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with the intrinsic difficulty of the approximate solution of problems for which infor-
mation is partial, contaminated, and priced [15]. We focus our attention on another
aspect of the problem, we study it from the approximation theory point of view.

We assume that the boundary control has the form of a linear combination of
shape-like functions. We use the definition of solution to a parabolic equation intro-
duced and studied by Ladyzenskaja and her school [7]. This allows us to guarantee
the existence of solution to the tracking problem and to use the maximum princi-
ple in order to obtain an effective approximation by finite-dimensional optimization
problems. Based on our approximation theorem we get a complexity bound for the
path-following method applied to the tracking problem governed by a linear para-
bolic equation. This approach is an alternative to the regularization methods (see,
e.g., [6] and the literature therein).

The paper is organized in the following way. In the next section we introduce the
notations used in the sequel and formulate the problem. In the third section we recall
some well known results from the theory of PDEs and numerical optimization. The
main results of this work are presented in the fourth section. Section five contains
some auxiliary lemmas. The main results are proved in section six. In the last
section we consider some illustrative examples.

2. Statement of the problem

Throughout this paper, the set of real numbers is denoted by R. The usual
inner product in Rn is denoted by ⟨·|·⟩ and the Euclidean norm is denoted by | · |.
Let X ⊆ Rn be an open set. We denote by Lp(X,R) the space of all measurable
functions on X that satisfy

∫
X |f |pdx <∞ and by ∥·∥Lp(X,R) the norm in Lp(X,R),

1 ≤ p ≤ ∞. Let Ω be an open connected bounded subset from Rn. Its closure is
denoted by Ω. The inner product in L2(Ω,R) is denoted by ⟨·, ·⟩. Let T ∈ R. We
use the notation QT for the set Ω × (0, T ). Let z ∈ Lp((0, T ),R). We denote by
1z the function in Lp(QT ,R) defined by (1z)(x, t) = z(t), (x, t) ∈ QT , 1 ≤ p ≤ ∞.
Let F be a function. Its gradient and its Hessian matrix are denoted by ∇(F )
and ∇2(F ), respectively. We denote by HN the set of piecewise constant functions
η ∈ L2((0, T ),R) taking the values η(t) = η(τk), t ∈ (τk, τ(k + 1)], k = 0, N − 1,
τ = T/N . Let W 2

2 (Ω) be the Hilbert space consisting of the elements u ∈ L2(Ω,R)
having generalized derivatives ux and uxx, with the norm

∥u∥W 2
2 (Ω) = ∥u∥L2(Ω,R) + ∥ux∥L2(Ω,R) + ∥uxx∥L2(Ω,R).

We denote by W 1,1
2 (QT ) the Hilbert space consisting of the elements u ∈ L2(QT ,R)

having generalized derivatives ux and ut, with the inner product

(u, v)
W 1,1

2 (QT )
=

∫∫
QT

(uv + uxvx + utvt)dxdt

and byW 1,0
2 (QT ) the Hilbert space consisting of the elements u of L2(QT ,R) having

generalized derivative ux, with the inner product

(u, v)
W 1,0

2 (QT )
=

∫∫
QT

(uv + uxvx)dxdt.
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The Banach space consisting of the elements u ∈W 1,0
2 (QT ) having finite norm

|u|QT
= ess sup

0≤t≤T
∥u(x, t)∥L2(Ω,R) + ∥ux∥L2(QT ,R)

is denoted by V2(QT ), and the Banach space consisting of the elements u ∈ V2(QT )

such that ∥u(x, t+∆t)− u(x, t)∥L2(Ω,R) → 0 when ∆t→ 0 is denoted by V 1,0
2 (QT ).

The set of absolutely continuous functions is denoted by AC([0, T ],R). Fix 0 <
C ∈ L∞(QT ,R) and 0 < c ∈ L∞(QT ,R) such that, there exists a positive number
ω ≤ C. We use the notation

M(θ) = divx(Cgradxθ)− cθ.

Let θ̌ ∈ V 1,0
2 (QT )∩L∞(QT ,R). Set φ(θ, t) = |θ̌(x, t)−θ(x, t)|2. Let Qj ∈W 2

2 (Ω),
j = 1,m, Kj > 0, j = 1,m, and θ0 ∈ L2(Ω,R). Consider the optimal control
problem

(2.1a) J(θ, q1, . . . , qm) =

∫∫
QT

φ(θ(x, t), t)dxdt → min,

(2.1b) θt =M(θ),

(2.1c) θ(x, t) =
m∑
j=1

Qj(x)qj(t), (x, t) ∈ ∂Ω× [0, T ]

(2.1d) θ(x, 0) =

m∑
j=1

Qj(x)qj(0) = θ0(x),

(2.1e) ∥q̇j∥L∞((0,T ),R) ≤ Kj , j = 1,m,

where (θ, q1, . . . , qm) belongs to the space V 1,0
2 (QT )× (AC([0, T ],R))m.

