3.6), each accumulation point of the iterative se-
quence {W k}∞k=0 generated by the procedure (3.9), is a global minimizer.

Proof. The iterative procedure (3.9) is a gradient descent method with the stepsize αk

satisfying the Wolfe-Powell rules. The gradient ∇G(W ) in model (3.6) is Lipschitz contin-
uous, as established in Lemma 3.3. Hence, as introduced in [39, Theorem 2.5.7], for the
sequence {W k}∞k=0 generated by the gradient descent method with Wolfe line search, either
∥∇G(W k)∥2 = 0 for some k or ∥∇G(W k)∥2 → 0. It means that each accumulation point of
the iterative sequence {W k}∞k=0 is a stationary point. Furthermore, the stationary point is
also a global minimizer owing to the convexity of model (3.6). This completes the proof.

3.2 Deep neural networks (DNN)

Let θ denote the set of weights and biases within a neural network. For each data Xi, the
classical DNN learns a feature fθ(Xi) ∈ Rc by minimizing the empirical loss function (see
(3.1)) over the training data. To reduce the risk of overfitting in DNN, as cautioned by [41],
we incorporate a coupled tensor norm regularizer (3.2) into the loss function. This leads to
the formulation of a regularized DNN model:

min
θ

L(θ) + λ∥[X(1), fθ(X )]∥∗, (3.10)

where fθ(X ) is highly nonlinear and nondifferentiable with respect to θ owing to the deep
network architecture. Therefore, from Theorem 3.2, the regularization term in model (3.10)
is nonconvex, nondifferentiable, and nonseparable.

A fundamental assumption for solving DNN by stochastic gradient descent (SGD) method
is that the objective function is separable. To circumvent the nonseparability in (3.10), we
introduce an auxiliary variable ξ into (3.10) as follows,

min
θ,ξ

L(θ) + λ∥[X(1), ξ]∥∗,

s.t. fθ(X ) = ξ.

Then we penalize the constraint into the loss function using the quadratic penalty method
and obtain the following unconstrained optimization model,

min
θ,ξ
L(θ, ξ) := L(θ) + λ∥[X(1), ξ]∥∗ +

µ

2
∥fθ(X )− ξ∥2F , (3.11)

where µ > 0 is the penalty parameter. Problem (3.11) can be solved by alternating mini-
mization method. Specifically, given (θk, ξk), we implement the following sub-steps:
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(1) Update θk+1 with the fixed ξk:

min
θ

L(θ) +
µ

2
∥fθ(X )− ξk∥2F . (3.12)

(2) Update ξk+1 with the fixed θk+1:

min
ξ

λ∥[X(1), ξ]∥∗ +
µ

2
∥fθk+1(X )− ξ∥2F . (3.13)

The θ-subproblem (3.12) is separable with respective to the samples Xi and can be solved
using SGD. The ξ-subproblem (3.13) is strongly convex but nondifferentiable, as indicated
by Theorem 3.1. Through the above analysis, we describe our algorithm framework for
solving (3.11) in Algorithm 1.

Algorithm 1: The alternating minimization method for (3.11)

Require: Training data {(Xi, yi)}ni=1, hyperparameters λ and µ, and a neural network
with initial weight θ0.

Ensure: Trained network weights θ∗.
Let k = 0. ξ0 ∈ Rn×c is initialized as zero.
while not converge do

1. Update θk+1 in (3.12): solve the nonconvex problem by SGD.
2. Update ξk+1 in (3.13): solve the convex problem by the subgradient method.
3. k ← k + 1.

end while
θ∗ = θk.

We will next discuss the global convergence of Algorithm 1 by invoking the K L property
and regularity conditions. The assumptions for the convergence analysis of problem (3.11)
are as follows:

Assumption 3.1.

(i) The loss function L(θ, ξ) defined by (3.11) is regular and satisfies the K L property.

(ii) The subgradient of fθ(X ) is bounded above, i.e., there exists a positive constant ρ
such that for all η ∈ ∂fθ(X ), it holds that ∥η∥F ≤ ρ.

Remark 3.5. According to [15], the regularity assumption on L(θ, ξ) can be met for certain
DNN with the ReLU activation functions.

