
2025 DOI: https:// doi.org/10.61208/pjo-2024-011

328 YU YOU AND JIRUI MA

(b) H is σ-strongly (σ ≥ 0) convex, i.e.,

H(y) ≥ H(x) + ⟨∇H(x),y− x⟩+ σ

2
∥x− y∥2, ∀x,y ∈ Rn, (1.3)

where ∇H(x) is the gradient of H at x.

(c) The optimal solution set of (1.1) is nonempty.

A classical method for solving (1.1) when σ = 0 is the iterative scheme

x0 ∈ Rn, and for k ≥ 0, xk+1 = xk − 1

Lmax
∇ikH(xk)eik, (1.4)

where Lmax = max{L1, L2, . . . , Ln} and ik ∈ argmax1≤i≤n |∇iH(xk)|. It enjoys an
O(nLmax/k) rate of convergence in terms of function values [14]. Note that at each iteration,
(1.4) requires to compute the full gradient vector, which could be expensive or intractable for
large-scale problems. To address this issue, some random coordinate gradient descent meth-
ods were developed. For example, the randomized coordinate descent method (RCDM) with
different sampling strategies was proposed and an accelerated variant of RCDM with uniform
sampling achieved an O((nLmax)

2/k2) rate of convergence [14]. In [11], another accelerated
variant of RCDM was presented and attained the convergence rate of O((n

∑n
i=1 Li)/k

2)
by using probabilities Li[

∑n
k=1 Lk]

−1 for selecting active coordinates. Next, the accelerated
coordinate descent method (ACDM) proposed in [2, 15] further improved the convergence

rate to O((
∑n

i=1 L
1/2
i)2/k2), which does not depend on the number of variables, by using

probabilities L
1/2
i [

∑n
k=1 L

1/2
k]−1 for non-uniform sampling.

In [13], some greedy strategies for selecting the active coordinate were proposed, which
require to compute the full gradient vector and can make better performance in practice
when the cost of full gradient vector is cheap. In [17], an optimal sampling strategy and
a suboptimal method with cheap implementation were given. Some other random coordi-
nate descent methods were developed for solving the composite convex optimization model,
i.e., the sum of a smooth convex function and a proper closed convex function with easily
computable proximal term of the latter. Interested readers are referred to [12, 11].

In [2, 15], the step sizes of their algorithms for (1.1) under Assumption 1.1 are fixed
and determined by the (global) parameters {Li}. Note that this may not be preferable for
practical applications where the (local) parameter values differ from the global counterparts
to some extent. This implies that methods which can be adaptive to the local parameters
might improve the performance in practice. Motivated by this, in this paper we study the
adaptive ACDM for (1.1), which still requires (global) Lipschitz constants for non-uniform
sampling as a prior, while the (local) coordinate Lipschitz constants are determined by back-
tracking (not neceessarily monotone) to achieve better performance. Both the strongly and
non-strongly cases are discussed in this paper. The non-monotone backtracking line search is
included in our adaptive scheme, which performs better (compared with the monotone one)
for applications whose local coordinate Lipschitz constants oscillate along the trajectory or
become smaller when approaching the tail. The adaptive ACDM is indeed not a monotone
method, meaning that the sequence of function values it produces is not necessarily non-
increasing. Since the monotone approach can be used to improve numerical stability (see
monotone FISTA in [5]), we also propose an adaptive ACDM in monotone version.

The paper is organized as follows. In section 2 we present the adaptive ACDM in non-
monotone version as well as the one in monotone version for solving (1.1). In section 3
we establish the convergence rate of the adaptive ACDM in non-monotone version when

AACDM WITH NON-UNIFORM SAMPLING 329

the objective function is σ-strongly convex (σ ≥ 0). In section 4 we report the numerical
experiments on some classical problems. Finally in section 5 we discuss the adaptive ACDMs
for (1.1) when the objective function is non-strongly convex.

2 Adaptive ACDMs

We first present an adaptive ACDM in non-monotone version by using probabilities

L
1/2
i [

∑n
k=1 L

1/2
k]−1 for non-uniform sampling, then present the one in monotone version.

Here, N+ and N denote the set of positive integers and the set of non-negative integers,
respectively.

