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ON THE COMPLEXITY OF THE PATH-FOLLOWING METHOD
FOR A TRACKING PROBLEM GOVERNED BY PARABOLIC
EQUATIONS

MIGUEL OLIVEIRA AND GEORGI SMIRNOV

ABSTRACT. The complexity of optimization methods applied to an infinite-
dimensional problem in a great manner depends on the quality of finite-
dimensional approximations. In this work we consider a tracking problem for
a linear parabolic equation. The boundary control is assumed to have the form
of a linear combination of shape-like functions. We do not consider any dis-
cretization of the differential equation. It is supposed that the solution admits a
spectral representation via Fourier-like rapidly converging series involving eigen-
values and eigenfunctions of the elliptic operator, and, as a consequence, it can
be rapidly calculated with machine accuracy. We show that, in this setting, the
tracking problem admits an effective approximation by finite-dimensional opti-
mization problems. The proof of the approximation theorem uses the maximum
principle for parabolic equations. Based on our approximation theorem we ob-
tain a complexity bound for the path-following method applied to the tracking
problem governed by a linear parabolic equation. The result is illustrated by a
series of examples showing the efficiency of the obtained complexity bound.

1. INTRODUCTION

Controlled heating and cooling are two important manufacturing processes. The
emergence of new technologies requires more advanced techniques in the tempera-
ture control [5]. In this paper, we analyse complexity of the path-following method
for a tracking problem governed by parabolic equations. Various aspects of the
tracking problem for heat equation are discussed in [1-4,8,9,11-14, 16] (see also
the literature therein). This is an infinite-dimensional optimization problem and
it can be considered in the frame of information-based complexity, a branch of
mathematics that studies optimal algorithms and computational complexity for the
continuous problems which arise in the real world applications. This theory deals
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with the intrinsic difficulty of the approximate solution of problems for which infor-
mation is partial, contaminated, and priced [15]. We focus our attention on another
aspect of the problem, we study it from the approximation theory point of view.

We assume that the boundary control has the form of a linear combination of
shape-like functions. We use the definition of solution to a parabolic equation intro-
duced and studied by Ladyzenskaja and her school [7]. This allows us to guarantee
the existence of solution to the tracking problem and to use the maximum princi-
ple in order to obtain an effective approximation by finite-dimensional optimization
problems. Based on our approximation theorem we get a complexity bound for the
path-following method applied to the tracking problem governed by a linear para-
bolic equation. This approach is an alternative to the regularization methods (see,
e.g., [6] and the literature therein).

The paper is organized in the following way. In the next section we introduce the
notations used in the sequel and formulate the problem. In the third section we recall
some well known results from the theory of PDEs and numerical optimization. The
main results of this work are presented in the fourth section. Section five contains
some auxiliary lemmas. The main results are proved in section six. In the last
section we consider some illustrative examples.

2. STATEMENT OF THE PROBLEM

Throughout this paper, the set of real numbers is denoted by R. The usual
inner product in R™ is denoted by (-|-) and the Euclidean norm is denoted by | - |.
Let X C R™ be an open set. We denote by L,(X,R) the space of all measurable
functions on X that satisfy [y |f[Pdz < oo and by ||-||1,(x &) the norm in L,(X,R),
1 < p < oo. Let © be an open connected bounded subset from R™. Its closure is
denoted by €. The inner product in Ly(Q, R) is denoted by (-,-). Let T € R. We
use the notation Q7 for the set Q x (0,7"). Let z € L,((0,T),R). We denote by
1z the function in L,(Q7,R) defined by (1z)(x,t) = 2(t), (z,t) € Qr, 1 < p < 0.
Let F' be a function. Its gradient and its Hessian matrix are denoted by V(F)
and V2(F), respectively. We denote by Hy the set of piecewise constant functions
n € L2((0,T),R) taking the values n(t) = n(rk), t € (tk,7(k+1)], k = 0, N — 1,
7 =T/N. Let W2(Q2) be the Hilbert space consisting of the elements u € Ly(2, R)
having generalized derivatives u, and u,;, with the norm

||u||W22(Q) = ||UHL2(Q,R) + HUﬂEHLg(Q,R) + ||Um“L2(Q,R)-

We denote by W21 1(Qr) the Hilbert space consisting of the elements u € Ly(Qr, R)
having generalized derivatives u, and wu;, with the inner product

