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the classical variational problem. For important applications in thermodynamics
see [5].

The variational problem of Herglotz attracted the interest of the mathematical
community only in 1996, with the publications [8, 9]. Since then, several authors
investigated such variational problems. The following generalizations of well-known
classical results are available: extension of both Noether symmetry theorems for
first-order problems [5–7]; Euler–Lagrange and transversality optimality conditions
for higher-order variational problems of Herglotz type [14]; the first Noether theorem
for first-order problems of Herglotz with time delay [15]; and the first Noether
theorem for higher-order problems of Herglotz type [17]. For an optimal control
approach to first-order Herglotz type problems see [16].

Dynamic systems with time delay are very important in modelling real-life phe-
nomena in several fields, such as mathematics, biology, chemistry, economics and
mechanics. Indeed, several process outcomes are determined not only by variables
at present time, but also by its behaviour in the past. Motivated by the importance
of problems with time delay, many authors generalized the classical results of the
calculus of variations to the delayed case. The first work in this direction seems
to have been published by Èl’sgol’c [3]. For some recent works on optimal control
see [1,2] and references therein. The importance of variational problems of Herglotz,
as well as the wide applicability of problems with time delay, allied to the impos-
sibility of applying the classical Noether theorem to these problems, constitute the
main motivation to the present work.

The main goal of this paper is to generalize the results of [14–17] by considering
higher-order variational problems of Herglotz type with a time delay, proving the
corresponding Euler–Lagrange equations, transversality conditions, the DuBois–
Reymond necessary optimality condition and Noether’s first theorem. In particular,
in relation to our previous work with time delay [15], we improved its results by
considering a wider class of admissible functions. Moreover, we extend the results
of [15] to the higher-order case. Precisely, we generalize Herglotz’s problem (H1)
by considering the following variational problem with time delay.

Problem (Hn
τ ). Let τ be a real number such that 0 ≤ τ < b − a. Determine the

piecewise trajectories x ∈ PCn([a − τ, b];Rm) and the function z ∈ PC1([a, b];R)
such that:

z(b) −→ extr,

where the pair (x(·), z(·)) satisfies the differential equation

ż(t) = L
(
t, x(t), ẋ(t), . . . , x(n)(t), x(t− τ), ẋ(t− τ), . . . , x(n)(t− τ), z(t)

)
,

for t ∈ [a, b], and is subject to initial conditions

z(a) = γ ∈ R and x(k)(t) = µ(k)(t), k = 0, . . . , n− 1,

where µ ∈ PCn([a − τ, a];Rm) is a given initial function. The Lagrangian L is
assumed to satisfy the following hypotheses:

i. L ∈ C1([a, b]× R2mn+1;R);
ii. functions t 7→ ∂L

∂z [x; z]
n
τ (t), t 7→ ∂L

∂x(k)
[x; z]nτ (t) and t 7→ ∂L

∂x
(k)
τ

[x; z]nτ (t) are

differentiable for any admissible pair (x(·), z(·)), k = 0, . . . , n,
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where, to simplify expressions, we use the notation x
(k)
τ (t), k = 0, . . . , n, to denote

the kth derivative of x evaluated at t− τ (often we use xτ (t) for x
(0)
τ (t) = x(t− τ)

and ẋτ (t) for x
(1)
τ (t) = ẋ(t− τ)) and

[x; z]nτ (t) :=
(
t, x(t), ẋ(t), . . . , x(n)(t), xτ (t), ẋτ (t), . . . , x

(n)
τ (t), z(t)

)
.

The structure of the paper is as follows. In Section 2 we recall the necessary back-
ground: the well-known Pontryagin’s maximum principle, the DuBois–Reymond
necessary optimality condition, and an extension of the classical Noether’s theorem
for optimal control problems. In Section 3 we formulate and prove our main results:
the higher-order Euler–Lagrange equations and transversality conditions for gener-
alized variational problems with time delay (Theorem 3.4); the DuBois–Reymond
optimality condition (Theorem 3.8); and Noether’s theorem for higher-order vari-
ational problems of Herglotz type with time delay (Theorem 3.11). We end with
Section 4 of conclusions and possible future work.

