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via exposure to objects or environment contaminated with infected secretions [1,8,
12,21,30].

Mathematical models are a powerful tool for investigating human infectious dis-
eases, such as Ebola, contributing to the understanding of the dynamics of the
disease, providing useful predictions about the potential transmission of the dis-
ease and the effectiveness of possible control measures, which can provide valuable
information for public health policy makers [11, 14, 27, 28]. Epidemic models date
back to the early twentieth century, to the 1927 work by Kermack and McKendrick,
whose model was used for modelling the plague and cholera epidemics. In fact, such
epidemic models have provided the foundation for the best vaccination practices for
influenza [20] and small pox [17]. Currently, the simplest and most commonly im-
plemented model in epidemiology is the SIR model. The SIR model consists of three
compartments: Susceptible individuals S, Infectious individuals I, and Recovered
individuals R [15]. When analysing a new outbreak, the researchers usually start
with the SIR model to fit the available outbreak data and obtaining estimates for
the parameters of the model [9]. This has been the case for the modelling of the
spreading mechanism of the Ebola virus currently affecting several African coun-
tries [22, 23, 25]. For more complex mathematical models, with more than three
state variables, see [2, 3, 24].

In our previous works [22,25], we used parameters identified from the recent data
of the World Health Organization (WHO) to describe the behaviour of the virus.
Here we focus on the mathematical analysis of the early detection of the Ebola virus.
In Section 2, we briefly recall the analysis study of the SIR model that we presented
in our previous study of the description of the behaviour of Ebola virus [22,23]. In
Section 3, we add to the basic model of Section 2 the demographic effects, in order
to provide a description of the virus propagation closer to the reality. This gives
answer to an open question posed in Remark 1 of [24] and at the end of [3]. Our aim
in studying the model with vital dynamics is to provide useful predictions about
the potential transmission of the virus. We also consider an induced death rate for
the infected individuals. After numerical simulations, in Section 4 we control the
propagation of the virus in order to minimize the number of infected individuals
and the cost of vaccination. We end with Section 5 of conclusions.

2. Mathematical formulation for the basic SIR model

In this section, we present and briefly discuss the properties of the system of
equations corresponding to the basic SIR (Susceptible–Infectious–Recovery) model,
which has recently been used in [22] to describe the early detection of Ebola virus
in West Africa. In the formulation of the basic SIR model, we assume that the
population size is constant and any person who has completely recovered from the
virus acquired permanent immunity. Moreover, we assume that the virus has a
negligibly short incubation period, so that an individual who contracts the virus
becomes infective immediately afterwards. These assumptions enables us to divide
the host population into three categories,

• S(t) for susceptible: denotes individuals who are susceptible to catch the
virus, and so might become infectious if exposed;
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• I(t) for Infectious: denotes infectious individuals who are able to spread the
virus through contact with the susceptible category;

• R(t) for Recovered: denotes individuals who have immunity to the infection,
and consequently do not affect the transmission dynamics in any way when
in contact with other individuals.

The model is described mathematically by the following system of non-linear dif-
ferential equations:

(2.1)



dS(t)

dt
= −βS(t)I(t),

dI(t)

dt
= βS(t)I(t)− µI(t),

dR(t)

dt
= µI(t),

where β > 0 is the infection rate and µ > 0 is the recovered rate. The initial
conditions are given by

(2.2) S(0) = S0 > 0, I(0) = I0 > 0, R(0) = 0.

We can see that
d

dt
[S(t) + I(t) +R(t)] = 0, that is, the population size N is con-

stant during the period under study:

(2.3) S(t) + I(t) +R(t) = N

for any t ≥ 0, which is far from the reality.

3. SIR model with vital dynamics and an induced death rate

In the basic SIR model (2.1), we ignore the demographic effects on the population.
In this section, we study a variant of the basic model by considering vital dynamics,
that is, by adding the birth and death rates into the model. Moreover, we increase
the death rate of the infectious class by considering an induced death rate associated
to the infected individuals. Such model is new in the Ebola context [22,25,33].

3.1. Model formulation. If we expand the SIR model (2.1) by including the de-
mographic effects, assuming a constant rate of births ψ, an equal rate of deaths γ
per unit of time, and an induced death rate γI , then the mathematical model is
described by the following system of differential equations:

(3.1)



dS(t)

dt
= ψN − βS(t)I(t)− γS(t),

dI(t)

dt
= βS(t)I(t)− µI(t)− (γ + γI) I(t),

dR(t)

dt
= µI(t)− γR(t).