(u, 'U)WI,I(QT) = // (uv + ugpvy + ugvy)dadt
2
T

and by VV21 ’O(QT) the Hilbert space consisting of the elements u of Lo(Q7,R) having
generalized derivative u,, with the inner product

(u,v)W;,o(QT) = // (uv + uzvy)dxdt.
T
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The Banach space consisting of the elements u € W21 Y(Qr) having finite norm

[ulor = ess sup lu(z, )| Ly + uellLa@r r)
0<t<T

is denoted by V2(Qr), and the Banach space consisting of the elements u € Va(Qr)
such that [|u(x,t + At) — u(z,1)| 1,(Q,r) — 0 when At — 0 is denoted by V21’0(QT).
The set of absolutely continuous functions is denoted by AC([0,T],R). Fix 0 <
C € Loo(Qr,R) and 0 < ¢ € Loo(Qr,R) such that, there exists a positive number
w < C. We use the notation

M(6) = div,(Cgrad,0) — cb.

Let 6 € V,"*(Q7)N Lo (Qr, R). Set (8,t) = |6(x,t) —0(z,t)|%. Let Q; € W(Q),
j=1m, K; >0, 5 =1,m, and 6y € Ly(2,R). Consider the optimal control
problem

(2.1a) JO,q1, .. qm) = // o(@(x,t),t)dedt — min,
(2.1b) 6, = M(6),
(2.1c) Oz, t) =D Q;(x)g;(t), (x,t) € dQx[0,T]
j=1
(2.1d) 0(x,0) =Y Q;(x)q;(0) = fo(x),
j=1
(2.1e) 1651l o0,y R) < Ky, 7 =1,m,

where (0,q1,...,qn) belongs to the space V;’O(QT) x (AC([0,T],R))™.

Boundary condition (2.1c) embrace the major part of situations that one can
face in practical problems. The functions @Q;, 7 = I,m, can be considered as a
partition of unity subordinate to a cover of (2 or as shape functions for a set of
elements. The functions g;, j = 1, m, determine the dynamics of 6 in QN supp(Q;),
Jj = 1,m. Absolute continuity of ¢; is a weakest natural assumption that can be
imposed. Indeed, in applications g;, 7 = 1,m, are temperatures or concentrations
that have some inertia and should be rather regular functions. The derivatives
¢j, j = 1,m, are considered as control parameters. Note that the Dirichlet-like
boundary condition (2.1c) is essentially used in our approach. Complexity analysis
of problems with other boundary conditions (like the Neumann condition) needs
another tools.

We begin the study of this problem considering an auxiliary problem with the
function ¢ : R x [0,7] — R being convex locally Lipschitzian with respect to
and measurable with respect to t. Assume that |p(01,t) — p(02,t)] < K, |61 — 62,
K, > 0, whenever 61,0, € [-0, O].
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Put u(z,t) = 0(z,t) — 370, Qj(2)g;(t). Let qjo- € R, j = 1,m, be such that
> Q) (a:)qjo- = 6p(x). Problem (2.1a)-(2.1e) is equivalent to the following problem:

(2.2a) J(Uyqry . qm) = // go(u—f- Zquj,t>dxdt — min,
Qr j=1

(2.2b) up = M(u) + Z (Qjg;) Z Qjnj»
j=1

(2.2¢) u(z,t) =0, (x,t) € dQ x[0,T],

(2.2d) u(z,0) =0,

(2.2e) g =mn5 ¢;(0)=q), j=T1,m,

(2.2f) 105l e (01 R) < Kjy 5 =1,m,

where (u,q1,...,qm,M,---,Nm) belongs to the space VQI’O(QT) x (AC([0,T],R))™ x
(Lo ((0,7),R))™. Along with this problem, we also consider the problem:

