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For different choices of parameter βk, the convergence and numerical performance of
nonlinear conjugate gradient methods can be fundamentally different. The following is a
list of several well-known formulas of βk for different NCG methods such as Fletcher-Reeves
(FR) [10], Polak-Ribiere-Polak (PRP) [20], Hestenes-Stiefel (HS) [13], Dai-Yuan (DY) [8]
and so on [17, 19]:

βFR
k =

∥gk∥2

∥gk−1∥2
, βPRP

k =
gTk yk−1

∥gk−1∥2
, βHS

k =
gTk yk−1

dTk−1yk−1
,

βLS
k =

gTk yk−1

−dTk−1gk−1
, βDY

k =
∥gk∥2

dTk−1yk−1
, βP

k =
gTk (yk−1 − sk−1)

dTk−1yk−1
,

where yk = gk+1 − gk, sk = αkdk = xk+1 − xk and ∥ · ∥ denotes the 2-norm.
In order to incorporate second-order information of the objective function, Dai and Kou

[7] proposed a family of CG methods where the search direction is closest to the direction of
the scaled memoryless BFGS method [18, 22]. The corresponding parameter βk of Dai-Kou
(DK) method is as follows:

βDK
k+1(τk) =

yTk gk+1

dTkyk
− (τk +

∥yk∥2

sTkyk
− sTkyk

∥sk∥2
)
sTkgk+1

dTkyk
, (1.4)

where τk is a hyperparameter with the default choice τk =
sTkyk

∥sk∥2 , which gives

βH
k+1 =

yTk gk+1

dTkyk
− ∥yk∥2dTkgk+1

(dTkyk)
2

. (1.5)

Actually, (1.5) is also a special case of βθ
k from Hager and Zhang’s CG DESCENT [12].

Inspired by the idea and good practical performance of the spectral gradient method
[4, 21], Brigin and Mart́ınez [6] made an effort to combine the CG method with the spectral
gradient method and proposed a spectral CG method. The search direction is yielded by

dk+1 = −θk+1gk+1 + βk+1dk, d0 = −g0, (1.6)

θk+1 =
∥sk∥2

sTkyk
, βk+1 =

(θkyk − sk)
Tgk+1

sTkyk
,

where θk+1 in (1.6) is the spectral parameter same as one case of Barzilai-Borwein (BB) [4]

stepsizes, ∥sk∥2

sTkyk
and

sTkyk

∥yk∥2 . In [6], a large amount of experiments were carried showing that

the proposed spectral CG method has a better numerical performance than many traditional
CG methods, such as FR and PRP methods. However, the direction dk generated by (1.6)
may not be a descent search direction. In 2010, Andrei [2] proposed a spectral CG method
with sufficient descent property, where the search direction is yielded by

dk+1 = −θk+1gk+1 + βN
k+1sk, d0 = −g0, (1.7)

θk+1 =
1

yTk gk+1
(∥gk+1∥2 −

∥gk+1∥2sTkgk+1

yTk sk
), βN

k+1 =
∥gk+1∥2

yTk sk
− ∥gk+1∥2sTkgk+1

(yTk sk)
2

.

The direction dk+1 satisfies gTk+1dk+1 ≤ −(θk+1 − 1
4 )∥gk+1∥2, which possesses the sufficient

descent property in case θk+1 > 1
4 . Therefore, to ensure sufficient descent property, Andrei

suggested to reset θk+1 = 1 when θk+1 ≤ 1
4 . More recently, Jian [14] proposed a new
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spectral CG method. It combines the Dai-Kou conjugate parameter given by (1.5) with the
quasi-Newton direction dk+1 = −B−1

k+1gk+1, where Bk+1 is an approximation of the Hessian
∇2f(xk+1). The search direction given in [14] is as follows:

dk+1 = θJCk+1gk+1 + βJC
k+1dk, d0 = −g0, (1.8)

where

θJCk =

{
θJC+
k , if θJC+

k ∈ [ 14 + η, τ ],

1, otherwise,

θJC+
k = 1− 1

yTk gk+1
(
∥yk∥2dTkgk+1

dTkgk+1
− sTkgk+1), and

βJC
k+1 =

yTk gk+1

dTkyk
− ∥yk∥2dTkgk+1

(dTkyk)
2

.

Here, η > 0 and τ > 0 are two positive constants such that 1
4 + η < τ . Although global

convergence of the spectral CG method is only established for uniformly convex functions
[14], this method shows good numerical performance for minimizing a publicly available set
of general testing functions [1].

The above mentioned methods proposed by Dai and Kou (1.4), Andrei (1.7) and Jian
(1.8) are all based on the standard secant (also called quasi-Newton) equation

Bk+1sk = yk, (1.9)

where Bk+1 is some approximation of Hessian of f at xk+1. However, the standard secant
equation only employs gradient information but ignores function value information of the
objective function. In order to get a better approximation of the Hessian matrix, techniques
using both gradients and function values have been studied by many researchers. For exam-
ple, Yuan [24], Khoshgam [15], Biglari [5] and Yuan [25], respectively, proposed the following
modified secant equations deriving from the Taylor expansion of the objective function with
some interpolation conditions:

Bk+1sk = z
(∞)
k , z

(∞)
k = yk +

µ
(∞)
k

∥sk∥2
sk, (1.10)