Boundary condition (2.1c) embrace the major part of situations that one can
face in practical problems. The functions Qj , j = 1,m, can be considered as a
partition of unity subordinate to a cover of Ω or as shape functions for a set of
elements. The functions qj , j = 1,m, determine the dynamics of θ in Ω∩ supp(Qj),
j = 1,m. Absolute continuity of qj is a weakest natural assumption that can be
imposed. Indeed, in applications qj , j = 1,m, are temperatures or concentrations
that have some inertia and should be rather regular functions. The derivatives
q̇j , j = 1,m, are considered as control parameters. Note that the Dirichlet-like
boundary condition (2.1c) is essentially used in our approach. Complexity analysis
of problems with other boundary conditions (like the Neumann condition) needs
another tools.

We begin the study of this problem considering an auxiliary problem with the
function φ : R × [0, T ] → R being convex locally Lipschitzian with respect to θ
and measurable with respect to t. Assume that |φ(θ1, t) − φ(θ2, t)| ≤ Kφ|θ1 − θ2|,
Kφ > 0, whenever θ1, θ2 ∈ [−Θ,Θ].
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Put u(x, t) = θ(x, t) −
∑m

j=1Qj(x)qj(t). Let q0j ∈ R, j = 1,m, be such that∑m
j=1Qj(x)q

0
j = θ0(x). Problem (2.1a)-(2.1e) is equivalent to the following problem:

(2.2a) J(u, q1, . . . , qm) =

∫∫
QT

φ
(
u+

m∑
j=1

Qjqj , t
)
dxdt → min,

(2.2b) ut =M(u) +

m∑
j=1

M(Qjqj)−
m∑
j=1

Qjηj ,

(2.2c) u(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ],

(2.2d) u(x, 0) = 0,

(2.2e) q̇j = ηj , qj(0) = q0j , j = 1,m,

(2.2f) ∥ηj∥L∞((0,T ),R) ≤ Kj , j = 1,m,

where (u, q1, . . . , qm, η1, . . . , ηm) belongs to the space V 1,0
2 (QT )× (AC([0, T ],R))m×

(L∞((0, T ),R))m. Along with this problem, we also consider the problem:

(2.3a) J(u, q1, . . . , qm) =

∫∫
QT

φ
(
u+

m∑
j=1

Qjqj , t
)
dxdt → min,

(2.3b) ut =M(u) +
m∑
j=1

M(Qjqj)−
m∑
j=1

Qjηj ,

(2.3c) u(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ],

(2.3d) u(x, 0) = 0,

(2.3e) q̇j = ηj , j = 1,m, qj(0) = q0j ,

(2.3f) ∥ηj∥L∞((0,T ),R) ≤ Kj , j = 1,m,

where (u, q1, . . . , qm, η1, . . . , ηm) belongs to the space V 1,0
2 (QT )×(AC([0, T ],R))m×

(HN )m. Since the functions ηj , j = 1,m, and ηj , j = 1,m, completely determine
the functions (u, q1, . . . , qm) and (u, q1, . . . , qm), respectively, we shall use the no-
tations J(η) = J(θ, q1, . . . , qm) = J(u, q1, . . . , qm) and J(η) = J(θ, q1, . . . , qm) =
J(u, q1, . . . , qm).

We do not consider any discretization of differential equation (2.3b). It is suppose
that the solution to (2.3b) admits a spectral representation via Fourier-like rapidly
converging series involving eigenvalues and eigenfunctions of the operator M , and,
as a consequence, it can be rapidly calculated with machine accuracy.

3. Background notes

Recall some classical results from the theory of PDEs and numerical optimization.
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3.1. Parabolic Equations. Consider the following problem:

(3.1)


ut −Mu =

m∑
i=1

∂fi
∂xi

− f,

u(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ],

u(x, 0) = ψ(x).

where

Mu =

m∑
i=1

∂

∂xi

 m∑
j=1

aij(x, t)uxj +

m∑
i=1

ai(x, t)u

−
m∑
i=1

bi(x, t)uxi − a(x, t)u,

and the coefficients satisfy the condition of uniform ellipticity, i.e.,

(3.2) ν1

m∑
i=1

ξ2i ≤
m∑

i,j=1

aij(x, t)ξiξj ≤ ν2

m∑
i=1

ξ2i , ν1, ν2 = (const) > 0,

where (ξ1, ξ2, . . . , ξm) is an arbitrary real vector. Set

∥a∥q,r =

(∫ T

0

(∫
Ω
aq dx

)r/q

dt

)1/r

.

Let q and r be real numbers satisfying the conditions

(3.3)


1

r
+
m

2q
= 1,

q ∈
(m
2
,∞
]
, r ∈ [1,∞) , for m ≥ 2,

q ∈ [1,∞] , r ∈ [1, 2] , for m = 1.