Figure 1 shows the compartment diagram of the SIR model (3.1) with vital dynam-
ics, that is, with demographic (birth and death) effects, and an induced death rate.
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Figure 1. Compartment diagram of the SIR model (3.1) with vital
dynamics ψ and γ and an induced death rate γI .

3.2. Analysis of the equilibria. Firstly, we start by analysing the equations (3.1)
of the model that serve as the basis for the propagation dynamics of the Ebola virus
with death and birth rates. As we shall see (cf. Theorem 3.1), the dynamics are
determined by the basic reproduction number

(3.2) R0 :=
βN

µ+ γ + γI
.

An equilibrium point E = (S, I,R) ∈ R3
+ of (3.1) satisfies, by definition,

(3.3) ψN − βSI − γS = 0,

(3.4) βSI − µI − (γ + γI) I = 0,

(3.5) µI − γR = 0.

There are two biologically meaningful equilibrium points: if I = 0, then there is
no disease for the population, and the equilibrium point is called a disease-free
equilibrium; otherwise, if I > 0, then the equilibrium point is called endemic. By
adding equations (3.3) and (3.4), we obtain that

ψN − γS − (µ+ γ + γI)I = 0.

Then,

(3.6) S =
ψN − (µ+ γ + γI)I

γ
.

From (3.4) and (3.6), we get

I

(
βψN − γ (µ+ γ + γI)

γ
− β (µ+ γ + γI)

γ
I

)
= 0.

Therefore, or I = 0 or

(3.7) I =
βψN − γ (µ+ γ + γI)

β (µ+ γ + γI)
.
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If I = 0, then from (3.6) we obtain that S =
ψN

γ
. It follows from (3.5) that R = 0.

We just proved that there is a virus free equilibrium E1 given by

(3.8) lim
t→∞

(S(t), I(t), R(t)) =

(
ψN

γ
, 0, 0

)
=: E1.

If (3.7) holds, then there is another equilibrium with

(3.9) I∗ =
βψN − γ (µ+ γ + γI)

β (µ+ γ + γI)
.

By substituting (3.9) into (3.6), we obtain that

(3.10) S∗ =
µ+ γ + γI

β
=

N

R0

and, using (3.5) in (3.6), we get

(3.11) R∗ =
µ

γ
I∗ =

µ

γ

[
βψN − γ (µ+ γ + γI)

β (µ+ γ + γI)

]
.

We just obtained the endemic equilibrium E2 given by

(3.12) lim
t→∞

(S(t), I(t), R(t)) = (S∗, I∗, R∗) =: E2,

where the expressions of S∗, I∗ and R∗ are given by (3.9)–(3.11). Next result
summarizes what we have obtained so far.

Theorem 3.1. Let R0 be the basic reproduction number defined by (3.2). If R0 ≤ 1,

then the disease free equilibrium E1 =

(
ψN

γ
, 0, 0

)
of the virus is obtained, which

corresponds to the case when the virus dies out (no epidemic). If R0 > 1, then the
equilibrium E2 = (S∗, I∗, R∗) of the virus is obtained, in agreement with expressions
(3.9)–(3.11), and the virus is able to invade the population (endemic equilibrium).

3.3. Simulation of the SIR model with demographic effects and an in-
duced death rate. We now present a simulation of the model, taking into account
the real outbreak of Ebola virus occurred in Guinea in 2015 and by using the World
Health Organization (WHO) data. Precisely, the epidemic data used in our study
is borrowed from the WHO web site [35]. The birth rate ψ = 0.03574 and death
rate γ = 0.00946 of the model are obtained from the specific statistical study of the
demographic of Guinea in 2015 [31]. The parameters β, µ, γ and γI are obtained
by identification by using the real data of WHO. To estimate the parameters of
the model, we adapted the initialisation of I with the reported data of WHO by
fitting the real data of confirmed cases of infectious in Guinea. The result of fitting
is shown in Figure 2. The comparison between the curve of infectious obtained by
our simulation and the reported data of confirmed cases by WHO shows that the
mathematical model (3.1) fits well the real data by using β = 0.19 as the transmis-
sion rate, γ = 0.034 as the infectious rate, µ = 0.0447 as the recovered rate, and
γI = 0.0353 as the induced death rate. By comparing the value of γI with the death
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rate γ, we remark that γI = 3.735γ. The initial susceptible, infected and recovered
populations, are given by