Bk+1sk = z
(5)
k , z

(5)
k = yk +

µ
(5)
k

∥sk∥2
sk, (1.11)

Bk+1sk = z
(4)
k , z

(4)
k = yk +

µ
(4)
k

∥sk∥2
sk, (1.12)

Bk+1sk = z
(3)
k , z

(3)
k = yk +

µ
(3)
k

∥sk∥2
sk, (1.13)

where

µ
(∞)
k = 2(fk − fk+1) + (gk + gk+1)

Tsk,

µ
(5)
k =

10

3
(fk − fk+1) +

5

3
(gk + gk+1)

Tsk,

µ
(4)
k = 4(fk − fk+1) + 2(gk + gk+1)

Tsk,

µ
(3)
k = 6(fk − fk+1) + 3(gk + gk+1)

Tsk.
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In this paper, we propose a new NCG method combined with a modified line search
method to ensure global convergence. Our main contributions are as follows. Firstly, based
on a unified derivation framework, we propose a family of modified secant equations, con-
taining all the previous variants (1.10)-(1.13). Our best choice among the modified secant
equation family can be interpreted from the perspective of polynomial interpolation. Then,
from our choice of secant equation a new improved CG search direction can be derived.
Secondly, it is well-known that under the standard Wolfe line search, the positive curva-

ture condition sTkyk > 0 always holds. However, we usually can not guarantee sTkz
(m)
k > 0

for z
(m)
k given by (1.10)-(1.13). To ensure the curvature condition sTkz

(m)
k > 0 holds, a

frequently-used correction is suggested in [3, 23, 15] to replace µ
(m)
k by max{µ(m)

k , 0}. In

fact, restricting µ
(m)
k to be nonnegative may destroy the negative curvature information of

the Hessian inherited in µ
(m)
k . In addition, it is also observed from numerical experiments

that negative µ
(m)
k appears quite often in practice and simply restricting µ

(m)
k to be nonneg-

ative can significantly deteriorate the numerical performance. Hence, we propose a modified

Wolfe line search in this paper which can retain some negative µ
(m)
k without losing global

convergence.
The paper is organized as follows: In Section 2, we derive a series of modified secant

equations, based on which a family of modified spectral CG methods is obtained. We then
propose a modified Wolfe line search and present a new spectral CG algorithm. The global
convergence of our new spectral CG algorithm for minimizing general nonconvex functions
is established in Section 3. Section 4 conducts numerical experiments comparing our new
method with some other well-known NCG methods. We finally draw some conclusion re-
marks in Section 5.

2 A New Spectral CG Algorithm

2.1 A new CG search direction

Assume the function f is sufficiently smooth and consider the m-th order Taylor expansion
model at xk+1:

φ
(m)
k+1(d) = fk+1 + dTgk+1 +

1

2
dT∇2f(xk+1)d+

1

3!
dT[∇3f(xk+1)d]d+ · · ·

+
1

m!
dT[∇mf(xk+1) d · · · d︸ ︷︷ ︸

m−2

]d,
(2.1)

where ∇mf(xk+1) ∈ R
n× n× n× · · · × n︸ ︷︷ ︸

m is a m-th order tensor and

dT[∇mf(xk+1) d · · · d︸ ︷︷ ︸
m−2

]d =

n∑
n1,··· ,nm=1

∂mf(xk+1)

∂xn1 , · · · , ∂xnm
dn1 , · · · , dnm .

Then, we have

φ
(m)
k+1(d) = f(xk+1 + d) + o(∥d∥m) (2.2)

for all d ∈ Rn with ∥d∥ sufficiently small. In addition, it follows from the definition of

φ
(m)
k+1(d) in (2.1) that

φ
(m)
k+1(0) = fk+1 and ∇φ

(m)
k+1(0) = gk+1. (2.3)
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Furthermore, by (2.2), the following cubic Hermite interpolation conditions also hold

φ
(m)
k+1(xk − xk+1) = fk + o(∥d∥m) and ∇φ

(m)
k+1(xk − xk+1) = gk + o(∥d∥m−1), (2.4)

which are equivalent to

fk = fk+1 − sTkgk+1 +
1

2
sTk∇2f(xk+1)sk + (−1)3

1

3!
sTk [∇3f(xk+1)sk]sk + · · ·

+ (−1)m
1

m!
sTk [∇mf(xk+1) sk · · · sk︸ ︷︷ ︸

m−2

]sk + o(∥sk∥m)
(2.5)

and

gk = gk+1 −∇2f(xk+1)sk + (−1)2
1

2
[∇3f(xk+1)sk]sk + · · ·

+ (−1)m−1 1

(m− 1)!
[∇mf(xk+1) sk · · · sk︸ ︷︷ ︸

m−2

]sk + o(∥sk∥m−1).
(2.6)

Using the above two equations, by direct calculations of m× fk + sTkgk, we obtain

sTk∇2f(xxk+1
)sk = sTkyk +

m

m− 2
(2(fk − fk+1) + (gk + gk+1)

Tsk)

+ (−1)2
m− 3

3(m− 2)
sTk [∇3f(xk+1)sk]sk

+ (−1)3
m− 4

12(m− 2)
sTk [∇4f(xk+1)sksk]sk

· · ·

+ (−1)m−2(
(3−m)m

(m− 1)!(m− 2)
+

1

(m− 2)!
)sTk [∇m−1f(xk+1) sk · · · sk︸ ︷︷ ︸

m−3

]sk

+ o(∥sk∥m),
(2.7)

which suggests us to define the following series of modified secant equations

Bk+1sk = z
(m)
k , z

(m)
k = yk +

mµk

(m− 2)∥sk∥2
sk, m ≥ 3, m ∈ Z, (2.8)

µk = 2(fk − fk+1) + (gk + gk+1)
Tsk.