2. Preliminaries

We begin by recalling the problem of optimal control in Bolza form:

(P )
J (x(·), u(·)) =

∫ b

a
f(t, x(t), u(t))dt+ ϕ(x(b)) −→ extr

subject to ẋ(t) = g(t, x(t), u(t)),

with some initial condition on x, where f ∈ C1([a, b]×Rm ×Ω;R), ϕ ∈ C1(Rm;R),
g ∈ C1([a, b]×Rm×Ω;Rm), x ∈ PC1([a, b];Rm) and u ∈ PC([a, b]; Ω), with Ω ⊆ Rr
an open set. Usually x and u are called the state and control variables, respectively,
while ϕ is known as the payoff or salvage term. It is clear that the classical problem
of the calculus of variations is a particular case of problem (P ) with ϕ(x) ≡ 0,
g(t, x, u) = u and Ω = Rm. Next we present Pontryagin’s maximum principle, one
of the main tools for this paper.

Theorem 2.1 (Pontryagin’s maximum principle for problem (P ) [13]). If a pair
(x(·), u(·)) with x ∈ PC1([a, b];Rm) and u ∈ PC([a, b]; Ω) is a solution to prob-
lem (P ) with the initial condition x(a) = α, α ∈ Rm, then there exists ψ ∈
PC1([a, b];Rm) such that the following conditions hold:

• the optimality condition

(2.1)
∂H

∂u
(t, x(t), u(t), ψ(t)) = 0;

• the adjoint system

(2.2)

{
ẋ(t) = ∂H

∂ψ (t, x(t), u(t), ψ(t))

ψ̇(t) = −∂H
∂x (t, x(t), u(t), ψ(t));

• the transversality condition

(2.3) ψ(b) = grad(ϕ(x))(b);

where the Hamiltonian H is defined by

(2.4) H(t, x, u, ψ) = f(t, x, u) + ψ · g(t, x, u).
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Definition 2.2 (Pontryagin extremal to (P )). A triplet (x(·), u(·), ψ(·)) with x ∈
PC1([a, b]; Rm), u ∈ PC([a, b]; Ω) and ψ ∈ PC1([a, b];Rm) is called a Pontryagin
extremal to problem (P ) if it satisfies the necessary optimality conditions (2.1)–
(2.3).

Now we present the following necessary optimality condition that is used in the
proof of our Theorem 3.8.

Theorem 2.3 (DuBois–Reymond condition of optimal control [13]). If (x(·), u(·), ψ(·))
is a Pontryagin extremal to problem (P ), then the Hamiltonian (2.4) satisfies the
equality

dH

dt
(t, x(t), u(t), ψ(t)) =

∂H

∂t
(t, x(t), u(t), ψ(t)), t ∈ [a, b].

Many years before the publication of the celebrated result of Pontryagin et al.
in [13], Emmy Noether proved two remarkable theorems that relate the invariance
of a variational integral with the corresponding Euler–Lagrange equations. Several
extensions of the two Noether theorems were proved in different contexts. In this
paper we are concerned with the first Noether theorem, also known simply by
Noether’s theorem. The Noether theorem [12] is a fundamental tool of the calculus
of variations [22], optimal control [18,19,21] and modern theoretical physics [4]. This
theorem guarantees that when an optimal control problem is invariant under a one
parameter family of transformations, then there exists a corresponding conservation
law: an expression that is conserved along all the Pontryagin extremals of the
problem (see [18, 19, 21] and references therein). Here we use Noether’s theorem
as stated in [18], which is formulated for problems of optimal control in Lagrange
form, that is, for problem (P ) with ϕ ≡ 0. In order to apply the results of [18] to
the Bolza problem (P ), we rewrite it in the following equivalent Lagrange form:

(2.5)

I(x(·), y(·), u(·)) =
∫ b

a
[f(t, x(t), u(t)) + y(t)] dt −→ extr,{

ẋ(t) = g (t, x(t), u(t)) ,

ẏ(t) = 0,

x(a) = α, y(a) =
ϕ(x(b))

b− a
.