(3.13) S(0) = 0.8387, I(0) = 0.1613, R(0) = 0,

respectively. The choice of I(0) is in agreement with the data shown in Figure 2 of
the WHO data. By using the value of Guinea’s population, which is estimated at
P = 11780162 in 2015, and the number of confirmed infectious cases (obtained from
WHO), the initialization of I(0) corresponds to the number of infected divided by
the total number of population. Then, in reality, the initial number of infected, in
the period between January 2015 and March 2015, is given by 0.1613×P = 1900000,
that is, the number of confirmed infectious cases represents 16.13% of the total of
population. Figure 2 presents the curve of infectious individuals I(t) simulated by
using (3.1) and obtained from the WHO real data. The evolution of susceptible,

Time [days]
0 10 20 30 40 50 60

I(
t)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Infected
Confirmed WHO data

Figure 2. Graph of infected obtained from (3.1) and (3.13) versus
the real data of confirmed cases for the 2015 Ebola outbreak occurred
in Guinea between January and March 2015.

infected and recovered groups over time, is shown in Figure 3. We also studied
numerically the equilibria, by solving numerically the SIR model (3.1) with the
same parameters and the same initialization. Figure 4(A) shows the evolution of the
susceptible individuals S(t) over time. We see that the oscillations in the numbers
of the three compartments damp out over time, eventually reaching an equilibrium.
In our mathematical analysis of the model, we found that the equilibrium S∗ is
computed theoretically by (3.10). When we calculate the value of this theoretical
result, we find S∗ = 0.47, which is equal to the S∗ computed by the numerical
resolution of the model. Figure 4(B) shows the evolution of the infected individuals
I(t) over time. We know that the equilibrium I∗ is given by (3.9). When we
calculate the value of this theoretical result, we find I∗ = 0.34, which agrees with
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Figure 3. Evolution of individuals in compartments S(t), I(t) and
R(t) of the SIR model (3.1) with vital dynamics and an induced
death rate.

the value computed by the numerical resolution of the model. Figure 4(C) shows
the evolution of the recovered individuals R(t) over time. The equilibrium R∗ is
in this case computed theoretically by (3.11), which coincides the value R∗ = 1.65
computed numerically. The fact that the reached equilibrium (S∗, I∗, R∗) computed
theoretically coincides with the value found by the numerical simulation of the
model, is a validation of our study of the SIR model with vital dynamics and
induced death rate, which describes well the currently detection of Ebola virus in
Guinea.

4. Optimal control of the virus under vital dynamics

Nowadays there are several trial vaccinations against Ebola. One was already
applied in Guinea and seems highly effective [36]. In this section, we present a
strategy for the control of the virus, by introducing into the model (3.1) a control
u(t) representing the vaccination rate at time t. The control u(t) is the fraction
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Figure 4. Evolution of individuals in compartments S(t), I(t)
and R(t) of the SIR model (3.1) with vital dynamics and an
induced death rate, where the endemic equilibrium is given by
(S∗(t), I∗(t), R∗(t)) = (0.47, 0.34, 1.65).

of susceptible individuals being vaccinated per unit of time, taking values on the
interval [0, 0.9]. Then, the mathematical model with control is given by the following
system of non-linear differential equations:

(4.1)



dS(t)

dt
= ψN − βS(t)I(t)− γS(t)− u(t)S(t),

dI(t)

dt
= βS(t)I(t)− µI(t)− (γ + γI)I(t),

dR(t)

dt
= µI(t)− γR(t) + u(t)S(t).

The goal of the strategy is to reduce the infected individuals and the cost of vacci-
nation. Precisely, the optimal control problem consists of minimizing the objective
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functional

(4.2) J(u) =

∫ tend

0

[
I(t) +

τ

2
u2(t)

]
dt,

where u is the control variable, u(t) ∈ [0, 0.9], which represents the vaccination rate
at time t, and the parameters τ and tend denote, respectively, the weight on cost
and the duration of the vaccination program. In the quadratic term of (4.2), τ is
a positive weight parameter associated with the control u(t) and the square of the
control variable reflects the severity of the side effects of the vaccination. One has
u ∈ Uad, where

Uad = {u : u is measurable, 0 ≤ u(t) ≤ umax <∞, t ∈ [0, tend]}
is the admissible control set with umax = 0.9. The existence of an optimal solution
follows from Theorem 2.1 of [16] (see also the study of the spread of influenza A
(H1N1) [13] by using the SIR model).