Setting m = 3, 4, 5 in (2.8) yields the secant equations (1.13), (1.12) and (1.11). It is also
notable that (1.10) can be regarded as (2.8) with m = +∞. Based on the above discussions,
we easily establish the following approximation properties.

Theorem 2.1. Assume the function f is sufficiently smooth. When ∥sk∥ is sufficiently



344 H. WU, L. WANG AND H. ZHANG

small, we have

sTk∇2f(xk+1)sk − sTkyk =
1

2
sTk [∇3f(xk+1)sk]sk + o(∥sk∥3),

sTk∇2f(xk+1)sk − sTkz
(∞)
k =

1

3
sTk [∇3f(xk+1)sk]sk + o(∥sk∥3),

sTk∇2f(xk+1)sk − sTkz
(5)
k =

2

9
sTk [∇3f(xk+1)sk]sk + o(∥sk∥3),

sTk∇2f(xk+1)sk − sTkz
(4)
k =

1

6
sTk [∇3f(xk+1)sk]sk + o(∥sk∥3),

sTk∇2f(xk+1)sk − sTkz
(3)
k = o(∥sk∥3),

sTk∇2f(xk+1)sk − sTkz
(m)
k =

m− 3

3(m− 2)
sTk [∇3f(xk+1)sk]sk + o(∥sk∥3).

Proof. The results directly follows from the equality (2.7).

Remark 2.2. We have the following comments on the above results obtained by polynomial
interpolation. For the modified secant equation (1.13), Yuan [25] supposed a cubic approxi-
mation to the objective function and used two-point cubic Hermite interpolation conditions

(2.3)-(2.4) at xk and xk+1. So, sTkz
(3)
k approximates sTk∇2f(xk+1)sk more accurately. For

(1.12) and (1.11), Biglari [5] and Khoshgam [15] considered the quartic and quintic model
approximation to the function f , but still employed with the cubic Hermite interpolation
conditions. It is known that at least m + 1 interpolation conditions are required to deter-
mine a m-th order interpolation function. Hence, interpolation conditions (2.3)-(2.4) are
insufficient for a higher-order (m > 3) model. As a result, we can see from Theorem 2.1 that

sTkz
(5)
k and sTkz

(4)
k possesses low approximation quality compared to sTkz

(3)
k . Furthermore,

by Theorem 2.1, larger values of m will in fact lead to lower approximation accuracy. So,

sTkz
(∞)
k , which corresponds to m = ∞, has the lowest quality to approximate sTk∇2f(xk+1)sk

compared with other choices of z
(m)
k with m = 3, 4, 5.

In this paper, we propose the following spectral conjugate search direction

dk+1 = −θk+1gk+1 + βk+1dk, d0 = −g0, (2.9)

where the conjugate parameter βk+1 is given by a truncated form of (1.5) but with yk
replaced by z

(m)
k ,

βM
k+1 = max{βL

k+1, β
R
k+1}, (2.10)

βL
k+1 =

gTk+1z
(m)
k

dTkz
(m)
k

−
||z(m)

k ||2

dTkz
(m)
k

gTk+1dk

dTkz
(m)
k

,

βR
k+1 =

gTk dk
||dk||2

.

For the choice of the spectral parameter θk+1, we hope dk+1 satisfies the quasi-Newton
direction, i.e.

Bk+1dk+1 = −gk+1. (2.11)

It follows that
−gk+1 = −θk+1Bk+1gk+1 + βk+1Bk+1dk. (2.12)
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Taking inner product of sk with both sides of (2.12), we have

θk+1 =
1

sTkBk+1gk+1
(sTkgk+1 + βk+1d

T
kBk+1sk). (2.13)

Applying the modified secant condition Bk+1sk = z
(m)
k to (2.13), for all k ≥ 0, we can obtain

our choice of θk+1 as

θ̃k+1 =
1

gTk+1z
(m)
k

(sTkgk+1 + βk+1d
T
kz

(m)
k ). (2.14)

The following theorem shows that the spectral conjugate direction dk+1 with θk+1 = θ̃k+1

and βk+1 = βL
k+1 has sufficient descent property when θk+1 > 1/4.

Theorem 2.3. If gTk+1z
(m)
k ̸= 0 and dTkz

(m)
k ̸= 0, for the direction dk+1 defined by (2.9) with

θk+1 = θ̃k+1 and βk+1 = βL
k+1, we have

gTk+1dk+1 ≤ −(θk+1 −
1

4
)∥gk+1∥2, k ≥ 0. (2.15)

Proof. Multiplying (2.10) by gTk+1, we obtain

gTk+1dk+1 = −θk+1∥gk+1∥2 +
gTk+1z

(m)
k gTk+1dk

dTkz
(m)
k

−
∥z(m)

k ∥2

dTkz
(m)
k

(gTk+1dk)
2

dTkz
(m)
k

. (2.16)

From the basic inequality uTv ≤ 1
2 (∥u∥

2 + ∥v∥2) for any u, v ∈ Rn, we take u = gk+1√
2

and

v =
√
2z

(m)
k gT

k+1dk

dT
kz

(m)
k

. Then we obtain

gTk+1z
(m)
k gTk+1dk

dTkz
(m)
k

≤ 1

4
∥gk+1∥2 +

∥z(m)
k ∥2

dTkz
(m)
k

(gTk+1dk)
2

dTkz
(m)
k

. (2.17)

Combining (2.16) with (2.17) yields (2.15).