(2.3a) J(u,ql,...,qm):// cp(ﬂ—i—ZQj@j,t)dxdt — min,
T j=1

(23}3) U = M(ﬂ) Z Q]q] Z Qﬂ]]v
j=1
(2.3c) u(x,t) =0, (z,t) €0 x][0,T],
(2.3d) u(z,0) =0,
(23f) HﬁjHLoo ((0,7),R) < KJ? .] = 17m7
where (@, Gy, .-, qm, 71, - - » ) belongs to the space V2 %(Qr) x (AC([0,T],R))™ x
(Hn)™. Since the functions n;, j = 1,m, and 7, j = 1,m, completely determine
the functions (u,q1,...,qm) and (4, qq,- .-, qp), respectlvely, we shall use the no-

tations J(n) = J(0,q1,...,qm) = J(u,q1,...,qm) and J(q) = J(0,G1,...,q,) =
JW@ G- Q)

We do not consider any discretization of differential equation (2.3b). It is suppose
that the solution to (2.3b) admits a spectral representation via Fourier-like rapidly
converging series involving eigenvalues and eigenfunctions of the operator M, and,
as a consequence, it can be rapidly calculated with machine accuracy.

3. BACKGROUND NOTES

Recall some classical results from the theory of PDEs and numerical optimization.
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3.1. Parabolic Equations. Consider the following problem:

— /\/lu = Y afz - fv
Y pot ox;
(3. u(z,t) =0, (z,t)€0Qx[0,1],
u(z,0) = ¥(x).

where

Mu—zax Za,]:ctu%%-Zath Zb (x,t)ug, — al(z, t)u,

and the coefficients Satlsfy the condition of uniform ellipticity, i.e.,

(3.2) v Zéz < Z aij(z, )€ < ng‘fz, v1,v9 = (const) > 0,

3,j=1

where (£1,&2,...,&y) is an arbitrary real vector. Set

lall,, = ( / ' ([ dx)”q dt)

Let ¢ and 7 be real numbers satisfying the conditions

1/r

1
-+ ﬂ — 1’
2q
m
(33) q€<2 , 7 €[1,00), for m > 2,
e [1, }, € [1,2], form=1.
Assume that the conditions
m
(34) g Hi, Zbg g M1, ||a||q'r' = M1,
ar i=1 ar

are satisfied. Assume that

1/2
(3.5) (//Q Zf?dxdt) <t Nl < 12

T =1
where
( 1+m_1+m
ro 2q 4’
2
g€ {m,z} re[1,2], form >3,
(3.6) m+ 2
€ (1,2],rel1,2), for m =2,
4
€[1,2],re [1,3} , for m = 1.
Set

t1 t1
I(t1;u, ¢):/ﬂu(x,t1)¢(x,t1)d:c—/o /ngﬁtda;dt—k/o (L1(u, @) + La(f, ¢)) dt
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where

Li(u,d) = / Z Zamu% +au | G + <i biug, + au) ¢ | dx
i=1

=1 7j=1

and

La(f,6) = /Q (Zﬁ%ﬂrﬂ/ﬁ) dz.

We say that a function u € V2 %(Q7) is a solution of problem (3.1) if the equality

Ity u,¢) = /Q (@)o(z,0)da

holds for all t; € [0,T], ¢ € Wy (Qr) with ¢(z,t) = 0, (x,t) € (8Q x [0,T)).
Recall the following results (see, [7, ch. 3]).

Theorem 3.1 ([7]). If ¥ € L2(Q,R), then problem (3.1) has a unique solution
ue VyQr).

Theorem 3.2 ([7]). Assume that for all problems

u(z, t) =0, (z ')EOQX [0, 77,
u(z,0) = Y™ (x).