Algorithm 2.1. Adaptive ACDM in non-monotone version

Input: S1/2 =
∑n

i=1

√
Li, pi =

√
Li

S1/2
for i ∈ {1, 2, · · · , n}, δ > 1, t0 ∈ N+ such that

σ < S2
1/2δ

−t0 (t0 = ∞ when σ = 0), x0 = v0 ∈ Rn, and A0 = 0, B0 = 1.
1. For k = 0, 1, 2, · · ·
2. Generate ik ∈ {1, 2, · · · , n} via probability distribution (pi)i;
3. Repeat step 4-6
4. Choose tk+1 ≤ t0, tk+1 ∈ N, and compute ak+1 > 0 by solving the equation

a2k+1S
2
1/2δ

−tk+1 = Ak+1Bk+1, (2.1)

where Ak+1 = Ak + ak+1 and Bk+1 = Bk + σak+1;

5. Define αk = ak+1

Ak+1
, βk = σak+1

Bk+1
, and yk = (1−αk)x

k+αk(1−βk)v
k

1−αkβk
;

6. Set xk+1 = yk − 1
δ−tk+1Lik

∇ikH(yk)eik ;

7. Until

H(xk+1) ≤ H(yk)− 1

2δ−tk+1Lik

(∇ikH(yk))2

8. Set vk+1 = (1− βk)v
k + βky

k − ak+1

Bk+1pik
∇ikH(yk)eik .

9. End for

Remark 2.2. Algorithm 2.1 is non-monotone, hence H(xk+1) ≤ H(xk) may not hold for
some k. Moreover, it follows from [3, Theorem 11.20] that σ ≤

∑n
i=1 Li. Hence σ < S2

1/2.

So the choice of tk+1 implies that σ < S2
1/2δ

−tk+1 for all k.

Remark 2.3. If H(x) is not strongly convex(σ = 0), t0 is not constrained by t0 in step 4.

Algorithm 2.4. Adaptive ACDM in monotone version

Input: S1/2 =
∑n

i=1

√
Li, pi =

√
Li

S1/2
for i ∈ {1, 2, · · · , n}, δ > 1, t0 ∈ N+ such that

σ < S2
1/2δ

−t0 (t0 = ∞ when σ = 0), x0 = v0 ∈ Rn, and A0 = 0, B0 = 1.
1. For k = 0, 1, 2, · · ·
2. Generate ik ∈ {1, 2, · · · , n} via probability distribution (pi)i;
3. Repeat step 4-6
4. Choose tk+1 ≤ t0, tk+1 ∈ N, and compute ak+1 > 0 by solving the equation

a2k+1S
2
1/2δ

−tk+1 = Ak+1Bk+1,

where Ak+1 = Ak + ak+1 and Bk+1 = Bk + σak+1;

5. Define αk = ak+1

Ak+1
, βk = σak+1

Bk+1
, and yk = (1−αk)x

k+αk(1−βk)v
k

1−αkβk
;

330 YU YOU AND JIRUI MA

6. Set x̃k+1 = yk − 1
δ−tk+1Lik

∇ikH(yk)eik ;

7. Until

H(x̃k+1) ≤ H(yk)− 1

δ−tk+12Lik

(∇ikH(yk))2

8. Choose xk+1 ∈ Rn such that H(xk+1) ≤ min{H(x̃k+1),H(xk)}
9. vk+1 = (1− βk)v

k + βky
k − ak+1

Bk+1pik
∇ikH(yk)eik .

10. End for

Remark 2.5. In step 4 of Algorithm 2.4, given an initial guess tk+1, for example tk, one
may update tk+1 by tk+1 − 1 until step 7 is satisfied. The existence of tk+1 ∈ N can be
verified by setting tk+1 = 0, and H(yk) − H(xk+1) ≥ 1

2Lik
(∇ikH(yk))2 is satisfied as [3,

Lemma 11.9]. So the backtracking procedure terminates within finite steps.

Remark 2.6. One may choose

xk+1 =

{
x̃k+1, if H(x̃k+1) ≤ H(xk),

xk − 1
Lik

∇f(xk), if H(x̃k+1) > H(xk)
(2.2)

as an implementation of monotone approach in step 8 of Algorithm 2.4.