Theorem 2.3 ensures that dk is a sufficient descent direction for all k ≥ 1 as long as θk > 1
4 .

So, to ensure sufficient descent search direction and boundedness of spectral parameter, we
set a truncated value of θ̃k+1 as

θ̄k+1 =

{
θ̃k+1, if θ̃k+1 ∈ [ 14 + η, τ ],

1, otherwise,
(2.18)

where η ∈ (0, 3/4) is a small positive constant and τ > 1 is an upper bound for the spectral
parameter. Then, by (2.18), we obviously have θ̄k+1 ∈ [ 14 + η, τ ] and the following corollary
directly follows from Theorem 2.3.

Corollary 2.4. If gTk+1z
(m)
k ̸= 0 and dTkz

(m)
k ̸= 0, for the direction dk+1 defined by (2.9)

with θk+1 = θ̄k+1 and βk+1 = βL
k+1, we have

gTk+1dk+1 ≤ −η∥gk+1∥2, k ≥ 0. (2.19)
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We now show that dk+1 defined by (2.11) with θk+1 = θ̄k+1 and βk+1 = βM
k+1 is a

sufficient descent search direction.

Theorem 2.5. If gTk+1z
(m)
k ̸= 0 and dTkz

(m)
k ̸= 0, for the direction dk+1 defined by (2.9) with

θk+1 = θ̄k+1 and βk+1 = βM
k+1 given by (2.18) and (2.10), respectively, we have

gTk+1dk+1 ≤ −η∥gk+1∥2, k ≥ 0. (2.20)

Proof. If βk+1 = βL
k+1, then (2.20) follows from Corollary 2.4. Now, supposing βk+1 = βR

k+1,

we prove (2.20) holds by induction. First, d0 satisfies that gT0 d0 = −∥g0∥2 < −η∥g0∥2 since
η ∈ (0, 3/4). Suppose dk satisfies (2.20). Since βk+1 = βR

k+1, we have from (2.18) and

dTkgk < 0 that βL
k+1 ≤ βR

k+1 < 0. By (2.11), we have

gTk+1dk+1 = −θk+1∥gk+1∥2 + βR
k+1g

T
k+1dk.

If gTk+1dk ≥ 0, (2.20) follows immediately from θ̄k+1 ∈ [ 14 + η, τ ]. If gTk+1dk < 0, we have

from βL
k+1 ≤ βR

k+1 < 0 that

gTk+1dk+1 = −θk+1∥gk+1∥2 + βR
k+1g

T
k+1dk ≤ −θk+1∥gk+1∥2 + βL

k+1g
T
k+1dk.

So, (2.20) follows from Corollary 2.4. Hence, dk+1 satisfies (2.20). The proof is complete.

2.2 A modified Wolfe line search

5 10 15 20 25 30 35 40 45 50 55

iteration

-1.5

-1

-0.5

0

0.5

1

1.5

sign(
k
)

Figure 1: The sign of µk

iteration 1 2 3 4 5 6 7 8

µk -1.107E+05 -2.634E+03 -3.307E+03 -2.750E-01 -8.784E-01 -1.102E-07 -4.256E-07 -6.419E-04

iteration 9 10 11 12 13 14 15 16

µk -2.595E-09 -2.381E-07 -5.132E-14 -7.026E-13 -2.812E-13 -3.412E-13 2.983E-14 -3.223E-14

iteration 17 18 19 20 21 22 23 24

µk 7.043E-16 2.123E-14 -2.165E-14 1.962E-13 -1.958E-13 4.604E-13 -4.602E-13 5.752E-13

Table 1: The value of µk in the initial 24 iterations

For general nonlinear functions, the value of dTkz
(m)
k may be zero or negative, while dTkyk

is always positive when standard Wolfe line search is used in the optimization algorithms.

To maintain dTkz
(m)
k > 0, a common remedy procedure is to replace µk in (2.8) by µ+

k :=
max{µk, 0}. By this way, when µk is negative, we have µ+

k = 0 and the secant equation
(2.8) will reduce to the standard secant equation (1.9). However, negative µk may inherit
some negative curvature information of the Hessian when the iterates are far from a local
minimizer. In our numerical experiments, we find that significant negative values of µk often
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appear in early iterations. As a typical example, the sign and values of µk against iteration
number for minimizing the ARWHEAD function [1] are displayed in Figure 1 and Table 1.
We can see from this experiment that µk is significantly negative in the first a few iterations
while it is nearly zero with alternating sign in later iterations when approaching a local
minimizer. To maintain certain negative values of µk in our algorithm without losing global

convergence, we propose to modify z
(m)
k in (2.8) as

z
(m)
k = yk + tksk, m ≥ 3, m ∈ Z, (2.21)

where

tk =

{
mµk

(m−2)∥sk∥2 , if µk > 0,

κ µk

∥sk∥2 , otherwise,
(2.22)

with

µk = 2(fk − fk+1) + (gk + gk+1)
Tsk and κ =

σ − ρ

1− 2ρ+ σ

for some 0 < ρ < σ < 1, and apply the following modified Wolfe line search

f(xk + αkdk) ≤ f(xk) + ραkg
T
k dk,

(g(xk + αkdk) + min{tk, 0}sk)Tdk ≥ σgTk dk.
(2.23)

It is obvious that when tk > 0, the above modified Wolfe line search will be reduced to the
standard Wolfe line search.