MMy = i 8(1 Zam T, Uy, + ai (7, t)u me x, t)uy, —a™(x, t)u,

7j=1

conditions (3.3)-(3.6) are satisfied with the same constants. Assume that the se-
quence of functwns a;; converges almost everywhere to a;; and the functions a;",
b, a™, fm, f™, and Y™ converge to a;, b;, a, fi;, f, and 1, respectively, in the
norms of the spaces to which they belong according to conditions (3.3)-(3.6). Then

the solutions u™ of problems (3.7) converge strongly in V21’0(QT) to the solution u
of problem (3.1).

Set U = (9 x [0,T]) U (Q x {0}).

Theorem 3.3 ([7]). Let u € VQI’O(QT) be a solution of problem (3.1). Assume that
the following conditions are satisfied
(1) the coefficients a;j, b;, and a satisfy (3.3)-(3.4),
(2) a(z,t) >0,
(3) ai=fi=f=0.
Then
min{0, ess ir[}fu(x,t)} < u(z,t) < max{0, ess sgp u(z,t)}

for almost all (z,t) from Q.
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3.2. Path-following Minimization Method. Let P : R™ — R be a convex func-
tion. Consider the problem:
P(x) — min,
(3.8) x = (x1,T2,...,2,) € R,
22 <K;, i=1,n.

To apply path-following method to this problem, consider the following mathemat-
ical programming problem:

o — min,
T = (xlax%"'vxn) € an
P(z) <o,
x? <K;, i1=1,n.

(3.9)

Let F' be a function defined by

F(z,0) = —In(c — P(x)) —In(F — o) = Y _In(K; — ),
i=1
where & = max ;2 g, i1y P(z), and let b = (0,1) € R® x R. Let v € R""! be a
vector. We use the notation Hv||5 = ([V2(F)(y)]"'v|v)'/? whith y = (z,0).
VB
1+B

Let 8 € (0,(3 —v/5)/2), and let v > 0 be such that v < — B. The

path-following method is presented in Table I (see, [10]).

Initialization: Set ag = 0. Choose an accuracy € > 0, 9 € R", and
oo € R such that

I9(F) (20, 00)[,00) < 6

Step k: Set

v
Upy1 = + o
IBlIE,

(zk70k)

(@ht1, Okt1) = (@, %) — [VZ(F) (@, 0%)] " (g1 + V(F) (@g, 0%)).

Stop the process if

n—l—l—i—l—gsak.

TABLE 1. Path-following method

(B++vn+1)3
-0

An auxiliary method to find an initial point satisfying ||V (F')(zo, 00)||f;0 o0) < I6]
is discussed in [10].
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Let NV be the largest integer satisfying

110((1+6)(n+1) (B+vVn+1)8 1B )
NS ’7( _2B> (xa'

:
o (”m)

+ 1,

where (Z,6) = argmin (F).

Theorem 3.4 ( [10]). The path-following method terminates no more than after N
steps. At the moment of termination we have |P(xpr) — P(2)| < &, where & solution
of problem (3.8).

4. MAIN RESULTS

Let us formulate the main results of this work.

Theorem 4.1. Problem (2.1a)-(2.1¢) has a solution.

Theorem 4.2. Let 0 be an optimal solution of (2.1a)-(2.1e) and 8 = i+ >t Q]ﬁj
be an optimal solution of (2.3a)-(2.3f). Then

ENN - P T2 n
“](97617"'a6m)_J(evqlv"'v )’ < W VQKQOZHQJHLOO(QJR)KJ )
i=1
where Vo = [, d.
Set
m N-—1
(4.1) F(M,0) =—In(c — J(7)) — In(c — 0) Z In(K7 — (m;(7k))?),
i=1 k=0
where
o= max —J(n).
{MERN Ml Loo ((0,1),R) SKiyi=1,m}
Let e >0
(4.2) N>- (ke T (1930 K5)) 72
6 )
1 m
(4.3) C= ETQVQK@ Z HQJ'HLOO(QT,R) Ki,
j=1
and
. <2(1 +B)(Nm+1)+ (B +vVNm+1)3 >
(4.4) N > 71— 2h)e +1.