3 Convergence Analysis

In this section, we study the convergence rate of Algorithm 2.1. We use the notation
ξk = {i0, i1, · · · , ik}.

Theorem 3.1. Suppose that Assumption 1.1 holds and x∗ is an optimizer of (1.1). Let
{xk}∞k=0 and {vk}∞k=0 be the sequences generated by Algorithm 2.1. Then, for any k ≥ 0,

(i)

2Ak+1Eξk [H(xk+1)−H(x∗)] +Bk+1Eξk [∥vk+1 − x∗∥2]
≤2AkEξk−1

[H(xk)−H(x∗)] +BkEξk−1
[∥vk − x∗∥2]; (3.1)

(ii) if σ = 0, then

Eξk [H(xk+1)−H(x∗)] ≤
2S2

1/2∥x
0 − x∗∥2

(k + 1)2
; (3.2)

if σ > 0, then

Eξk [H(xk+1)−H(x∗)] ≤ S2
1/2(1−

√
σ/S1/2)

k+1∥x0 − x∗∥2. (3.3)

Proof. (i) Define wk = (1− βk)v
k + βky

k. Then

yk =
(1− αk)x

k

1− αkβk
+

αk(1− βk)

1− αkβk

wk − βky
k

1− βk
=

(1− αk)x
k + αkw

k

1− αkβk
− αkβky

k

1− αkβk
,

AACDM WITH NON-UNIFORM SAMPLING 331

thus yk = (1− αk)x
k + αkw

k. Denote r2k = ∥vk − x∗∥2, then

∥vk+1 − x∗∥2 =

∥∥∥∥wk − ak+1

Bk+1pik
∇ikH(yk)eik − x∗

∥∥∥∥2
=∥wk − x∗∥2 − 2ak+1

Bk+1pik
⟨∇ikH(yk),wk

ik
− x∗

ik
⟩

+
a2k+1

B2
k+1p

2
ik

(∇ikH(yk))2. (3.4)

On the other hand

∥wk − x∗∥2 = ∥(1− βk)(v
k − x∗) + βk(y

k − x∗)∥2

≤ (1− βk)r
2
k + βk∥yk − x∗∥2. (3.5)

Hence, by (2.1), (3.4) and (3.5),

Bk+1r
2
k+1 ≤Bkr

2
k + βkBk+1∥yk − x∗∥2 − 2ak+1

pik
⟨∇ikH(yk),wk

ik
− x∗

ik
⟩

+
2a2k+1Likδ

−tk+1

Bk+1p2ik
(H(yk)−H(xk+1))

=Bkr
2
k + βkBk+1∥yk − x∗∥2 − 2ak+1

pik
⟨∇ikH(yk),wk

ik
− x∗

ik
⟩

+ 2Ak+1(H(yk)−H(xk+1)).

Taking expectation with ik, we obtain

Bk+1Eik(r
2
k+1) ≤Bkr

2
k + σak+1∥yk − x∗∥2 + 2ak+1⟨∇H(yk),x∗ −wk⟩

+ 2Ak+1(H(yk)− Eik(H(xk+1))). (3.6)

It then follows from wk = yk + 1−αk

αk
(yk − xk), αk = ak+1

Ak+1
, Ak+1 = Ak + ak+1 and (1.3)

that

ak+1⟨∇H(yk),x∗ −wk⟩ = ak+1⟨∇H(yk),x∗ − yk +
1− αk

αk
(xk − yk)⟩

≤ak+1(H(x∗)−H(yk))− 1

2
ak+1σ∥yk − x∗∥2 + ak+1

1− αk

αk
(H(xk)−H(yk))

=ak+1H(x∗)−Ak+1H(yk) +AkH(xk)− 1

2
ak+1σ∥yk − x∗∥2. (3.7)

Substituting (3.7) into (3.6), we have

Bk+1Eik(r
2
k+1) ≤ Bkr

2
k + 2Ak(H(xk)−H(x∗))− 2Ak+1(Eik(H(xk+1)−H(x∗))).