Now our new spectral conjugate gradient algorithm, denoted as NSCG, with modified
Wolfe line search is described in Alg. 1.

Algorithm 1 A New Spectral Conjugate Gradient (NSCG) Algorithm

Input: An initial point x0 ∈ Rn and tolerance ε > 0.
1: Set k = 0, d0 = −g0.
2: If ∥gk∥∞ ≤ ε, stop.
3: Compute αk by the modified Wolfe conditions (2.23).
4: Update xk+1 = xk + αkdk and gk+1.

5: Compute βk+1 , θk+1 and dk+1 by (2.10), (2.18) and (2.9), respectively, where z
(m)
k is

determined by (2.21).
6: Set k = k + 1 and go to step 2.

3 The Global Convergence

In this section, we establish global convergence of the NSCG algorithm proposed in Alg. 1.
For this purpose, we need the following assumptions on the objective function f .

Assumption 1. (a) f is bounded from below, i.e. f(x) > −∞, ∀x ∈ Rn.
(b) The level set S = {x ∈ Rn : f(x) ≤ f(x0)}is bounded, namely, there exists a constant
M such that

||x|| ≤ M, ∀x ∈ S. (3.1)

(c) In some neighborhood Ω of S, f is continuously differentiable and its gradient is Lipschitz
continuous, i.e. there exists a constant L > 0 such that

||g(x)− g(y)|| ≤ L||x− y||, ∀x, y ∈ Ω, (3.2)
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which implies that there exists a constant γ > 0 such that

||g(x)|| ≤ γ, ∀x ∈ S. (3.3)

Under Assumption 1, we first show that the modified line search (2.23) is well-defined.

Lemma 3.1. Suppose that Assumption 1 holds and dk is a descent direction. There exists
a suitable stepsize αk satisfying modified Wolfe conditons (2.23).

Proof. Since f is bounded from below by Assumption 1 (a), it follows from smoothness of
f and 0 < ρ < 1 that there exists a stepsize α′

k > 0 such that

f(xk + α′
kdk) = f(xk) + α′

kρg
T
k dk, (3.4)

and f(xk + αkdk) ≤ f(xk) + ραkg
T
k dk for all 0 < αk < α′

k. By the mean value theorem,
there exists α′′

k ∈ (0, α′
k) such that

f(xk + α′
kdk)− f(xk) = α′

kg(xk + α′′
kdk)

Tdk. (3.5)

Combining (3.4) with (3.5), we obtain

g(xk + α′′
kdk)

Tdk = ρgTk dk > σgTk dk. (3.6)

Let sk = α′′
kdk. If µk > 0, the second condition in (2.23) holds obviously by (3.6). If µk ≤ 0,

we have from the definition of tk and κ = (σ − ρ)/(1− 2ρ+ σ) in (2.22) that

g(xk + α′′
kdk)

Tsk + tk||sk||2 = ρgTk sk + κµk = ρgTk sk + κ(2(fk − fk+1) + (gk + gk+1)
Tsk)

≥ ρgTk sk + κ(−2ρgTk sk + gTk sk + σgTk sk)

= ρgTk sk + (σ − ρ)gTk sk

= σgTk sk.
(3.7)

So, the second condition in (2.23) also holds. The proof is complete.

We now establish the Zoutendijk condition [26] for our new modified Wolfe line search,
which often plays an important role for showing global convergence of line search methods.

Lemma 3.2. Suppose that Assumption 1 holds. Consider the iterative scheme (1.2), where
dk is a descent direction and αk is determined by the modified Wolfe conditions (2.23).
Then, we have

∞∑
k=0

(gTk dk)
2

||dk||2
< ∞. (3.8)

Proof. First, note that

µk = 2(fk − fk+1) + (gk + gk+1)
Tsk = 2g(x̄k)

T(xk − xk+1) + (gk + gk+1)
Tsk

= −2g(x̄k)
Tsk + (gk + gk+1)

Tsk = (gk − g(x̄k) + gk+1 − g(x̄k))
Tsk,

where x̄k = vxk + (1− v)xk+1 for some v ∈ [0, 1]. Then, by (3.2), we have

|µk| ≤ (||gk − g(x̄k)||+ ||gk+1 − g(x̄k)||)||sk||
≤ L (||xk − x̄k||+ ||x̄k − xk+1||) ||sk|| = L||sk||2.