To present Noether’s theorem for the optimal control problem (P ), we need to define
the concept of invariance. In this paper we follow the definition of invariance found
in [18] applied to the equivalent optimal control problem (2.5). In Definition 2.4 we
use the little-o notation.

Definition 2.4 (Invariance of problem (P )). Let hs be a one-parameter family of
invertible C1 maps

hs : [a, b]× Rm × Ω −→ R× Rm × Rr,
hs(t, x, u) = (T s(t, x, u),X s(t, x, u),Us(t, x, u)) ,

h0(t, x, u) = (t, x, u) for all (t, x, u) ∈ [a, b]× Rm × Ω.
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Problem (P ) is said to be invariant under transformations hs if for all (x(·), u(·))
the following two conditions hold:[

f ◦ hs(t, x(t), u(t)) + ϕ(x(b))

b− a
+ ξs+ o(s)

]
dT s

dt
(t, x(t), u(t))

= f(t, x(t), u(t)) +
ϕ(x(b))

b− a

for some constant ξ; and

dX s

dt
(t, x(t), u(t)) = g ◦ hs(t, x(t), u(t))dT

s

dt
(t, x(t), u(t)).

As a direct consequence of Noether’s theorem proved in [18] and Pontryagin’s
maximum principle (Theorem 2.1), we get the following result that is central to
prove our Theorem 3.11.

Theorem 2.5 (Noether’s theorem for the optimal control problem (P )). If problem
(P ) is invariant in the sense of Definition 2.4, then the quantity

(b− t)ξ + ψ(t) ·X(t, x(t), u(t))

−
[
H(t, x(t), u(t), ψ(t)) +

ϕ(x(b))

b− a

]
· T (t, x(t), u(t))

is constant in t along every Pontryagin extremal (x(·), u(·), ψ(·)) of problem (P ),
where H is defined by (2.4) and

T (t, x(t), u(t)) =
∂T s

∂s
(t, x(t), u(t))

∣∣∣∣
s=0

,

X(t, x(t), u(t)) =
∂X s

∂s
(t, x(t), u(t))

∣∣∣∣
s=0

.

3. Main results

We begin by introducing some definitions for the variational problem of Herglotz
with time delay (Hn

τ ).

Definition 3.1 (Admissible pair to problem (Hn
τ )). We say that (x(·), z(·)) with

x(·) ∈ PCn([a− τ, b];Rm) and z(·) ∈ PC1([a, b];R) is an admissible pair to problem
(Hn

τ ) if it satisfies the equation

ż(t) = L[x; z]nτ (t), t ∈ [a, b],

subject to

z(a) = γ, x(k)(t) = µ(k)(t)

for all k = 0, 1, . . . , n− 1, t ∈ [a− τ, a] and γ ∈ R.

Definition 3.2 (Extremizer to problem (Hn
τ )). We say that an admissible pair

(x∗(·), z∗(·)) is an extremizer to problem (Hn
τ ) if z(b) − z∗(b) has the same signal

for all admissible pairs (x(·), z(·)) that satisfy ∥z − z∗∥0 < ϵ and ∥x− x∗∥0 < ϵ for
some positive real ϵ, where ∥y∥0 = max

a≤t≤b
|y(t)|.
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3.1. Reduction to a non-delayed problem. We generalize the technique of re-
duction of a delayed first-order optimal control problem to a non-delayed problem
proposed by Guinn in [10] to our higher-order delayed problem. In order to reduce
the higher-order problem of Herglotz with time delay to a non-delayed first-order
problem, we assume, without loss of generality, the initial time to be zero (a = 0)
and the final time to be an integer multiple of τ , that is, b = Nτ for N ∈ N (see
Remark 3.3). We divide the interval [a, b] into N equal parts and fix t ∈ [0, τ ].
We also introduce the variables xk;i and zj with k = 0, . . . , n, i = 0, . . . , N , and
j = 1, . . . , N + 1. The variable k is related to the order of the derivative of x, i is
related to the ith subinterval of [−τ,Nτ ], and j is related to the jth subinterval of
[0, (N + 1)τ ] as follows:

(3.1)
xk;i(t) = x(k)(t+ (i− 1)τ), zj(t) = z(t+ (j − 1)τ),

żj(t) = Lj(t), xk;N+1(t) = 0, żN+1(t) = LN+1 = 0

with

Lj(t) := L
(
t+ (j − 1)τ, x0;j(t), . . . , xn;j(t), x0;j−1(t), . . . , xn;j−1(t), zj(t)

)
.