Taking expectation over ξk−1 yields (3.1).
(ii) Inequality (3.1) implies that

Eξk [H(xk+1)−H(x∗)] ≤ ∥x0 − x∗∥2

2Ak+1
. (3.8)

It suffices to estimate the growth of Ak. It can be prove by induction that Bk = 1 + σAk.
Hence, by (2.1),

(Ak+1 −Ak)
2S2

1/2δ
−tk+1 = Ak+1(1 + σAk+1). (3.9)

332 YU YOU AND JIRUI MA

For σ = 0, we prove by induction that

Ak ≥ k2

4S2
1/2

, ∀k ≥ 0. (3.10)

Obviously, (3.10) holds for k = 0. Suppose it holds for k. By (3.9),

Ak+1 = Ak +
1/(S2

1/2δ
−tk+1) +

√
4Ak/(S2

1/2δ
−tk+1) + 1/(S4

1/2δ
−2tk+1)

2

≥ Ak + 1/(2S2
1/2) +

√
Ak/S1/2

≥ k2

4S2
1/2

+ 1/(2S2
1/2) +

k

2S2
1/2

=
1

4S2
1/2

(k2 + 2k + 2)

≥ (k + 1)2

4S2
1/2

.

Thus (3.10) holds for all k ≥ 0. This, together with (3.8), yields (3.2).
For σ > 0, by (3.9),

Ak+1 =

2Ak + 1/(S2
1/2δ

−tk+1) +
√

4A2
k

σ
S2
1/2

δ−tk+1
+ 4Ak

S2
1/2

δ−tk+1
+ 1

S4
1/2

δ−2tk+1

2(1− σ/(S2
1/2δ

−tk+1))

≥
2Ak + 2Ak

√
σ0

S1/2

2(1− σ/S2
1/2)

=
Ak

1−
√
σ

S1/2

.

Since A1 =
1/(S2

1/2δ
−t1)

1−σ/(S2
1/2

δ−t1)
≥ 1/(2S2

1/2)

1−
√
σ/S1/2

, we have

Ak+1 ≥
1/(2S2

1/2)

(1−
√
σ/S1/2)k+1

, ∀k ≥ 0, (3.11)

which, together with (3.8), implies (3.3).

The proof of (i) of Theorem 3.1 is similar to that in [15]. In fact, Algorithm 2.4 has the
same convergence rate as Algorithm 2.1. Since the analysis is almost the same, we omit the
proof here. Interested readers are referred to [8, 1] for more details.

4 Numerical Results

In this section, we test Algorithm 2.1 (the adaptive variant of ACDM proposed in [15],
denoted as AACDM) and Algorithm 2.4 (the adaptive ACDM in monotone version, denoted
as AACDM M) on some classic problems, and compare them with ACDM and ACDM in
monotone version (denoted as ACDM M). The specific adaptive method in AACDM and
AACDM M is that at iterate k we set tk+1 as the previously returned tk if k is not divisible
by 5 and set it as tk +1 otherwise; moreover, δ is fixed as 2 in our test. All experiments are
implemented in MATLAB 2022a on a 64-bit PC with an AMD Ryzen 5600U CPU (2.30GHz)
and 16GB of RAM.

AACDM WITH NON-UNIFORM SAMPLING 333

4.1 Test problem given in [15]

Considered the test problem with randomly generated data given in [15]:

min
x∈RM

fµ(x) =

N∑
i=1

ϕµ(⟨ai,x⟩ − ci), (4.1)

where

ϕµ(τ) =

{
τ2

2µ , if |τ | ≤ µ,

|τ | − 1
2µ, if |τ | > µ.

(4.2)

Coefficients of dense vector ai are uniformly distributed in the interval [1, 2]. Coefficients of
vector c = (c1, . . . , cN)T ∈ RN are chosen as ci = ⟨ai, ȳ⟩ where the entries of vector ȳ ∈ RM

are uniformly distributed in the interval [−1, 1].
As the optimal value of (4.1) is zero, we use fµ(x) ≤ ε as the termination criterion with

ε = 10−2. We also choose µ = ε.
For each problem, ACDM, ACDM M, AACDM and AACDM M are run 10 times with

the uniformly randomized initial point x0 ∈ [−10, 10]M and we report the average running
time in Table 1.