(3.9)
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By the definition of tk in (2.22), if µk > 0, we have 0 < tk ≤ mL
m−2 . On the other hand, if µk ≤

0, we have from (3.9) and (2.22) that −κL ≤ tk ≤ 0, where 0 < κ = (σ−ρ)/(1−2ρ+σ) < 1.
Thus we have

−κL ≤ tk ≤ mL

m− 2
. (3.10)

Furthermore, we have from (3.2) and the second condition in (2.23) that

Lαk||dk||2 ≥ (gk+1 − gk)
Tdk ≥ (σ − 1)gTk dk − tkαk||dk||2,

which with (3.10) gives

αk ≥ σ − 1

L+ tk

gTk dk
||dk||2

≥ σ − 1

L(1 + m
m−2 )

gTk dk
||dk||2

. (3.11)

Then, it follows from (3.11) and the first condition in (2.23) that

fk − fk+1 ≥ q
(gTk dk)

2

||dk||2
, (3.12)

where q = ρ(1−σ)
L(1+ m

m−2 )
. Summing (3.12) over k and noting that f is bounded from below, we

have (3.8) holds. The proof is complete.

In the following, we show global convergence of NSCG in the sense that

lim inf
k→∞

∥gk∥ = 0. (3.13)

Assuming that (3.13) does not hold, i.e. there exists a constant ξ > 0 such that

∥gk∥ ≥ ξ (3.14)

for all k ≥ 0, we will show (3.13) holds by way of contradiction. We first establish two
necessary lemmas.

Lemma 3.3. Suppose Assumption 1 holds. Consider the iterative form (1.2), where αk is
determined by the modified Wolfe conditions (2.23) and dk is given by (2.9) with βk+1 and
θk+1 being generated by (2.10) and (2.18), respectively. If (3.14) holds and dk ̸= 0, we have∑

k≥1

||uk − uk−1||2 < ∞, (3.15)

where uk = dk

∥dk∥ .

Proof. Divide βk+1 given by (2.10) into two parts as follows:

β1
k+1 = max{βk+1, 0} (3.16)

and
β2
k+1 = min{βk+1, 0}. (3.17)

Define

ωk =
−θkgk + β2

kdk−1

||dk||
(3.18)
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and

δk =
β1
k||dk−1||
||dk||

. (3.19)

From dk+1 = −θk+1gk+1 + βk+1dk, we have

uk = ωk + δkuk−1, k ≥ 1. (3.20)

Since {uk, k ≥ 0} are unit vectors, we have

||ωk|| = ||uk − δkuk−1|| = ||δkuk − uk−1||. (3.21)

Using (3.21) and the condition δk ≥ 0, we derivate

||uk − uk−1|| ≤ ||(1 + δk)uk − (1 + δk)uk−1||
≤ ||uk − δkuk−1||+ ||δkuk − uk−1|| = 2||ωk||.

(3.22)

By (3.14), the relation θk ≤ τ , the definition of β2
k+1 and the fact

gT
kdk

||dk||2 ≤ βk+1 ≤ 0, we

have

|| − θkgk + β2
kdk−1|| ≤ τ ||gk||+

|gTk−1dk−1|
||dk−1||2

||dk−1|| ≤ (1 + τ)γ, (3.23)

where γ > 0 is the constant defined in Assumption (1)(c). From (3.18), (3.22) and (3.23),
it follows that

||uk − uk−1|| ≤
2(1 + τ)γ

||dk||
. (3.24)

Then, the descent property of dk (2.20) with the relation (3.14) yields

1

||dk||2
≤ 1

ξ4
||gk||4

||dk||2
≤ 1

ξ4η2
(gTk dk)

2

||dk||2
. (3.25)

Thus (3.15) holds by Lemma 3.2. The proof is complete.

Lemma 3.4. Suppose Assumption 1 holds. Consider the iterative form (1.2), where αk is
determined by the modified Wolfe conditions (2.23) and dk is given by (2.9) with βk+1 and
θk+1 being generated by (2.10) and (2.18), respectively. Then, βk+1 has the Property (*)
given in [11]:
(1) There exists a constant b > 1, such that |βk+1| ≤ b, ∀k ≥ 0,
(2) There exists a constant c > 0, such that if ||sk|| ≤ c, then |βk+1| ≤ 1

b , ∀k ≥ 0.

Proof. By the definition of βk+1 in (2.10), we have

βk+1 = βL
k+1, if βL

k+1 ≥ 0,

0 > βk+1 ≥ βL
k+1, if βL

k+1 < 0.

Hence, |βk+1| ≤ |βL
k+1|. From (2.20), (3.14) and the second condition in (2.23), we have

dTkz
(m)
k ≥ −(1− σ)gTk dk ≥ η(1− σ)||gk||2 ≥ η(1− σ)ξ2. (3.26)

If µk > 0, it is easy to obtain ∣∣∣∣∣dTkgk+1

dTkz
(m)
k

∣∣∣∣∣ ≤ max

{
σ

1− σ
, 1

}
. (3.27)
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If µk ≤ 0, we have

gTk+1dk = dTkz
(m)
k − (−gTk dk + tks

T
kdk) < dTkz

(m)
k , (3.28)

where the inequality above is due to that

−gTk dk + tks
T
kdk =

1

αk
(−gTk sk + κµk)

=
1

αk
(−gTk sk + κ(2(fk − fk+1) + (gk + gk+1)

Tsk))

≥ 1

αk
(−gTk sk + κ(−2ρgTk sk + gTk sk + σgTk sk))

=
1

αk
(−gTk sk + (σ − ρ)gTk sk) > 0,

which by tk = κµk/∥sk∥2 also implies κµk/g
T
k sk ≥ (σ − ρ). This inequality together with

the second condition in (2.23) gives

dTkgk+1

dTkz
(m)
k

≥ σ − (κµk)/(g
T
k sk)