Assume that the conditions

(3.4)

∥∥∥∥∥
m∑
i=1

a2i

∥∥∥∥∥
q,r

≤ µ1,

∥∥∥∥∥
m∑
i=1

b2i

∥∥∥∥∥
q,r

≤ µ1, ∥a∥q,r ≤ µ1,

are satisfied. Assume that

(3.5)

(∫∫
QT

m∑
i=1

f2i dxdt

)1/2

≤ µ2, ∥f∥q,r ≤ µ2,

where

(3.6)



1

r
+
m

2q
= 1 +

m

4
,

q ∈
[

2m

m+ 2
, 2

]
, r ∈ [1, 2] , for m ≥ 3,

q ∈ (1, 2] , r ∈ [1, 2) , for m = 2,

q ∈ [1, 2] , r ∈
[
1,

4

3

]
, for m = 1.

Set

I(t1;u, ϕ) =

∫
Ω
u(x, t1)ϕ(x, t1)dx−

∫ t1

0

∫
Ω
uϕtdxdt+

∫ t1

0
(L1(u, ϕ) + L2(f, ϕ)) dt,
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where

L1(u, ϕ) =

∫
Ω

 m∑
i=1

 m∑
j=1

aijuxj + aiu

ϕxi +

(
m∑
i=1

biuxi + au

)
ϕ

 dx

and

L2(f, ϕ) =

∫
Ω

(
m∑
i=1

fiϕxi + fϕ

)
dx.

We say that a function u ∈ V 1,0
2 (QT ) is a solution of problem (3.1) if the equality

I(t1;u, ϕ) =

∫
Ω
ψ(x)ϕ(x, 0)dx

holds for all t1 ∈ [0, T ], ϕ ∈W 1,1
2 (QT ) with ϕ(x, t) = 0, (x, t) ∈ (∂Ω× [0, T ]).

Recall the following results (see, [7, ch. 3]).

Theorem 3.1 ([7]). If ψ ∈ L2(Ω,R), then problem (3.1) has a unique solution

u ∈ V 1,0
2 (QT ).

Theorem 3.2 ([7]). Assume that for all problems

(3.7)


ut −Mmu =

m∑
i=1

∂fmi
∂xi

− fm,

u(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ],

u(x, 0) = ψm(x).

where

Mmu =

m∑
i=1

∂

∂xi

 m∑
j=1

amij (x, t)uxj + ami (x, t)u

−
m∑
i=1

bmi (x, t)uxi − am(x, t)u,

conditions (3.3)-(3.6) are satisfied with the same constants. Assume that the se-
quence of functions amij converges almost everywhere to aij and the functions ami ,
bmi , am, fmi , fm, and ψm converge to ai, bi, a, fi, f , and ψ, respectively, in the
norms of the spaces to which they belong according to conditions (3.3)-(3.6). Then

the solutions um of problems (3.7) converge strongly in V 1,0
2 (QT ) to the solution u

of problem (3.1).

Set U = (∂Ω× [0, T ]) ∪ (Ω× {0}).

Theorem 3.3 ( [7]). Let u ∈ V 1,0
2 (QT ) be a solution of problem (3.1). Assume that

the following conditions are satisfied

(1) the coefficients aij, bi, and a satisfy (3.3)-(3.4),
(2) a(x, t) ≥ 0,
(3) ai = fi = f = 0.

Then
min{0, ess inf

U
u(x, t)} ≤ u(x, t) ≤ max{0, ess sup

U
u(x, t)}

for almost all (x, t) from QT .



COMPLEXITY OF PATH-FOLLOWING METHOD 263

3.2. Path-following Minimization Method. Let P : Rn → R be a convex func-
tion. Consider the problem:

(3.8)


P (x) → min,

x = (x1, x2, . . . , xn) ∈ Rn,

x2i ≤ Ki, i = 1, n.

To apply path-following method to this problem, consider the following mathemat-
ical programming problem:

(3.9)


σ → min,

x = (x1, x2, . . . , xn) ∈ Rn,

P (x) ≤ σ,

x2i ≤ Ki, i = 1, n.

Let F be a function defined by

F (x, σ) = − ln(σ − P (x))− ln(σ − σ)−
n∑

i=1

ln(Ki − x2i ),

where σ = max{x|x2
i≤Ki,i=1,n} P (x), and let b = (0, 1) ∈ Rn × R. Let v ∈ Rn+1 be a

vector. We use the notation ∥v∥Fy = ⟨[∇2(F )(y)]−1v|v⟩1/2 whith y = (x, σ).

Let β ∈ (0, (3 −
√
5)/2), and let γ > 0 be such that γ ≤

√
β

1 +
√
β

− β. The

path-following method is presented in Table I (see, [10]).

Initialization: Set α0 = 0. Choose an accuracy ε > 0, x0 ∈ Rn, and
σ0 ∈ R such that

∥∇(F )(x0, σ0)∥F(x0,σ0)
≤ β.

Step k: Set

αk+1 = αk +
γ

∥b∥F(xk,σk)

,

(xk+1, σk+1) = (xk, σk)− [∇2(F )(xk, σk)]
−1(αk+1b+∇(F )(xk, σk)).

Stop the process if

n+ 1 +
(β +

√
n+ 1)β

1− β
≤ εαk.