Finally, the higher-order problem of Herglotz with time delay (Hn
τ ) can be written

as an optimal control problem without time delay as follows:

(3.2)

zN (τ) −→ extr, subject to
ẋk;i(t) = xk+1;i(t),

xk;N+1(t) = 0,

żj(t) = Lj(t),

żN+1(t) = LN+1(t) = 0

for all t ∈ [0, τ ] and with the initial conditions

xk;0(0) = µ(k)(−τ), xk;i(0) = xk;i−1(τ),

z1(0) = γ, γ ∈ R, zj(0) = zj−1(τ)

for k = 0, . . . , n−1, i = 0, . . . , N and j = 1, . . . , N . In this form we look to xk;i and
zj as state variables and to ui := xn;i as the control variables.

Remark 3.3. We considered the case of b being an integer multiple of τ . If b is not
an integer multiple of τ , then there is an integer N such that (N − 1)τ < b < Nτ .
In that case, the only modification required in the change of variables given in
(3.1) is to consider the variables xk;N , k = 0, . . . , n, and żN as defined in (3.1) for
t ∈ [0, b− (N − 1)τ ] and zero for t ∈]b− (N − 1)τ, τ ]. With this slight change, the
function to be extremized remains the same and we can consider, without loss of
generality, b to be an integer multiple of τ .

3.2. Higher-order Euler–Lagrange and DuBois–Reymond optimality con-
ditions with time delay. We begin by proving a necessary condition for a pair
(x(·), z(·)) to be an extremizer to problem (Hn

τ ). Along the proofs we sometimes
suppress arguments for expressions whose arguments have been clearly stated be-
fore.
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Theorem 3.4 (Higher-order delayed Euler–Lagrange and transversality conditions).

If (x(·), z(·)) is an extremizer to problem (Hn
τ ) that satisfies the conditions x(k)(t) =

µ(k)(t), k = 0, . . . , n − 1 and t ∈ [a − τ, a], with µ ∈ PCn([a − τ, a];Rm), then the
two Euler–Lagrange equations

(3.3)
n∑
l=0

(−1)l
dl

dtl

(
ψz(t)

∂L

∂x(l)
[x; z]nτ (t) + ψz(t+ τ)

∂L

∂x
(l)
τ

[x; z]nτ (t+ τ)

)
= 0,

for t ∈ [a, b− τ ], and

(3.4)
n∑
l=0

(−1)l
dl

dtl

(
ψz(t)

∂L

∂x(l)
[x; z]nτ (t)

)
= 0,

for t ∈ [b− τ, b] and ψz defined by

ψz(t) = e
∫ b
t

∂L
∂z

[x;z]nτ (θ)dθ, t ∈ [a, b],

hold. Furthermore, the following transversality conditions hold:

(3.5)

n−k∑
l=0

(−1)l
dl

dtl

(
ψz(t)

∂L

∂x(l+k)
[x; z]nτ (t)

) ∣∣∣∣
t=b

= 0,

k = 1, . . . , n.