Theorem 3.6. Under Assumption 3.1, let the sequence {(θk, ξk)}k≥0 be the sequence gener-
ated by Algorithm 1. Then the subsequence {ξk}k≥0 has a finite length and converges globally
to a point ξ∗. Moreover, if θ∗ is any limit point of {θk}k≥0, then (θ∗, ξ∗) is a critical point
of L.

Proof. Actually, it follows from [12, Definition 2] that {(θk, ξk)}k≥0 generated by Algorithm
1 is a bounded approximate gradient-like descent sequence. Specifically, there are four
conditions for a bounded approximate gradient-like descent sequence. We shall present
concrete proofs individually.



318 Y. GAO, Y. QU AND C. CUI

Firstly, for the θ subproblem in (3.12) and the ξ subproblem in (3.13), we have respec-
tively,

L(θk+1, ξk) ≤ L(θk, ξk), (3.14)

0 ∈ ∂ξL(θk+1, ξk+1). (3.15)

By the strongly convexity of L(θ, ξ) with respect to ξ, the following inequality holds,

L(θk+1, ξk+1) + ⟨gk+1
ξ , ξk − ξk+1⟩+

µ

2
∥ξk − ξk+1∥2F ≤ L(θk+1, ξk),

for gk+1
ξ ∈ ∂ξL(θk+1, ξk+1). Furthermore, adding (3.14) to the above inequality and com-

bining it with (3.15) yield

µ

2
∥ξk − ξk+1∥2F ≤ L(θk, ξk)− L(θk+1, ξk+1). (3.16)

Clearly, condition C1 in [12, Definition 2] holds.
Secondly, it follows from the optimality condition of (3.12), (2.3), and Assumption 3.1

(i) that

0 ∈ ∂θL(θk+1, ξk) = ∂L(θk+1) + ∂∥µfθk+1(X )∥2F −
{
µηk+1ξ

k | ηk+1 ∈ ∂fθk+1(X )
}
,

which means that µη⊤k+1(ξk − ξk+1) ∈ ∂Lθ(θk+1, ξk+1). Then, combing it with (3.15), we
get

W k+1 :=

(
µη⊤k+1(ξk − ξk+1)

0

)
∈ ∂L(θk+1, ξk+1),

where ηk+1 ∈ ∂fθk+1(X ). Hence, with triangle inequality and Assumption 3.1 (ii),

∥W k+1∥F ≤ µ∥ηk+1∥F ∥ξk − ξk+1∥F ≤ µρ∥ξk − ξk+1∥F . (3.17)

At last, if (θ̄, ξ̄) is a limit point of some sub-sequence {(θk, ξk)}k∈K⊆K, based on the
continuity of objective function L(θ, ξ), we can obtain

lim sup
k∈K⊆K

L(θk, ξk) ≤ L(θ̄, ξ̄). (3.18)

Moreover, the condition C4 in [12, Definition 2] holds clearly when the subproblems (3.12)
and (3.13) are solved exactly. Combining (3.16), (3.17), and (3.18), we have that the se-
quence {(θk, ξk)}k≥0 generated by Algorithm 1 is an approximate gradient-like descent se-
quence in [12].

Furthermore, let u := (θ, ξ) for convenience. The function L(·) is proper, lower semi-
continuous, which has the K L property directly. Hence, we can get the convergence with
the K L property [6] and the approximate gradient-like descent sequence by Theorem 1 in
[12].

Remark 3.7. Actually, the subproblems (3.12) and (3.13) can also be solved inexactly. We
can find approximate solution for (3.12) and (3.13) until the following criteria satisfied,

µ

2
∥ξk − ξk+1∥2F − (ek1)2 ≤ L(θk, ξk)− L(θk+1, ξk+1),

∥W k+1∥F − ek2 ≤ µρ∥ξk − ξk+1∥F ,

where {ek1}k≥0 and {ek2}k≥0 are required to be summable. Together with (3.18), the sequence
{(θk, ξk)}k≥0 is also an approximate gradient-like descend sequence defined in [12].
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4 Numerical Experiments

In this section, we verify the efficiency of our proposed coupled tensor norm regularization for
both MLR and DNN on nine real datasets listed in Table 1. We first test the performance
of MLR on three face image datasets (ORL, Yale, AR10P) and three biological datasets
(lung, TOX-171, lymphoma) downloaded online1 . Then we test the performance of DNN
on Fashion-MNIST, CIFAR-10, and an MRI dataset (Brain Tumor)2 .