Problem size CPU time(s)
N M ACDM AACDM ACDM M AACDM M
50 100 3.2794 2.6762 2.6966 2.0354
100 50 3.1576 2.7000 2.0285 1.2460
100 200 11.9336 10.0678 9.3187 7.2214
200 100 10.8258 8.6158 6.0377 3.5905
200 400 39.2334 34.9947 30.5583 24.1483
400 200 42.5816 39.8447 19.2615 10.6929
400 800 139.1519 133.1698 108.7773 90.9265
800 400 204.8777 165.0772 65.0083 33.9478
800 1600 564.3874 513.7417 467.3034 390.5520
1600 800 886.2508 857.4967 246.4927 121.4863

Table 1: Average running time in seconds on problem (4.1)

4.2 l2 − l1 penalty functions

Considered the dual l2 − l1 penalty functions given in [2]:

min
w∈RM

P (w) =
1

N

N∑
i=1

ϕi(⟨ai,w⟩) + r(w), (4.3)

where r(w) = λ
2 ∥w∥2 and ϕi(α) =

1
2 (α− li)

2 + |α− li| with {(a1, l1), · · · , (aN , lN)} being a
training set. The dual form of (4.3) is

min
y∈RN

D(y) =
1

N

N∑
i=1

ϕ∗
i (yi) +

1

2λN2
∥

N∑
i=1

yiai∥2, (4.4)

334 YU YOU AND JIRUI MA

where the coordinate Lipshitz constants of D are Li =
1
N + 1

λN2 ∥ai∥2 for all i.

We apply ACDM, ACDM M, AACDM and AACDM M to the dual problem (4.4) on the
datasets w8a, news20, connect-4 and rcv1 binary from the LibSVM [7]. The numerical
results are given in Figure 1.

Figure 1: Numerical results on l2 − l1 penalty functions

4.3 Logistic regression

Logistic regression is a widely used model for classification in machine learning. Consider
the problem (4.3) with

ϕi(α) = log(1 + exp−αli) and r(w) = 0. (4.5)

We apply ACDM, ACDM M, AACDM and AACDM M to the original problem (4.3) on
the datasets w8a, news20, connect-4 and rcv1 binary too. The numerical results are given
in Figure 2.

Note that in contrast to ACDM in [15], Algorithm 2.1 and Algorithm 2.4 spend more
time in picking tk+1, however with our adaptive choice of parameter tk+1, the step sizes
may be generally larger in outer loop. When the benefit of the latter can offset the expense
caused by the former, the overall overhead will be reduced. The numerical results validate
the improvement.

AACDM WITH NON-UNIFORM SAMPLING 335

Figure 2: Numerical results on logistic regression

5 Discussions

We proposed two adaptive ACDMs for solving the problem (1.1) both in non-monotone
version and in monotone version. Compared to the ACDMs, they can dynamically backtrack
the coordinate Lipschitz constants of the problem. Convergence rate of the algorithms are
given for σ-strongly convex function (σ ≥ 0). Numerical results show that the adaptive
strategy improve the performance a lot.

In [2], a counterpart of the ACDM was proposed for (1.1) when the objective function is
non-strongly convex. Similarly, we can develop the adaptive ACDM for non-strongly convex

problems using probabilities L
1/2
i [

∑n
k=1 L

1/2
k]−1 for non-uniform sampling. It can be done

as follows.

At the k-th iteration, first generate ik ∈ {1, 2, · · · , n} via probability distribution (pi)i,
choose tk+1 ∈ N, and set

τk =
2

1 +

√
1 + 4 δtk−tk+1

τ2
k−1

∈ (0, 1]; (5.1)

336 YU YOU AND JIRUI MA

then repeat

xk+1 = τkz
k + (1− τk)y

k, (5.2)

yk+1 = xk+1 − 1

δ−tk+1Lik

∇ikH(xk+1)eik (5.3)

until

H(yk+1) ≤ H(xk+1)− 1

δ−tk+12Lik

(∇ikH(xk+1))2 (5.4)

is satisfied; finally, compute

ηk+1 =
1

δ−tk+1τkS2
1/2

, (5.5)

zk+1 = zk − ηk+1

pik
∇ikH(xk+1)eik . (5.6)

It can be proved that for k ≥ 0

Eξk [(H(yk+1)−H(x∗))] ≤
2S2

1/2

(k + 2)2
∥y0 − x∗∥2. (5.7)

The monotone strategy similar to (2.2) can also be used to improve the performance for the
non-strongly convex problems.