Proof. In order to prove both Euler–Lagrange equations consider problem (Hn
τ ) in

the optimal control form (3.2). Applying Pontryagin’s maximum principle for prob-
lem (P ) to problem (Hn

τ ) in the form (3.2), we conclude that there are multipliers
ϕk;i and ψj for k = 1, . . . , n, i = 0, . . . , N and j = 1, . . . , N + 1, such that, with the
Hamiltonian defined by

(3.6) H =

n∑
l=1

(
N∑
i=0

ϕl;i(t) · xl;i(t)

)
+

N+1∑
j=1

ψj(t)Lj(t),

the following conditions hold:

• the optimality conditions

∂H

∂ui
= 0,

• the adjoint system 
ẋk−1;i = ∂H

∂ϕk;i
,

żj =
∂H
∂ψj

,

ϕ̇k;i = − ∂H
∂xk−1;i ,

ψ̇j = −∂H
∂zj
,

• the transversality conditions{
ϕk;i(τ) = 0,

ψj(τ) = 1.
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Observe that the forth equation in the adjoint system is equivalent to the differential

equation ψ̇j = −ψj ∂Lj

∂zj
. Together with the transversality condition, we obtain that

the multipliers ψj , j = 1, . . . , N + 1, are given by

ψj(t) = e

∫ τ
t

∂Lj
∂zj

dθ
.

From the third equation in the adjoint system, we obtain that

(3.7) ϕ̇k;i = −ϕk−1;i − ψi
∂Li

∂xk−1;i
− ψi+1

∂Li+1

∂xk−1;i
,

k, i = 1, . . . , n, which for the particular case of k = n reduces to

ϕ̇n;i = −ϕn−1;i − ψi
∂Li

∂xn−1;i
− ψi+1

∂Li+1

∂xn−1;i
.

This equality, together with the differentiation of the optimality condition

ϕ̇n;i =− d

dt

(
ψi
∂Li
∂ui

)
− d

dt

(
ψi+1

∂Li+1

∂ui

)
=− d

dt

(
ψi

∂Li
∂xn;i

+ ψi+1
∂Li+1

∂xn;i

)
,

leads to

ϕn−1;i = −ψi
∂Li

∂xn−1;i
− ψi+1

∂Li+1

∂xn−1;i
+
d

dt

(
ψi

∂Li
∂xn;i

+ ψi+1
∂Li+1

∂xn;i

)
.

By differentiation of the previous expression and comparison with (3.7) for k = n−1,
we find the expression for ϕn−2;i:

ϕn−2;i = −ψi
∂Li

∂xn−2;i
− ψi+1

∂Li+1

∂xn−2;i

+
d

dt

(
ψi

∂Li
∂xn−1;i

+ ψi+1
∂Li+1

∂xn−1;i

)
− d2

dt2

(
ψi

∂Li
∂xn;i

+ ψi+1
∂Li+1

∂xn;i

)
.

Using recursively the technique of derivation of ϕk;i and comparison with (3.7), we
find the expression for ϕk;i (k = 1, . . . , n):

(3.8) ϕk;i =

n−k∑
l=0

(−1)l+1 d
l

dtl

(
ψi

∂Li
∂xl+k;i

+ ψi+1
∂Li+1

∂xl+k;i

)
, i = 1, . . . , N.

Considering ϕ1;i given by the previous equation and comparing it with

ϕ1;i = −ϕ̇2;i − ψi
∂Li
∂x1;i

− ψi+1
∂Li+1

∂x1;i
,

given by (3.7) for k = 2, we obtain that

(3.9)

n∑
l=0

(−1)l
dl

dtl

(
ψi
∂Li
∂xl;i

+ ψi+1
∂Li+1

∂xl;i

)
= 0, i = 1, . . . , N.

Since LN+1 = 0, the previous equation for i = N reduces to

(3.10)

n∑
l=0

(−1)l
dl

dtl

(
ψN

∂LN
∂xl;N

)
= 0.
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The final step is to rewrite the results obtained inverting the changes of variables
(3.1). For this purpose, define ψz(t), t ∈ [0, b+ τ ], by

ψz(t) = ψi(t− (i− 1)τ), (i− 1)τ ≤ t ≤ iτ, i = 1, . . . , N + 1,

and ϕk(t), k = 1, . . . , n, t ∈ [−τ, b], by

ϕk(t) = ϕk;i(t− (i− 1)τ), (i− 1)τ ≤ t ≤ iτ, i = 1, . . . , N.