Table 1: Details of all datasets. n and n′ are the number of training and testing samples,
respectively. m denotes the number of features and c is the number of classes.

Dataset n n′ m c
ORL 280 120 1024 40
Yale 100 65 1024 15

AR10p 90 40 2400 10
Lung 153 50 3312 5

TOX-171 100 71 5748 4
Lymphoma 56 40 4026 9

Fashion-MNIST 60000 10000 784 10
CIFAR-10 60000 10000 3072 10

Brain Tumor 2870 394 50176 4

4.1 Multinomial logistic regression

In this subsection, we compare the coupled tensor norm regularization model (3.6) with the
ℓ1-norm [37], ℓ2-norm [27], Tikhonov regularization [3] models. For all regularized models, we
traverse λ from {10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 1} and report the results corresponding
to λ with the highest classification accuracy. The gradient or subgradient descent algorithm
is adopted to solve the models. The corresponding stopping criteria is set as

∥W k+1 −W k∥F ≤ 10−4 or ∥∇G(W k)∥F ≤ 10−4,

and the maximum number of iterations is 2000. Moreover, we initialize W 0 = 0.
The training accuracy, testing accuracy, and the choices of the optimal parameters on

the face and biological datasets are elaborated in Tables 2 and 3, respectively.
For all six datasets, our regularization guarantees the highest testing accuracy and lowest

generalization error. We further compare the coupled tensor norm and Tikhonov regular-
izations for all λ in Table 4, which shows that our regularization is more robust.

4.2 Deep neural networks

We continue to compare the performance of DNN with the coupled tensor norm regular-
ization with the ℓ1 norm [24] and Tikhonov regularization [16]. The network structures we
tested VGG-16 [36]. Also, we verify the efficiency of our proposed method by setting the
number of training samples from small to large.

For all methods, the hyperparameters λ and µ are optimized from {10−i, 5 · 10−i}6i=1

and we only report the best performance. The implementation details and the choices of
hyperparameters are given in the appendix. For Fashion-MNIST, we show the performance
of different regularizers with varying training sizes from 1000 to 60000. The detailed result
is shown in Table 5.

1https://jundongl.github.io/scikit-feature/datasets.html
2https://www.kaggle.com/competitions/machinelearninghackathon/data
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Table 2: Numerical results of multinomial logistic regression for three face datasets.

ORL Yale AR10P
Model Training Testing λ Training Testing λ Training Testing λ
MLR 95.71% 90.83% 0 90.00% 75.38% 0 85.56% 90.00% 0

MLR-ℓ1 96.07% 93.33% 10−4 89.00% 75.38% 10−6 85.56% 92.50% 10−3

MLR-ℓ2 96.07% 93.33% 10−6 89.00% 75.38% 10−6 85.56% 95.00% 10−4

MLR-Tik 96.42% 93.33% 1 90.00% 78.46% 0.1 85.56% 97.50 % 10−2

MLR-ours 96.07% 95.00% 10−4 92.00% 81.54% 10−5 85.56% 100% 10−5

Table 3: Numerical results of multinomial logistic regression for three biological datasets.

Lung TOX-171 Lymphoma
Model Training Testing λ Training Testing λ Training Testing λ
MLR 95.43% 86.00% 0 75.00% 57.75% 0 98.21% 85.00% 0

MLR-ℓ1 93.46% 92.00% 10−2 66.00% 63.38% 10−2 98.21% 90.00% 10−2

MLR-ℓ2 94.12% 94.00% 10−2 66.00% 61.97% 10−4 98.21% 87.50% 10−3

MLR-Tik 96.08% 96.00% 10−1 72.00% 67.61% 1 98.21% 95.00% 1
MLR-ours 96.08% 96.00% 10−2 71.00% 69.01% 10−2 98.21% 95.00% 1

Table 4: Comparisons of difference λ between ours and Tikhonov regularization for MLR
on Lymphoma dataset.