. <1+ ﬂ+\/Nm+1)
Let 7 be an optimal control of (2.2a)-(2.2f) and consider H be the set of piecewise
constant functions n € La((0,7),R) taking values n(t) = n(7k), t € (tk,7(k + 1)],
k=0,N—1,7=T/N.
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Theorem 4.3. The path-following method finds7 € Hy satisfying |J(7)—J(0)] < e,
no more than after N iterations.

5. AUXILIARY LEMMAS
We will need the following auxiliary results.

Lemma 5.1. Let n = (n1,72,---,0m) € Loo((0,T),R™) be a function satisfying
1751l Lo (0,1 R) < Ky, and let (u,q1,...,qm) be a solution of problem (2.2b)-(2.2f).
Then the inequalities

> Qg < boll o m) + T || Qims ,
=1 Loo(Qr ) i=1 Loo(Qr )
and
m
lull o (@rr) <2 | 100l L) + T ZQﬂ?j ,
=1 Loo (Qr )
hold.

Proof. From equation (2.2e), we obtain

ICHTOEIICH <qj<o> - nj(S)dS> |

Therefore we have

m
Z Qj4;
j=1

Lo (QTuR)

IN

m T m
> Q;4;(0) + / > Qi ds
=1 0 |lj=1

Loo (QyR) LOO (QT?R)

m
= 100l Lo@r) + T ZQﬂ?j
=t Loo(Qr.R)
Since u(z,t) = 0(z,t) — 37", Q;(x)g;(t), we obtain

m
el 2@y < N6l Loc iy + |[ D Qs
j:1 Loo(QTvR)
By Theorem 3.3, we get

m
101 Lo (@r.R) < Zquj
=t Loo(QT,R)
and the end of the proof. O
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Lemma 5.2. Let n(V) = (ng ),nél),...,ng)) € Lo((0,7),R™) and 5
= 70, n) € Loo((0,T),R™) be functions satisfying ||1n\" |1 (o)) <
K; and ||77](‘2)HLOO((O,T),R) < Kj. Then the inequality

Zm: Qj (773(-1) - ?73(-2))

j=1

7MY — T ()| < T*Vo K
2]

Loo (QTvR)
holds.

Proof. Let (u®®, qu), . ,q,(,il)) IS VQI’O(QT) x AC([0,T],R)™, be functions satisfying
ul = M) + 3" Qi) - Y Q'
j=1 j=1

u(z,t) =0, (z,t) € 9Q x [0,T],

u(z,0) =0,
i =0, ¢70)=q ie{1,2}.
Put 6 (z,t) = uWM(x,t) + > i Qj(:r)qj(l)(t) and 0P (z,t) = u®(z,t)+

> Qj (x)qj(?) (t). Then we have
760 = 0] = | [ (2060, = o0 0.1).0) ot
< // K, ‘9(1)(x,t) e (x,t)’ dxdt

< TVaK,|0W — 0P| 0rm)

m

Z Qj (nj(-l) - TI](Z))

J=1

By Lemma 5.1 we obtain
<T

Z Q] (1) ‘2
OO(QTvR)

Therefore, by Theorem 3.3 we get

Lo (QTvR)

i Qj (77](1) - n§2)>

=1

100 — 0P| orr) < T

LOO(QTvR)

Thus we have

[J(M) = T(®)| < T*VoK,

i Qj (77](-1 - 77](2)>

J=1

Loo (QTvR)
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6. PROOF OF THE MAIN RESULTS