Table 1. Path-following method

An auxiliary method to find an initial point satisfying ∥∇(F )(x0, σ0)∥F(x0,σ0)
≤ β

is discussed in [10].
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Let N be the largest integer satisfying

N ≤
ln

(
(1 + β)(n+ 1) + (β +

√
n+ 1)β

γ(1− 2β)ε
∥b∥F(x̃,σ̃)

)
ln

(
1 +

γ

β +
√
n+ 1

) + 1,

where (x̃, σ̃) = argmin (F ).

Theorem 3.4 ( [10]). The path-following method terminates no more than after N
steps. At the moment of termination we have |P (xN )−P (x̂)| < ε, where x̂ solution
of problem (3.8).

4. Main results

Let us formulate the main results of this work.

Theorem 4.1. Problem (2.1a)-(2.1e) has a solution.

Theorem 4.2. Let θ̂ be an optimal solution of (2.1a)-(2.1e) and θ̂ = û+
∑m

j=1Qj q̂j
be an optimal solution of (2.3a)-(2.3f). Then

|J(θ̂, q̂1, . . . , q̂m)− J(θ̂, q̂1, . . . , q̂m)| ≤ T 2

N

VΩKφ

m∑
j=1

∥Qj∥L∞(Ω,R)Kj

 ,

where VΩ =
∫
Ω dx.

Set

(4.1) F(η, σ) = − ln(σ − J(η))− ln(σ − σ)−
m∑
i=1

N−1∑
k=0

ln(K2
i − (ηi(τk))

2),

where
σ = max

{η∈HN |∥ηi∥L∞((0,T ),R)≤Ki,i=1,m}
J(η).

Let ε > 0,

(4.2) N >
2
(
VΩKφ

∑m
j=1

(
∥Qj∥L∞(Ω,R)Kj

))
T 2

ε
,

(4.3) C =
1√
2
T 2VΩKφ

m∑
j=1

∥Qj∥L∞(QT ,R)Ki,

and

(4.4) N ≥
ln

(
2
(1 + β)(Nm+ 1) + (β +

√
Nm+ 1)β

γ(1− 2β)ε
C
)

ln

(
1 +

γ

β +
√
Nm+ 1

) + 1.

Let η̂ be an optimal control of (2.2a)-(2.2f) and consider HN be the set of piecewise
constant functions η ∈ L2((0, T ),R) taking values η(t) = η(τk), t ∈ (τk, τ(k + 1)],
k = 0, N − 1, τ = T/N .



COMPLEXITY OF PATH-FOLLOWING METHOD 265

Theorem 4.3. The path-following method finds η ∈ HN satisfying |J(η)−J(η̂)| < ε,
no more than after N iterations.

5. Auxiliary lemmas

We will need the following auxiliary results.

Lemma 5.1. Let η = (η1, η2, . . . , ηm) ∈ L∞((0, T ),Rm) be a function satisfying
∥ηj∥L∞((0,T ),R) ≤ Kj, and let (u, q1, . . . , qm) be a solution of problem (2.2b)-(2.2f).
Then the inequalities∥∥∥∥∥∥

m∑
j=1

Qjqj

∥∥∥∥∥∥
L∞(QT ,R)

≤ ∥θ0∥L∞(Ω,R) + T

∥∥∥∥∥∥
m∑
j=1

Qjηj

∥∥∥∥∥∥
L∞(QT ,R)

,

and

∥u∥L∞(QT ,R) ≤ 2

∥θ0∥L∞(Ω,R) + T

∥∥∥∥∥∥
m∑
j=1

Qjηj

∥∥∥∥∥∥
L∞(QT ,R)

 ,

hold.

Proof. From equation (2.2e), we obtain
m∑
j=1

Qj(·)qj(t) =
m∑
j=1

Qj(·)
(
qj(0) +

∫ t

0
ηj(s)ds

)
.

Therefore we have∥∥∥∥∥∥
m∑
j=1

Qjqj

∥∥∥∥∥∥
L∞(QT ,R)

≤

∥∥∥∥∥∥
m∑
j=1

Qjqj(0)

∥∥∥∥∥∥
L∞(Ω,R)

+

∫ T

0

∥∥∥∥∥∥
m∑
j=1

Qjηj

∥∥∥∥∥∥
L∞(QT ,R)

ds

= ∥θ0∥L∞(Ω,R) + T

∥∥∥∥∥∥
m∑
j=1

Qjηj

∥∥∥∥∥∥
L∞(QT ,R)

.

Since u(x, t) = θ(x, t)−
∑m

j=1Qj(x)qj(t), we obtain

∥u∥L∞(QT ,R) ≤ ∥θ∥L∞(QT ,R) +

∥∥∥∥∥∥
m∑
j=1

Qjqj

∥∥∥∥∥∥
L∞(QT ,R)

.