σ − 1
≥ ρ

σ − 1
. (3.29)

By (3.28) and (3.29), we have ∣∣∣∣∣dTkgk+1

dTkz
(m)
k

∣∣∣∣∣ ≤ max

{
ρ

1− σ
, 1

}
, (3.30)

which with (3.27) implies ∣∣∣∣∣dTkgk+1

dTkz
(m)
k

∣∣∣∣∣ ≤ max

{
σ

1− σ
, 1

}
, (3.31)

Using (3.2), (3.9) and κ ∈ (0, 1), we obtain

||z(m)
k || ≤ ||yk||+max

{
κ,

m

m− 2

}
|µk|
||sk||2

||sk|| ≤
mL

m− 2
||sk||. (3.32)

It can be shown that (3.32) together with (3.1), (3.3), (3.26), (3.31) and (3.32) implies

|βk+1| ≤ c̄||sk||, ∀k ≥ 0,

where c̄ =
m(m−2)γL+2max{ σ

1−σ ,1}Mm2L2

(m−2)2η(1−σ)ξ2 . Let b = max{1, 2c̄M}, c = 1
bc̄ , then for all k ≥ 0,

we have
|βk+1| ≤ b (3.33)

and

||sk|| ≤ c ⇒ |βk+1| ≤
1

b
. (3.34)

The relations (3.33) and (3.34) indicate that βk+1 has the Property (*) in [11]. The proof
is complete.

Based on the above lemmas, the global convergence of NSCG can be established as
follows.
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Theorem 3.5. Suppose Assumption 1 holds. Consider the iterative form (1.2), where αk is
determined by the modified Wolfe conditions (2.23) and dk is given by (2.9) with βk+1 and
θk+1 being generated by (2.10) and (2.18), respectively. We have

lim inf
k→∞

∥gk∥ = 0. (3.35)

Proof. The proof of this theorem essentially follows the same outline of proofs of Lemma 4.2
and Theorem 4.3 in [11], we only outline its proof here.

Using Property (*) and (3.14), we can show that ||dk||2 grows at most linearly. Then, we
can show similarly to Lemma 4.2 in [11] that there exists λ > 0 such that, for any ∆ ∈ N∗

which is the set of positive integers and any index k0, there is a index k ≥ k0 such that
|Kλ

k,∆| > ∆
2 , where Kλ

k,∆ := {i ∈ N∗ : k ≤ i ≤ k + ∆ − 1, ||si−1|| > λ} and |Kλ
k,∆| denotes

the cardinality of Kλ
k,∆. We proceed by contradiction. Suppose that for any λ > 0, there

exsits ∆ ∈ N∗ and k0 such that for any k ≤ k0, we have that |Kλ
k,∆| ≤ ∆

2 . By induction, we
obtain for any index l ≥ k0 + 1

∥dl∥2 ≤ ζ
(
1 + 2β2

l + 2β2
l 2β

2
l−1 + · · ·+ 2β2

l 2β
2
l−1 · · · 2β2

k0

)
, (3.36)

where ζ depends on ∥dk0+1∥2. Using the assumptions of contradiction, we can prove that
each term on the right hand of (3.36) is bounded by 1. As a result, we have

∥dl∥2 ≤ ζ (l − k0 + 2) . (3.37)

By (2.20), (3.8) and (3.14), we obtain

ξ4η2
∑
k≥1

1

∥dk∥2
≤ η2

∑
k≥1

∥gk∥4

∥dk∥2
< ∞, (3.38)

which contradicts (3.37).

Then, by Lemma 3.3 and the boundedness of {xk} in (3.1), we can obtain a contradiction

similarly to the proof of Theorem 4.3 in [11] that 2M ≥ 1
2

∑k+∆−1
i=k ||si−1|| > ∆

2 |K
λ
k,∆| >

λ∆
4 ≥ 2M , where ∆ is chosen as ⌈ 8M

λ ⌉.

4 Numerical Experiments

In this section, we show numerical comparison of the following nonlinear CG algorithms:
NSCG: Our new spectral conjugate gradient method Alg. 1;
DKCG: The algorithm proposed by Dai and Kou [7];
JSCG: The algorithm proposed by Jian et al. [14];
SCG+: The spectral CG algorithm with standard Wolfe line search and the search direction
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dk+1 is given by

dk+1 = −θk+1gk+1 + βk+1dk, d0 = −g0,

βk+1 = max

{
gTk+1v

(m)
k

dTkv
(m)
k

−
||v(m)

k ||2

dTkv
(m)
k

gTk+1dk

dTkv
(m)
k

,
gTk dk
||dk||2

}
,

θk+1 =

{
θ̃k+1, if θ̃k+1 ∈ [ 14 + η, τ ],

1, otherwise,

θ̃k+1 =
1

gTk+1v
(m)
k

(sTkgk+1 + βk+1d
T
kv

(m)
k ),

v
(m)
k = yk +

m

m− 2

max{µk, 0}
∥sk∥2

sk, m ≥ 3, m ∈ Z,

µk = 2(fk − fk+1) + (gk + gk+1)
Tsk.