This allows to write

(3.11) ψz(t) = e
∫ b
t

∂L
∂z

[x;z]nτ (θ)dθ, t ∈ [a, b],

and

(3.12)

ϕk(t) =

n−k∑
l=0

(−1)l+1 d
l

dtl

(
ψz(t+ τ)

∂L

∂x
(l+k)
τ

[x; z]nτ (t+ τ)

)
, t ∈ [a− τ, a],

ϕk(t) =

n−k∑
l=0

(−1)l+1 d
l

dtl

(
ψz(t)

∂L

∂x(l+k)
[x; z]nτ (t)

+ψz(t+ τ)
∂L

∂x
(l+k)
τ

[x; z]nτ (t+ τ)

)
, t ∈ [a, b],

k = 1, . . . , n. Note that if t ∈ [b − τ, b], then L[x; z]nτ (t + τ) is, by definition,
null. Finally, equations (3.9)–(3.10) lead to the Euler–Lagrange equations for the
higher-order problem of Herglotz with time delay (Hn

τ ):

n∑
l=0

(−1)l
dl

dtl

(
ψz(t)

∂L

∂x(l)
[x; z]nτ (t) + ψz(t+ τ)

∂L

∂x
(l)
τ

[x, z]nτ (t+ τ)

)
= 0

for t ∈ [a, b− τ ] and

n∑
l=0

(−1)l
dl

dtl

(
ψz(t)

∂L

∂x(l)
[x; z]nτ (t)

)
= 0

for t ∈ [b− τ, b]. From (3.8) and the transversality conditions for ϕk;i, we obtain the
transversality conditions ϕk(b) = 0, that is,

n−k∑
l=0

(−1)l
dl

dtl

(
ψz(t)

∂L

∂x(l+k)
[x; z]nτ (t)

) ∣∣∣∣
t=b

= 0,

k = 1, . . . , n. □

Definition 3.5 (Extremal to problem (Hn
τ )). We say that an admissible pair

(x(·), z(·)) is an extremal to problem (Hn
τ ) if it satisfies the Euler–Lagrange equa-

tions (3.3)–(3.4) and the transversality conditions (3.5).

Theorem 3.4 gives a generalization of the Euler–Lagrange equation and transver-
sality conditions for the higher-order problem of Herglotz presented by the authors
in [14]. It is also a generalization of the results in [16,17].
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Corollary 3.6 (cf. [14,17]). If (x(·), z(·)) is an extremizer to the higher-order prob-
lem of Herglotz

(3.13)

z(b) −→ extr,

ż(t) = L
(
t, x(t), ẋ(t), . . . , x(n)(t), z(t)

)
, t ∈ [a, b],

z(a) = γ ∈ R, x(k)(a) = αk, αk ∈ Rm, k = 0, . . . , n− 1,

then the Euler–Lagrange equation
n∑
l=0

(−1)l
dl

dtl

(
ψz(t)

∂L

∂x(l)
[x; z]n0 (t)

)
= 0

holds for t ∈ [a, b], where ψz is defined in (3.11). Furthermore, the following
transversality conditions hold:

n−k∑
l=0

(−1)l
dl

dtl

(
ψz(t)

∂L

∂x(l+k)
[x; z]n0 (t)

) ∣∣∣∣
t=b

= 0,

k = 1, . . . , n.

Proof. Consider Theorem 3.4 with no delay, that is, with τ = 0. □
Theorem 3.4 is also a generalization of the Euler–Lagrange equations for the

first-order problem of Herglotz with time delay obtained in [15].