Proof of Theorem 4.1. Let £ be the infimum of problem (2.2a)-(2.2f) and {u!} and
{q'} be solutions of problems

up = M(u') + S5, M(Qb) — S5, Qg
ul(z,t) =0, (z,t) € 0Q x[0,T],

(6.1) ul(z,0) =0

i =1’ ¢50) =4,

||77§-HLOO((0,T),R) < Kj,

where (6,41, ..., ¢m,M,--.,Nm) belongs to the space V21’0(QT) x (AC([0,T],R))™ x
(Loo((0,T),R))™, such that J(u'(-,-),¢'(-)) — £. Since {n'} is bounded in
L2((0,T),R™), there exists a subsequence {n'* } weakly convergent in Ly((0,T), R™).
Let 11° be the weak limit of {5’*}. By Mazur’s theorem, there exists a sequence of

convex combinations of {n'}, &P = ngn) ', such that €2 — 7% in Lo ((0,7),R™).

Since equation (2.2b) is linear, by Theorem 3.2 we get ngg Nub — w9 and
ngg Xig¢'t — ¢°. Hence, since J is convex, from Lemma 5.2 we obtain
(p) I(p) 1(p)
J(u, ¢°) = plingo J Z Al Z Nl | < pllrglo Z )\iJ(uli, qli) =/
i=p 1=p 1=p
Therefore (u’, ") is the solution of (2.2a)-(2.2f). O

In what follows, we denote by (6, g;) an optimal process from (2.1a)-(2.1e). Prob-
lem (2.3a)-(2.3f) also has a solution. This follows from the compactness of the set of

controls and Theorem 3.2. Let us show that the difference between J(8) and J(6),
where 0 = U + Z;nzl Qjﬁj is an optimal solution to (2.3a)-(2.3f), can be done arbi-
trary small whenever N is sufficiently large. Consider the functions ¢;(t), j = 1,m
defined by

and

B 5 t_ Tk T(k?+1) R

B0 =gt + = [ i(s)as
. T
j=1m, te (tk,7(k+1)], T=

Obviously these functions are piecewise linear, continuous and satisfy ]cjj ()| < Kj,
t € (0,77, j = 1,m. The function ZTzl Q;q; is close to the function ZTzl Q;g; in
the following sense.

Lemma 6.1. The following inequality holds:

(6.2) > - dy) <3 (103l 55 ) -
j=1 Jj=1

Loo (QT7R)
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Proof. By induction we have

m m m T(k+1)
> Q@i+ 1) = Y Q@) + 3 Q@) [ s
=1 =1 j=1 T
J Jm Jm sy
=Y Q@i+ Y Q@) [ s
i=1 i=1 Tk
= Qj(@)g;(r(k +1)).
j=1
Thus we obtain
(6.3) ZQJ x)q;(tk) ZQ] x)q;(Tk), 0,N

Observe that for all ¢ € (7k, 7(k + 1)], we have

Z 0, @)y (1) = i@ @ik + = f‘;czjm [ it
= ;
=Y Qtrth e )+ DY g [ s
2 &
If t € (rk, 7(k + 3)], then we obtain
~4(0)

L Z Qila / Y o - gwm [ itoras
< t‘jk jf;c;] @ [ s+ jifm) [ itoras
< ;i\@m)r [ o] s+ i@ [ Jiseo]as
SSTTES ACT

> 2
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and, if t € (7(k+ 3),7(k + 1)], then we have

Z Qj()(q;(t) — (1))
t—T(k‘-l- 1) m T(k+1) . m T(k+1) .
o AUREEY S SN C)) j(s)ds — ) Qj(x) j(s)ds
k4 1) —t|& | T(k+1) N m ‘ 7(k+1) N
< o [ s+ >0t [ i
sz\QJ K+ 5 Z|Q]
= TZ |Qj(@)| K
j=1
Thus we get (6.2). U

Now, we can use the maximum principle (Theorem 3.3) to find an estimate for
the difference between the optimal solution of (2.2a)-(2.2f) and the optimal solution
of (2.3a)-(2.3f).