By Theorem 3.3, we get

∥θ∥L∞(QT ,R) ≤

∥∥∥∥∥∥
m∑
j=1

Qjqj

∥∥∥∥∥∥
L∞(QT ,R)

and the end of the proof. □
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Lemma 5.2. Let η(1) = (η
(1)
1 , η

(1)
2 , . . . , η

(1)
m ) ∈ L∞((0, T ),Rm) and η(2)

= (η
(2)
1 , η

(2)
2 , . . . , η

(2)
m ) ∈ L∞((0, T ),Rm) be functions satisfying ∥η(1)j ∥L∞((0,T ),R) ≤

Kj and ∥η(2)j ∥L∞((0,T ),R) ≤ Kj. Then the inequality

|J(η(1))− J(η(2))| ≤ T 2VΩKφ

∥∥∥∥∥∥
m∑
j=1

Qj

(
η
(1)
j − η

(2)
j

)∥∥∥∥∥∥
L∞(QT ,R)

holds.

Proof. Let (u(i), q
(i)
1 , . . . , q

(i)
m ) ∈ V 1,0

2 (QT )×AC([0, T ],R)m, be functions satisfying

u
(i)
t =M(u(i)) +

m∑
j=1

M(Qjq
(i)
j )−

m∑
j=1

Qjη
(i)
j ,

u(i)(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ],

u(i)(x, 0) = 0,

q̇
(i)
j = η

(i)
j , q

(i)
j (0) = q0j , i ∈ {1, 2}.

Put θ(1)(x, t) = u(1)(x, t) +
∑m

j=1Qj(x)q
(1)
j (t) and θ(2)(x, t) = u(2)(x, t)+∑m

j=1Qj(x)q
(2)
j (t). Then we have

|J(η(1))− J(η(2))| =
∣∣∣∣ ∫∫

QT

(
φ(θ(1)(x, t), t)− φ(θ(2)(x, t), t)

)
dxdt

∣∣∣∣
≤
∫∫

QT

Kφ

∣∣∣θ(1)(x, t)− θ(2)(x, t)
∣∣∣ dxdt

≤ TVΩKφ∥θ(1) − θ(2)∥L∞(QT ,R)

By Lemma 5.1 we obtain∥∥∥∥∥∥
m∑
j=1

Qj(q
(1)
j − q

(2)
j )

∥∥∥∥∥∥
L∞(QT ,R)

≤ T

∥∥∥∥∥∥
m∑
j=1

Qj

(
η
(1)
j − η

(2)
j

)∥∥∥∥∥∥
L∞(QT ,R)

.

Therefore, by Theorem 3.3 we get

∥θ(1) − θ(2)∥L∞(QT ,R) ≤ T

∥∥∥∥∥∥
m∑
j=1

Qj

(
η
(1)
j − η

(2)
j

)∥∥∥∥∥∥
L∞(QT ,R)

.

Thus we have

|J(η(1))− J(η(2))| ≤ T 2VΩKφ

∥∥∥∥∥∥
m∑
j=1

Qj

(
η
(1)
j − η

(2)
j

)∥∥∥∥∥∥
L∞(QT ,R)

.

□
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6. Proof of the main results

Proof of Theorem 4.1. Let ℓ be the infimum of problem (2.2a)-(2.2f) and {ul} and
{ql} be solutions of problems

(6.1)



ult =M(ul) +
∑m

j=1M(Qjq
l
j)−

∑m
j=1Qjη

l
j ,

ul(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ],

ul(x, 0) = 0

q̇lj = ηlj , qlj(0) = q0j ,

∥ηlj∥L∞((0,T ),R) ≤ Kj ,

where (θ, q1, . . . , qm, η1, . . . , ηm) belongs to the space V 1,0
2 (QT )× (AC([0, T ],R))m×

(L∞((0, T ),R))m, such that J(ul(·, ·), ql(·)) → ℓ. Since {ηl} is bounded in
L2((0, T ),Rm), there exists a subsequence {ηlk} weakly convergent in L2((0, T ),Rm).
Let η0 be the weak limit of {ηlk}. By Mazur’s theorem, there exists a sequence of

convex combinations of {ηlk}, ξp =
∑I(p)

i=p λiη
li , such that ξp → η0 in L2((0, T ),Rm).

Since equation (2.2b) is linear, by Theorem 3.2 we get
∑I(p)

i=p λiu
li → u0 and∑I(p)

i=p λiq
li → q0. Hence, since J is convex, from Lemma 5.2 we obtain

J(u0, q0) = lim
p→∞

J

I(p)∑
i=p

λiu
li ,

I(p)∑
i=p

λiq
li

 ≤ lim
p→∞

I(p)∑
i=p

λiJ(u
li , qli) = ℓ.

Therefore (u0, q0) is the solution of (2.2a)-(2.2f). □

In what follows, we denote by (θ̂, q̂j) an optimal process from (2.1a)-(2.1e). Prob-
lem (2.3a)-(2.3f) also has a solution. This follows from the compactness of the set of

controls and Theorem 3.2. Let us show that the difference between J(θ̂) and J(θ̂),

where θ̂ = û+
∑m

j=1Qj q̂j is an optimal solution to (2.3a)-(2.3f), can be done arbi-

trary small whenever N is sufficiently large. Consider the functions q̃j(t), j = 1,m
defined by

q̃j(0) = q̂j(0),

and

q̃j(t) = q̃j(τk) +
t− τk

τ

∫ τ(k+1)

τk

˙̂qj(s)ds,

j = 1,m, t ∈ (τk, τ(k + 1)], τ =
T

N
.