All experiments are coded in VC++6.0 and run on a laptop with Inter Core i5-9300H
CPU, 16GB RAM memory and the Windows 10 operating system. Our testing problems are
extracted from the collection of unconstrained optimization test functions [1] with problem
dimensions varying from 100 to 10000. We only select the problems for which all the com-
parison solvers converge to the same local minimizer. Finally, a total of 85 testing problems
are used in our testing problem set. The parameters η = 0.001 and τ = 10 are used in
NSCG and SCG+. For better performance of each comparison algorithm, the parameters
(ρ, σ) in the modified Wolfe line search (2.23) and in the standard Wolfe line search used in
the rest algorithms are set as

(ρ, σ) =

{
(0.18, 0.2), for NSCG,

(0.1, 0.9), otherwise.

All the comparison algorithms are stopped when either ||gk||∞ ≤ 10−8 or the number of
iterations exceeds 10000.

We use the performance profiles of Dolan and Moré [9] to evaluate the performance of
algorithms. Define P and S to be the set consisting of np test problems and the set of com-
pared solvers, respectively. Define NIp,s, NFp,s and NGp,s, respectively, to be the number
of iterations, the number of function evaluations and the number of gradient evaluations for
the solver s to solve problem p to the required accuracy. Define the performance ratio as

rIp,s =
NIp,s
NI∗p

, rFp,s =
NFp,s

NF ∗
p

and rGp,s =
NGp,s

NG∗
p

,

where

NI∗p = min{NIp,s, s ∈ S}, NF ∗
p = min{NFp,s, s ∈ S} and NG∗

p = min{NGp,s, s ∈ S}.

It is obvious that rIp,s, r
F
p,s, r

G
p,s ≥ 1 for all p, s. If a solver fails to solve a problem, then

the ratio rIp,s, r
F
p,s, r

G
p,s will set to positive infinity in our experiment. For any τ ≥ 1, the

following cumulative distribution function, related to the performance ratio on the number
of iterations, is defined as

ρIs(τ) :=

∣∣{p ∈ P , rIp,s ≤ τ}
∣∣

np
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to measure the performance of each solver s with respect to the number of iterations. So,
ρIs(1) gives the percentage of problems for which solver s takes the least number of iterations.
For any τ ≥ 1, the cumulative distribution functions measuring the performance of solver
s with respect to the number of function and gradient evaluations are similarly defined as
ρFs (τ) and ρGs (τ), respectively.

Figure 2 presents the performance profiles of NSCG with m = ∞, 5, 4, 3. We observe
that NSCG(m = 3) performs best among the NSCGs with different choices of parameter m.
And as the parameter m increases its performance gets worse which matches our theoretical
analysis. It is also worth noticing that NSCG(m = 5) and NSCG(m = ∞) have nearly
identical performance. Hence, we take NSCG(m = 3) as default of NSCG in the following
numerical comparisons with other algorithms.
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Figure 2: Performance profiles of NSCG with m = ∞, 5, 4, 3 on the number of iterations,
function and gradient evaluations

SCG+ is actually same as NSCG but with the tk in (2.22) replaced by tk = m
m−2

max{µk,0}
∥sk∥2

and the modified Wolfe line search replaced by the standard Wolfe line search. In Figure 3,
we can see that NSCG wins about 80%, 70% and 63%, while SCG+ wins about 35%, 45% and
52%, on solving the test problems in terms of iterations, function and gradient evaluations,
respectively. Hence, allowing negative µk combined with the modified line search (2.23)
indeed improves the numerical performance of NSCG. We think the reason of improving
numerical experiments might be that more negative curvature information of the Hessian
can be inherited to the search direction by allowing negative µk.
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Figure 3: Performance profiles of NSCG and SCG+ based on the number of iterations,
function evaluations and gradient evaluations

Figure 4 shows the comparison performance profile of NSCG with the nonlinear CG
solvers DKCG and JSCG. We can see that NSCG performs relatively better among these
three solvers for solving this set of test problems. From Figure 4, we see that NSCG is fastest
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for about 75%, 60% and 55% on solving the test problems in terms of iterations, function
and gradient evaluations. We believe the superior performance of NSCG is due to both the
modified secant equation used by NSCG, which explores a more accurate approximation of
the Hessian matrix on the direction sk as indicated in Theorem 2.1, and the modified Wolfe
line search (2.23), which could incorporate certain negative curvature information of the
Hessian.
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Figure 4: Performance profiles of DKCG, JSCG and NSCG based on the number of itera-
tions, function evaluations and gradient evaluations

5 Conclusions

In this paper, based on a new family of modified secant equations and a modified Wolfe
line search, we propose a new spectral conjugate gradient (NSCG) algorithm for solving
unconstrained smoothing optimization problems. According to the m-th order Taylor ex-
pansion of the objective function and cubic Hermite interpolation conditions, we derive a
family of modified secant equations with higher accuracy in approximation of the Hessian
of the objective function. It contains a series of variants of secant conditions in the lit-
erature. To keep the negative curvature information of the Hessian, a negative value µk

resulted from cubic Hermite interpolation is used in our new formula for generating search
directions. Combined with a new modified Wolfe line search, global convergence of NSCG
is established for minimizing smooth unconstrained nonlinear optimization. Our numerical
experiments show NSCG(m = 3) has the best performance in the family of the proposed
algorithms NSCG(m ≥ 3). Our preliminary numerical experiments also show NSCG(m = 3)
performs better than the well-known nonlinear CG methods DKCG, SCG+ and JSCG for
our set of testing problems.
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