References

[1] A. Aberdam and A. Beck, An accelerated coordinate gradient descent algorithm for
non-separable composite optimization, J. Optim. Theory Appl. 193 (2022), 219–246.

[2] Z.Y. Allen-Zhu, Z. Qu, P. Richtárik and Y. Yuan, Even faster accelerated coordinate
descent using non-uniform sampling, Proc. Int. Conf. Mach. Learn., (2016), 1110–1119.

[3] A. Beck, First-Order Methods in Optimization, SIAM, Philadelphia, 2017

[4] A. Beck, E. Pauwels and S. Sabach, The cyclic block conditional gradient method for
convex optimization problems, SIAM J. Optim. 25 (2015), 2024–2049.

[5] A. Beck and M. Teboulle, Fast gradient-based algorithms for constrained total variation
image denoising and deblurring problems, IEEE Trans. Image Process. 18 (2009), 2419–
2434.

[6] A. Beck and L. Tetruashvili, On the convergence of block coordinate descent type
methods, SIAM J. Optim. 23 (2013), 2037–2060.

[7] C. Chang and C. Lin, LIBSVM: A Library for Support Vector Machines, Association
for Computing Machinery, New York, 2011.

[8] A. d ’Aspremont, D. Scieur and A. Taylor, Acceleration methods, Foundations and
Trends® in Optimization 5 (2021), 1–245.

[9] J. Friedman, T. Hastie, H. Höfling and R. Tibshirani, Pathwise coordinate optimization,
Ann. Appl. Stat. 1 (2007), 302–332.

AACDM WITH NON-UNIFORM SAMPLING 337

[10] S. Lacoste-Julien, M. Jaggi, M. Schmidt and P. Pletscher, Block-coordinate Frank-
Wolfe optimization for structural SVMs, in: Proc. Int. Conf. Mach. Learn., 2013, pp.
53–61.

[11] Y.T. Lee and A. Sidford, Efficient accelerated coordinate descent methods and faster
algorithms for solving linear systems, in: Proc. Annu. IEEE Symp. Found. Comput.
Sci., 2013, pp. 147–156.

[12] Q.H. Lin, Z.S. Lu and L. Xiao, An accelerated randomized proximal coordinate gradient
method and its application to regularized empirical risk minimization, SIAM J. Optim.
25 (2015), 2244–2273.

[13] H.H. Lu, R. Freund and V. Mirrokni, Accelerating greedy coordinate descent methods,
in: Proc. Int. Conf. Mach. Learn., 2018, pp. 3257–3266.

[14] Y. Nesterov, Efficiency of coordinate descent methods on huge-scale optimization
problems, SIAM J. Optim. 22 (2012), 341–362.

[15] Y. Nesterov and S. U. Stich, Efficiency of the accelerated coordinate descent method
on structured optimization problems, SIAM J. Optim. 27 (2017), 110–123.

[16] J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in
Several Variables, SIAM, Philadelphia, 2000.

[17] S.U. Stich, A. Raj and M. Jaggi, Safe adaptive importance sampling, Proc. Adv. Neural
Inf. Process. Syst. 30 (2017), 4382–4392.

[18] S.J. Wright Coordinate descent algorithms, Math. Program. 151 (2015), 3–34.

Yu You
School of Mathematical Sciences, Shanghai Jiao Tong University
Shanghai, China
Email: youyu0828sjtu@163.com

Jirui Ma
Beijing International Center for Mathematical Research, Shanghai Peking University
Beijing 100871, P.R. China.
Email: majirui@bicmr.pku.edu.cn

Manuscript received 2 December 2022
revised 21 November 2023

accepted for publication 26 February 2024

338 YU YOU AND JIRUI MA

Yu You
School of Mathematical Sciences
Shanghai Jiao Tong University
Shanghai, China
E-mail address: youyu0828sjtu@163.com

Jirui Ma
Beijing International Center for Mathematical Research
Shanghai Peking University
Beijing 100871, P.R. China
E-mail address: majirui@bicmr.pku.edu.cn