Obviously these functions are piecewise linear, continuous and satisfy | ˙̃qj(t)| ≤ Kj ,
t ∈ [0, T ], j = 1,m. The function

∑m
j=1Qj q̃j is close to the function

∑m
j=1Qj q̂j in

the following sense.

Lemma 6.1. The following inequality holds:

(6.2)

∥∥∥∥∥∥
m∑
j=1

Qj(q̃j − q̂j)

∥∥∥∥∥∥
L∞(QT ,R)

≤ τ
m∑
j=1

(
∥Qj∥L∞(Ω,R)Kj

)
.
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Proof. By induction we have

m∑
j=1

Qj(x)q̃j(τ(k + 1)) =
m∑
j=1

Qj(x)q̃j(τk) +
m∑
j=1

Qj(x)

∫ τ(k+1)

τk

˙̂qj(s)ds

=
m∑
j=1

Qj(x)q̂j(τk) +
m∑
j=1

Qj(x)

∫ τ(k+1)

τk

˙̂qj(s)ds

=
m∑
j=1

Qj(x)q̂j(τ(k + 1)).

Thus we obtain

(6.3)
m∑
j=1

Qj(x)q̃j(τk) =
m∑
j=1

Qj(x)q̂j(τk), k = 0, N

Observe that for all t ∈ (τk, τ(k + 1)], we have

m∑
j=1

Qj(x)q̃j(t) =

m∑
j=1

Qj(x)q̃j(τk) +
t− τk

τ

m∑
j=1

Qj(x)

∫ τ(k+1)

τk

˙̂qj(s)ds

=

m∑
j=1

Qj(x)q̃j(τ(k + 1)) +
t− τ(k + 1)

τ

m∑
j=1

Qj(x)

∫ τ(k+1)

τk

˙̂qj(s)ds

If t ∈ (τk, τ(k + 1
2)], then we obtain∣∣∣∣∣∣

m∑
j=1

Qj(x)(q̃j(t)− q̂j(t))

∣∣∣∣∣∣
=

∣∣∣∣∣ t− τk

τ

m∑
j=1

Qj(x)

∫ τ(k+1)

τk

˙̂qj(s)ds−
m∑
j=1

Qj(x)

∫ t

τk

˙̂qj(s)ds

∣∣∣∣∣
≤ t− τk

τ

∣∣∣∣∣∣
m∑
j=1

Qj(x)

∫ τ(k+1)

τk

˙̂qj(s)ds

∣∣∣∣∣∣+
∣∣∣∣∣∣
m∑
j=1

Qj(x)

∫ t

τk

˙̂qj(s)ds

∣∣∣∣∣∣
≤ 1

2

m∑
j=1

|Qj(x)|
∫ τ(k+1)

τk

∣∣∣ ˙̂qj(s)∣∣∣ ds+ m∑
j=1

|Qj(x)|
∫ t

τk

∣∣∣ ˙̂qj(s)∣∣∣ ds
≤ τ

2

m∑
j=1

|Qj(x)|Kj +
τ

2

m∑
j=1

|Qj(x)|Kj

= τ

m∑
j=1

|Qj(x)|Kj
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and, if t ∈ (τ(k + 1
2), τ(k + 1)], then we have∣∣∣∣∣∣

m∑
j=1

Qj(x)(q̃j(t)− q̂j(t))

∣∣∣∣∣∣
=

∣∣∣∣∣ t− τ(k + 1)

τ

m∑
j=1

Qj(x)

∫ τ(k+1)

τk

˙̂qj(s)ds−
m∑
j=1

Qj(x)

∫ τ(k+1)

t

˙̂qj(s)ds

∣∣∣∣∣
≤ τ(k + 1)− t

τ

∣∣∣∣∣∣
m∑
j=1

Qj(x)

∫ τ(k+1)

τk

˙̂qj(s)ds

∣∣∣∣∣∣+
∣∣∣∣∣∣
m∑
j=1

Qj(x)

∫ τ(k+1)

t

˙̂qj(s)ds

∣∣∣∣∣∣
≤ τ

2

m∑
j=1

|Qj(x)|Kj +
τ

2

m∑
j=1

|Qj(x)|Kj

= τ

m∑
j=1

|Qj(x)|Kj .

Thus we get (6.2). □
Now, we can use the maximum principle (Theorem 3.3) to find an estimate for

the difference between the optimal solution of (2.2a)-(2.2f) and the optimal solution
of (2.3a)-(2.3f).

Lemma 6.2. Let
∑m

j=1Qj(x)q̃j(t) be the function defined above and θ̃ be the solu-
tion of the problem

(6.4)


θ̃t =M(θ̃),

θ̃(x, t) =
∑m

j=1Qj(x)q̃j(t), (x, t) ∈ ∂Ω× [0, T ],

θ̃(x, 0) = θ0(x).