λ 1 10−1 10−2 10−3 10−4 10−5 10−6

MLR-Tik 95.00% 82.50% 67.50% 42.50% 42.50% 45.00% 45.00%
MLR-ours 95.00% 92.50% 87.50% 82.50% 82.50% 82.50% 82.50%

Table 5: The testing accuracy of different regularizers for VGG-16 on Fashion-MNIST.

Model VGG-16 on Fashion-MNIST
Training
per class

DNN DNN-ℓ1 DNN-Tik DNN-ours

100 80.95% 82.40% 82.16% 83.38%
400 86.95% 87.78% 87.13% 88.15%
700 88.60% 90.03% 89.66% 90.73%
1000 90.67% 90.85% 90.76% 91.28%
3000 92.13% 92.70% 92.62% 92.93%
6000 93.88% 94.29% 94.30% 94.73%

At last, we present the results for CIFAR-10 and Brain Tumor in Tables 6 and 7, respec-
tively.

Details of numerical implementation for DNN: Unless otherwise stated, all experiments
use SGD with momentum fixed at 0.9 and mini-batch size fixed at 128. The networks are
trained with a fixed learning rate r0 = 0.01 on the first 50 epochs, and then r0/10 for another
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Table 6: The testing accuracy of different regularizers for VGG-16 on CIFAR-10.

Model VGG-16 on CIFAR-10
Training
per class

DNN DNN-ℓ1 DNN-Tik DNN-ours

100 48.57% 49.10% 48.98% 50.26%
400 72.90% 73.29% 73.32% 74.15%
700 78.97% 79.14% 79.31% 80.29%

Table 7: Numerical results of different regularizations for VGG-16 on the MRI dataset Brain
Tumor.

VGG-16 on Brain Tumor
Model Training Testing λ (µ)
DNN 99.50% 75.48% 0

DNN-ℓ1 99.97% 76.40% 10−3

DNN-Tik 99.83% 76.67% 10−3

DNN-ours 99.97% 77.41% 5 · 10−4 (10−4)

50 epochs. At step 1 of Algorithm 1, θ is updated once every M = 2 epoch of SGD. And at
step 2, the step size is set to 1/k. The stopping criterion is ∥gradξ∥F < tol, where gradξ is
the subgradient of (3.13). Further, we set tol = 10−2 and the maximum number of iterations
as 50. Related hyperparameters are exhibited in the following tables.

Table 8: Hyperparameters of DNN for Fashion-MNIST dataset.
Model VGG-16

Training
per class

DNN-ℓ1 DNN-Tik DNN-ours
λ λ λ µ

100 10−5 10−5 5 · 10−4 5 · 10−3

400 10−5 10−5 5 · 10−4 10−3

700 10−5 10−5 5 · 10−4 5 · 10−4

1000 10−4 10−5 5 · 10−4 5 · 10−4

3000 10−4 10−5 5 · 10−4 5 · 10−4

6000 10−4 10−5 5 · 10−4 5 · 10−4

Table 9: Hyperparameters used in CIFAR-10 dataset.
Model VGG-16

Training
per class

DNN DNN-ℓ1 DNN-Tik DNN-ours
λ λ λ λ µ

100 0 10−4 10−5 5 · 10−5 5 · 10−2

400 0 10−4 10−3 5 · 10−4 5 · 10−2

700 0 10−3 10−5 5 · 10−4 5 · 10−2
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5 Conclusions

In this paper, we have introduced a novel regularization strategy that incorporates coupled
tensor norms to improve the generalization capabilities of classification models. For MLR,
we have established that the regularization exhibits convexity, differentiability, and Lipschitz
continuous gradient. These properties have enabled us to prove the global convergence of the
gradient descent algorithm when applied to MLR models introduced with our coupled tensor
regularizer. In the field of DNN, different from MLR, the model is still a nonconvex and
nondifferentiable optimization problem when coupled tensor norm regularizer is introduced.
Despite these complexities, we have demonstrated the global convergence of an alternate
minimization method tailored to such complicated models. Empirically, our regularization
method has been rigorously evaluated against conventional regularization techniques, includ-
ing ℓ1, ℓ2, and Tikhonov regularizations. Our experiments have substantiated the efficiency
and robustness of our regularization, performing its superiority in terms of improving model
performance and generalization.
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