Corollary 3.7 (cf. [15]). If (x(·), z(·)) is an extremizer to the first-order problem
of Herglotz with time delay

(3.14)

z(b) −→ extr,

ż(t) = L (t, x(t), ẋ(t), x(t− τ), ẋ(t− τ), z(t)) , t ∈ [a, b],

z(a) = γ ∈ R, x(t) = µ(t), t ∈ [a− τ, a],

for a given piecewise initial function µ, then the Euler–Lagrange equations

ψz(t)
∂L

∂x
[x; z]1τ (t) + ψz(t+ τ)

∂L

∂xτ
[x, z]1τ (t+ τ)

− d

dt

(
ψz(t)

∂L

∂ẋ
[x; z]1τ (t) + ψz(t+ τ)

∂L

∂ẋτ
[x, z]1τ (t+ τ)

)
= 0,

for t ∈ [a, b− τ ], and

ψz(t)
∂L

∂x
[x; z]1τ (t)−

d

dt

(
ψz(t)

∂L

∂ẋ
[x; z]1τ (t)

)
= 0,

for t ∈ [b− τ, b], hold.

Proof. Consider Theorem 3.4 with n = 1. □
Theorem 3.8 (Higher-order delayed DuBois–Reymond condition). If the pair
(x(·), z(·)) is an extremal to problem (Hn

τ ), then

(3.15)
d

dt

(
n∑
k=1

ϕk(t) · x(k)(t) + ψz(t)L[x; z]
n
τ (t)

)
= ψz(t)

∂L

∂t
[x; z]nτ (t),
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where ψz and ϕk are defined by (3.11) and (3.12), respectively.

Proof. Consider problem (Hn
τ ) in the formulation given by (3.2). Theorem 2.3

asserts that dH
dt = ∂H

∂t for H given by (3.6). We obtain (3.15) by writing H in the
variables ϕk and ψz. □

Theorem 3.8 is also a generalization of the DuBois–Reymond condition presented
in [15] for the first-order problem of Herglotz with time delay. In that paper, for
technical reasons, we added an additional hypothesis that we are able to avoid here.

Corollary 3.9 (cf. [15]). If (x(·), z(·)) is an extremizer to the first-order problem
of Herglotz with time delay (3.14), then

ψz(t)
∂L

∂t
[x; z]1τ (t) =

d

dt

(
ψz(t)L[x; z]

1
τ (t)

−
(
ψz(t)

∂L

∂ẋ
[x; z]1τ (t) + ψz(t+ τ)

∂L

∂ẋτ
[x; z]1τ (t+ τ)

)
ẋ(t)

)
,

where ψz is defined by (3.11).

Proof. Consider Theorem 3.8 with n = 1. □

3.3. Higher-order Noether’s symmetry theorem with time delay. Before
presenting a Noether theorem to problem (Hn

τ ), we introduce the notion of invari-
ance.

Definition 3.10 (Invariance of problem (Hn
τ )). Let hs be a one-parameter family

of invertible C1 maps hs : [a− τ, b]× Rm × R −→ R× Rm × R,

hs(t, x(t), z(t)) = (T s[x; z]nτ (t),X s[x; z]nτ (t),Zs[x; z]nτ (t)),

h0(t, x, z) = (t, x, z), ∀(t, x, z) ∈ [a− τ, b]× Rm × R.

Problem (Hn
τ ) is said to be invariant under the transformations hs, if for all admis-

sible pairs (x(·), z(·)) the following two conditions hold:

(3.16)

(
z(b)

b− a
+ ξs+ o(s)

)
dT s

dt
[x; z]nτ (t) =

z(b)

b− a

for some constant ξ and

dZs

dt
[x; z]nτ (t) =

dT s

dt
[x; z]nτ (t)L

(
T s[x; z]nτ (t),X s[x; z]nτ (t),

dX s

dT s
[x; z]nτ (t), . . . ,

dnX s

d(T s)n
[x; z]nτ (t),X s[x, z]nτ (t− τ),

dX s

dT s
[x, z]nτ (t− τ), . . . ,

dnX s

d(T s)n
[x, z]nτ (t− τ),Zs[x; z]nτ (t)

)
,

(3.17)
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where

dX s

dT s
[x; z]nτ (t) =

dX s

dt [x; z]nτ (t)
dT s

dt [x; z]
n
τ (t)

,

dkX s

d(T s)k
[x; z]nτ (t) =

d
dt

(
dk−1X s

d(T s)k−1 [x; z]
n
τ (t)

)
dT s

dt [x; z]
n
τ (t)

,

k = 2, . . . , n.