Then the inequality∥∥∥θ̃ − θ̂
∥∥∥
L∞(QT ,R)

≤ T
m∑
j=1

(
∥Qj∥L∞(Ω,R)Kj

)
/N

holds.

Proof. Let δθ = θ̃ − θ̂. We have

δθt =M(δθ),

δθ(x, t) =
m∑
j=1

Qj(x)(q̃j(t)− q̂j(t)), (x, t) ∈ ∂Ω× [0, T ],

and
δθ(x, 0) = 0.

By Theorem 3.3 and Lemma 6.1, we get,

∥δθ∥L∞(QT ,R) ≤

∥∥∥∥∥∥
m∑
j=1

Qj(q̃j − q̂j)

∥∥∥∥∥∥
L∞(QT ,R)

≤ T

N

m∑
j=1

∥Qj∥L∞(Ω,R)Kj .
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□
Proof of Theorem 4.2. Let θ̃ be the function defined as in (6.4). As in the proof of
Lemma 5.2 we obtain∣∣∣J(θ̃, q̃1, . . . , q̃m)− J(θ̂, q̂1, . . . , q̂m)

∣∣∣ = ∣∣∣∣∫∫
QT

(
φ(θ̃, t)− φ(θ̂, t)

)
dxdt

∣∣∣∣
≤ TVΩKφ∥θ̃ − θ̂∥L∞(QT ,R).

From Lemma 6.2 we have∣∣∣J(θ̃, q̃1, . . . , q̃m)− J(θ̂, q̂1, . . . , q̂m)
∣∣∣ ≤ TVΩKφ∥θ̃ − θ̂∥L∞(QT ,R)

=
T 2

N

VΩKφ

m∑
j=1

∥Qj∥L∞(Ω,R)Kj

 .

Since

J(θ̂, q̂1, . . . , q̂m) ≤ J(θ̂, q̂1, . . . , q̂m) ≤ J(θ̃, q̃1, . . . , q̃m),

we have∣∣∣J(θ̂, q̂1, . . . , q̂m)− J(θ̃, q̃1, . . . , q̃m)
∣∣∣ ≤ T 2

N

VΩKφ

m∑
j=1

∥Qj∥L∞(Ω,R)Kj

 .

□
Proof of Theorem 4.3. Let

N >
2
(
VΩKφ

∑m
j=1 ∥Qj∥L∞(Ω,R)Kj

)
T 2

ε
.

By Theorem 4.2, we have |J(η̂) − J(η̂)| < ε/2, where η̂ is an optimal process of
(2.3a)-(2.3f) and η̂ is an optimal process of (2.2a)-(2.2f). Using the path-following
method we find η such that |J(η) − J(η̂)| ≤ ε/2. By Theorem 3.4, the number of
iterations is at most

ln

(
2
(1 + β)(Nm+ 1) + (β +

√
Nm+ 1)β

γ(1− 2β)ε
∥b∥F(x̃,σ̃)

)
ln

(
1 +

γ

β +
√
Nm+ 1

) + 1,

where b = (0, 1). We have

|J(η)− J(η̂)| ≤ |J(η)− J(η̂)|+ |J(η̂)− J(η̂)| < ε

2
+
ε

2
= ε.

Since ∥b∥F(x̃,σ̃) is the square root of the ((n + 1), (n + 1))th entry of the matrix

[∇2(F)(x̃, σ̃)]−1, using the Sherman-Morrison-Woodbury formula, we get

∥b∥F(x̃,σ̃) ≤
(

1

(σ̃ − J(η̃))2
+

1

(σ − σ̃)2

)−1/2

=

(
(σ̃ − J(η̃))2(σ − σ̃)2

(σ̃ − J(η̃))2 + (σ − σ̃)2

)1/2

,
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where σ = max{η∈HN |∥ηi∥L∞((0,T ),R)≤Ki,i=1,m} J(η) and (η̃, σ̃) = argmin (F) (see

(4.1)). Consider the function

g(λ) =
(λ− J(η̃))2(σ − λ)2

(λ− J(η̃))2 + (σ − λ)2
, λ ∈ [J(η̃), σ].

It attains its maximum λ = (σ + J(η̃))/2. Thus,

∥b∥F(x̃,σ̃) ≤
1

2
√
2
(σ − J(η̃)).

Applying Lemma 5.2, we obtain the result. □

7. Tracking problem. examples

Consider the tracking problem. In this case φ(θ, t) = |θ̌(x, t) − θ(x, t)|2, where
θ̌ ∈ V 1,0

2 (QT ) ∩ L∞(QT ,R). The number of iterations needed to reach a given
accuracy is determined by (4.2)-(4.4), where

Kφ = 2

(
∥θ0∥L∞(Ω,R) + T max

j=1,m
Kj + ∥θ̌∥L∞(QT ,R)

)
.

Note that, since the functional is strictly convex, the tracking problem has a
unique solution. Moreover, the sequence of solutions to problem (2.3a)-(2.3f) con-
verges almost everywhere to the solution of the tracking problem.