In our study of the control of the virus, we use the parameters defined in Sec-
tion 3.3. For the numerical simulations of the optimal control problem, we have used
the ACADO solver [4], which is based on a multiple shooting method, including au-
tomatic differentiation and based ultimately on the semidirect multiple shooting
algorithm of Bock and Pitt [6]. The ACADO solver comes as a self-contained public
domain software environment, written in C++, for automatic control and dynamic
optimization. Because (4.1) is a nonlinear control system, functional (4.2) is qua-
dratic in the control and linear in the phase variable I, it is not clear that the nu-
merically found solution through ACADO to our optimal control problem gives the
global minimum to the functional (4.2), or only a local one. Indeed, with ACADO the
optimal control problem is approximated by a finite dimensional optimization prob-
lem, which is then solved by techniques from mathematical programming. This only
gives a candidate for local minimizer. Because of this, we have also used a dynamic
programming approach and checked our results by solving it with BocopHJB, which
is a C/C++ toolbox for optimal control developed since 2014 in the framework of the
Inria–Saclay initiative for an open source optimal control toolbox, being supported
by the team “Commands” (see http://bocop.org). While ACADO implements a
local optimization method, the package BocopHJB implements a global optimiza-
tion method. Similarly to the dynamic programming approach, the optimal control
problem is solved by BocopHJB in two steps: first the Hamilton–Jacobi–Bellman
equation satisfied by the value function of the problem is solved; then the optimal
trajectory is simulated from any chosen initial condition [7]. The obtained results
through BocopHJB are coincident with those obtained through ACADO and, be-
cause of that, we claim to have found the global minimum to the problem. Figure 5
shows the significant difference in the number of susceptible, recovered, and infected
individuals with and without control. In Figure 5(A), we see that the number of
susceptible S, in case of optimal control, decreases faster during the vaccination
campaign. It reaches 34.78% at the end of the campaign against 44.12% in the
absence of optimal control. Figure 5(B) shows that the number of recovered in-
dividuals increases rapidly. The number R(tend) increases more rapidly in case of
control than without control. In Figure 5(C), the time-dependent curve of infected
individuals shows that the peak of the curve of infected individuals is less important
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Figure 5. Comparison between the curves of individuals in case of
optimal control (4.1)–(4.2) with τ = 0.02 versus without control.

in case of control. In fact, the maximum value on the infected curve I under op-
timal control is 16.3%, against 47.69% without any control (see Figure 5(C)). The
other important effect of control, which we can see in the same curve, is the period
of infection, which is less important in case of control of the virus. The value of
the period of infection is 46 days in case of optimal control, versus more than 60
days without vaccination. This shows the efficiency of vaccination in controlling
Ebola. In conclusion, one can say that Figure 5 shows the effectiveness of optimal
vaccination in controlling Ebola. Figure 6 gives a representation of the optimal
control u(t); while Figure 7 shows the evolution of the number of total population
N(t) = S(t) + I(t) +R(t) over time. We see that the total number of population is
bigger in case of vaccination (less people dying).

5. Conclusion

Mathematical modelling of the detection of a virulent virus such Ebola is a power-
ful tool to understand the dynamics of the propagation of the virus in a population.
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Figure 7. Total population N(t) = S(t) + I(t) + R(t), in case of
optimal control (4.1)–(4.2) versus without control (3.1).

The main aim is to provide useful predictions about the potential transmission of
the virus. The important step after modelling is to study the properties of the
system of equations that describes the propagation of the virus. In this work, we
analysed a SIR model with vital dynamics for the early detection of Ebola virus in
West Africa, by adding demographic effects and an induced death rate, in order to
discuss when the model makes sense mathematically and to study the information
provided by the model. We simulated the model in the case of a basic reproduction
number R0 > 1, which describes the current situation of Ebola virus in Guinea. We
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studied the equilibria. The system of equations of the model was solved numerically
and the numerical simulations confirmed the theoretical analysis of the equilibria
for the model. Finally, we controlled the propagation of the virus by minimizing
the number of infected individuals and the cost of vaccination and showing the
importance of optimal control.
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