Lemma 6.2. Let > ", Q;()q;(t) be the function defined above and 0 be the solu-
tion of the problem

ét = M(9)7
(6.4) é(x,t) = Z;n:1 Qj(x)q;(t), (x,t) €0 x[0,T7],
0(z,0) = bp(x).
Then the inequality

=0 orm Z_Z (19312 @2 53) /N

holds.
Proof. Let 60 = 6 — 6. We have

00y = M(00),

60(x,t) =Y Qi()(qj(t) — 4;(1), (z,t) € 90 x [0,T],
j=1

and

96(z,0) = 0.

By Theorem 3.3 and Lemma 6.1, we get,

T m
166117 QrR) = ZQ] j Nz |QJ'||L<><>(Q,R)K
Loo(QT? ) :
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g

Proof of Theorem 4.2. Let 6 be the function defined as in (6.4). As in the proof of
Lemma 5.2 we obtain

‘J(é,(jl,...,(jm) 70, q, )_ ‘//T (6, t)) dmdt'

< TVaKyll0 = 0|1 (@rr)-
From Lemma 6.2 we have

’J(éa q~17 <o ,q~m) - J(éa qu7 SRR qu)‘ < TVQKgo”é - éHLw(QT,R)

T? S
== VoK, Y 11Qjll o K
j=1

Proof of Theorem 4.3. Let
2 (VQKap Z;n:1 ||Qj|’LOO(Q7R) Kj) T°

3

N >

By Theorem 4.2, we have |J(7) — J(})| < £/2, where 7] is an optimal process of
(2.3a)-(2.3f) and 7 is an optimal process of (2.2a)-(2.2f). Using the path-following
method we find 77 such that [J(77) — J(77)| < €/2. By Theorem 3.4, the number of
iterations is at most
i (U D VNS )
(1 - 2B)e (#.9)

+1,

In (1 + 7)
B+vVNm+1
where b = (0,1). We have

7@) = T < 1) = T+ |0 = J@)] < 5 +5 =

Since HbH ~ _, is the square root of the ((n + 1), (n + 1)) entry of the matrix
[V2(F)(z, U)] ! using the Sherman-Morrison-Woodbury formula, we get

1 1 1/2
Wi < (s * o7
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where 7 = MAX (g0l 0. < K=o} J(n) and (7,6) = argmin (F) (see
(4.1)). Consider the function

(A= J(@)*@ = N)?

e O e v

A e [J(n),a].
It attains its maximum A = (¢ + J(77))/2. Thus,

IBIZ ) < 2%(0— J (7).

Applying Lemma 5.2, we obtain the result. O

7. TRACKING PROBLEM. EXAMPLES

Consider the tracking problem. In this case ¢(6,t) = |0(z,t) — 6(x,t)|?, where
0 € VQLO(QT) N Loo(Qr,R). The number of iterations needed to reach a given
accuracy is determined by (4.2)-(4.4), where

K,=2 (HGOHLOO(Q,R) + T max Kj + HéHLoo(QT,R)> :

j: 7m

Note that, since the functional is strictly convex, the tracking problem has a
unique solution. Moreover, the sequence of solutions to problem (2.3a)-(2.3f) con-
verges almost everywhere to the solution of the tracking problem.

Below we present a few examples. Let us consider the problem

JO,),q(+)) = /010 /07r 0(z,t) — 3cos(nt)/4|?dzdt — min,
Ot = Oa,
0(0,t) = 6(m,t) = q(2),
14l oo ((0,1),R) < 1,
0(z,0) = q(0) = 3/4.

Introducing new function y = 6 — 1q we get

Yt = Yoz — (1)t
y(0,t) = y(m,t) =0,
y(z,0) =0,
q=m,

q(0) = 3/4.
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Now the problem takes the form
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10 pm
J(y(-,-),a()) = /0 /0 ly(z,t) + (1q) — 3cos(nt)/4[>dzdt — min,

Yt = Yoz — (1)t
y(0,t) = y(m,t) =0,
y(z,0) =0,
g=mn, [n[<1
q(0) = 3/4.