Below we present a few examples. Let us consider the problem

J(θ(·, ·), q(·)) =
∫ 10

0

∫ π

0
|θ(x, t)− 3 cos(πt)/4|2dxdt → min,

θt = θxx,

θ(0, t) = θ(π, t) = q(t),

∥q̇∥L∞((0,1),R) ≤ 1,

θ(x, 0) = q(0) = 3/4.

Introducing new function y = θ − 1q we get

yt = yxx − (1q)t,

y(0, t) = y(π, t) = 0,

y(x, 0) = 0,

q̇ = η,

q(0) = 3/4.
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Now the problem takes the form

J(y(·, ·), q(·)) =
∫ 10

0

∫ π

0
|y(x, t) + (1q)− 3 cos(πt)/4|2dxdt → min,

yt = yxx − (1q)t,

y(0, t) = y(π, t) = 0,

y(x, 0) = 0,

q̇ = η, |η| ≤ 1

q(0) = 3/4.

Obviously we have y(x, t) =

∞∑
n=1

yn(t) sin(nx) and 1 =

∞∑
n=1

bn sin(nx), where

bn =
2

π

∫ π

0
sin(nx)dx =

2

π

(
1− cos(πx)

n

)
=

{
4

nπ
, n = 2k − 1,

0, n = 2k.

Therefore we have ẏk = −(2k − 1)2yk −
4

(2k − 1)π
η k = 1, 2, . . . ,

q̇ = η,

yk(0) = 0, q(0) = 3/4.

The functional takes the form

J =

∫ 10

0

(
π

2

∑
k∈N

y2k + 4(q − 3 cos(πt)/4)
∑
k∈N

yk
2k − 1

+ π(q − 3 cos(πt)/4)2

)
dt

Putting

Y (0) =


q(0)
y1(0)
...
...

 =


3/4
...
0
...

 , A =


0 0 0 0

0
. . . 0 0

0 0 −(2k − 1)2 0

0 0 0
. . .

 , B =


1
...

− 4

(2k − 1)π
...

 ,

M =



π 0 0 0
...

π

2
0 0

4

2k − 1
0

π

2
0

... 0 0
π

2

 , µ =


−3

2
π cos(πt)

...

−3 cos(πt)

2k − 1
...


, S =


1 0 0 0

0
. . . 0 0

0 0 e−(2k−1)2t 0

0 0 0
. . .

 ,
we get

J(Y ) =

∫ 10

0
(⟨Y (t)|MY (t)⟩+ ⟨Y (t)|µ⟩) dt+ 45π

16
,

Y (t) = S(t)Y (0) +

∫ t

0
S(t− s)Bη(s)ds.
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Put

J =
T

N

N∑
k=1

(
⟨Y k|MY k⟩+ ⟨Y k|µ(k/N)⟩

)
+

45π

16
,

The value of Y k is numerically calculated as

Y k = S(k/N)Y0 +
T

N

k∑
i=1

(S((k − i)/N)Bη(i)) .

Set N = 10, ε = 10−12, F (η, σ) = − ln(σ−J(η))− ln(σ−σ)−
∑10

k=1 ln(1−η(k)2),
ηin ≡ 0, σin = J(ηin)+50, and σ = σin+50. (We need to put σin and σ sufficiently
large to guarantee the inequality ∥∇(F )(ηin, σin)∥F(ηin,σin)

< β). Using the path-

following method with β = 1/9 and γ = 5/36, we get, after 693 iterations, the
solution

η =
[
−1,−1, 0.73,−1, 1,−1, 1,−1, 0.95,−1,−0.18

]
and the functional takes the value 15.8919. The theoretical estimate to the number
of iterations is 1048.

Figure 1. Evolution of discrete control

Figure 2. Evolution of function θ
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Tables 2 and 3 shows the estimated and real number of iterations for different
accuracies and other objective functions.

Table 2. 10 partitions; T=10;

precision e−t cos(πt) cos(10t) | cos(5t)| estimated
10−1 85 138 116 85 411
10−2 110 188 158 111 469
10−3 133 239 199 136 527
10−4 157 289 240 159 585
10−5 180 340 281 182 643
10−6 203 390 323 206 701
10−7 227 441 364 229 759
10−8 250 491 405 252 817
10−9 273 542 446 276 875
10−10 297 592 488 299 933
10−11 320 643 529 322 990
10−12 343 693 570 345 1048
10−13 367 744 611 369 1106
10−14 389 794 626 390 1164

Table 3. 20 partitions; T=10;

precision e−t cos(πt) cos(10t) | cos(5t)| estimated
10−1 96 146 146 107 581
10−2 119 195 191 136 660
10−3 143 245 237 165 739
10−4 167 294 284 193 818
10−5 190 344 331 222 897
10−6 214 393 378 251 976
10−7 237 443 424 280 1055
10−8 261 493 471 309 1134
10−9 285 542 518 337 1213
10−10 308 592 565 366 1292
10−11 332 641 612 395 1371
10−12 355 691 658 424 1450
10−13 379 740 705 452 1529
10−14 402 790 752 480 1608
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