Obviously we have y(z,t) = Z Yn(t)sin(nz) and 1 = Z by, sin(nx), where

n=1

by = 2/ sin(nz)dr = 2 (1 — COS(WJE))
T Jo v n

Therefore we have

U= —(2k — 1)y — ————
q=mn,

The functional takes the form

10
J:/ <gZyz+4(q—3(:os(7rt)/4)ZQkyil
0
keN keN
Putting
q(0) 3/4 0 0 0
yl(o) : 0 . 0
YO =1 1=10| 4|0 0 —@k-1)7
: 0 0 0
[ 0 0 0] ——mcos(mt)
5 00 '
M = 4 o T ol #*™ 3cos(mt) | S=
-1 2 w1
t0 0 Z :
i 2 I |
we get
10
T = [y )+ o)

nm

0,

|

n=1

4
, n=2k—1,
n = 2k.

+7(qg—3 cos(rrt)/4)2> dt

0 !
8  B= 4
(2k — )7
1 0 0 0
0 0 0
0 0 e @D% o
0 0 0
457
dt + ——
METE

Y(t)=S(#)Y(0)+ /0 S(t — s)Bn(s)ds.
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Put N
_ T — — — 45w
T =5 S0 ((VAIMY) + (Vilu(h/N)) + o
k=1
The value of Y}, is numerically calculated as
k
— T . .
Yi=Sk/NYo+ & ; (S((k —14)/N)Bn(i)) -

Set N =10,e = 1072, F(,0) = —In(o — J (7)) = In(G@ — o) — 3}, In(1 —7(k)?),
Nin = 0, 0in = J(Nin) +50, and & = 74, +50. (We need to put oy, and & sufficiently
large to guarantee the inequality HV(F)(nm,Jm)Hf;mpm) < pB). Using the path-
following method with = 1/9 and v = 5/36, we get, after 693 iterations, the
solution

n=[-1,-1,073,-1,1,—-1,1,-1,0.95,—1, —0.18]
and the functional takes the value 15.8919. The theoretical estimate to the number
of iterations is 1048.

= T

08t
06}
04t
02t

ol
02t
04k
D6F
,08 k

K L L L

I L L L L L ! ! L L L
0 1 2 3 4 5 6 7 § 9 10

FIGURE 1. Evolution of discrete control

fIDEI

FIGURE 2. Evolution of function 0
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Tables 2 and 3 shows the estimated and real number of iterations for different
accuracies and other objective functions.

TABLE 2. 10 partitions; T=10;

precision | e? | cos(t) | cos(10t) | | cos(5t)| | estimated
1071 85 138 116 85 411
1072 [110| 188 158 111 469
103 [133] 239 199 136 527
10-% [157| 289 240 159 585
107° [180| 340 281 182 643
1079 [203] 390 323 206 701
1077 227 | 441 364 229 759
107% [250| 491 405 252 817
1079 273 | 542 446 276 875
10710 [297 | 592 488 299 933
10~ [320| 643 529 322 990
1072 [343| 693 570 345 1048
1078 367 744 611 369 1106
107 389 | 794 626 390 1164

TABLE 3. 20 partitions; T=10;

precision | e! | cos(nt) | cos(10t) | |cos(5t)| | estimated
1071 96 146 146 107 581
1072 [119| 195 191 136 660
1073 [ 143 | 245 237 165 739
10~% 167 | 294 284 193 818
107 190 | 344 331 222 897
1075 [214| 393 378 251 976
1077 | 237 443 424 280 1055
107% [261| 493 471 309 1134
1079 [ 285 542 518 337 1213
10710 308 592 565 366 1292
10710 332 641 612 395 1371
102 [355| 691 658 424 1450
10713 [379| 740 705 452 1529
107 402 790 752 480 1608
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