Now we generalize the higher-order Noether’s theorem of [17] to the more general
case of variational problems of Herglotz type with time delay.

Theorem 3.11 (Higher-order delayed Noether’s theorem). If problem (Hn
τ ) is in-

variant in the sense of Definition 3.10, then the quantity

n∑
k=1

ϕk(t) ·Xk−1[x; z]
n
τ (t) + ψz(t)Z[x; z]

n
τ (t)

−

[
n∑
k=1

ϕk(t) · x(k)(t) + ψz(t)L[x; z]
n
τ (t)

]
T [x; z]nτ (t)

is constant in t along all extremals of problem (Hn
τ ), where the generators of the

one-parameter family of maps are given by

T =
∂T s

∂s

∣∣∣∣
s=0

, X0 =
∂X s

∂s

∣∣∣∣
s=0

, Z =
∂Zs

∂s

∣∣∣∣
s=0

,

Xk =
d

dt
Xk−1 − x(k)

d

dt

(
∂T s

∂s

∣∣∣∣
s=0

)
, k = 1, . . . , n− 1,

and ψz, ϕk are defined by (3.11)–(3.12).

Proof. We start by considering problem (Hn
τ ) in its non-delayed optimal control

form (3.2). The first step is to prove that if problem (Hn
τ ) is invariant in the sense

of Definition 3.10, then (3.2) is invariant in the sense of Definition 2.4. In order to
do that, observe that (3.16) is equivalent to(

zN (τ)

Nτ
+ ξs+ o(s)

)
dT s

dt
[x; z]nτ (t) =

zN (τ)

Nτ

and defining ξτ := ξN we have

(3.18)

(
zN (τ)

τ
+ ξτs+ o(s)

)
dT s

dt
[x; z]nτ (t) =

zN (τ)

τ
, for some ξτ .

Observe also that the control system of (3.2) defines X s
k :=

dX s
k−1

dT s , that is,

dX s
k−1

dt
[x; z]nτ (t) = X s

k [x; z]
n
τ (t)

dT s

dt
[x; z]nτ (t), k = 1, . . . , n.

Let

Xk;i[x; z]nτ (t) := X s
k [x; z]

n
τ (t+ (i− 1)τ),

Ti[x; z]nτ (t) := T s[x; z]nτ (t+ (i− 1)τ),

Zj [x; z]nτ (t) := Zs[x; z]nτ (t+ (j − 1)τ).
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One has

(3.19)
dXk;i
dt

[x; z]nτ (t) = Xk+1;i[x; z]
n
τ (t)

dTi
dt

[x; z]nτ (t)

and

(3.20)
dZj
dt

[x; z]nτ (t) = Lj [X s[x; z]nτ (t);Zs[x; z]nτ (t)]
n
τ (T

s
j [x; z]

n
τ (t))

dTj
dt

[x; z]nτ (t),

k = 0, . . . , n − 1, i = 0, . . . N , j = 1, . . . , N . Equalities (3.18)–(3.20) prove that
problem (3.2) is invariant in the sense of Definition 2.4. This put us in conditions
to advance to the second step: to apply Theorem 2.5 to the non-delayed optimal
control problem (3.2). This theorem guarantees that the quantity

(τ − t)ξτ +

n∑
k=1

N∑
i=0

ϕk;i(t) ·Xk−1;i[x; z]
n
τ (t) +

N∑
j=1

ψj(t)Zj [x; z]
n
τ (t)

−

 n∑
k=1

N∑
i=0

ϕk;i(t) · xk;i(t) +
N∑
j=1

ψj(t)Lj [x; z]
n
τ (t) +

zN (τ)

τ

T [x; z]nτ (t)
is constant in t along the extremals of (3.2), where Xk;i =

∂
∂s

dkX s
k;i

d(T s)k

∣∣∣
s=0

and Zi =

∂
∂s

dZs
i

d(T s)

∣∣∣
s=0

. Rewriting in the original variables, we obtain

(τ − t)ξτ +
n∑
k=1

ϕk(t) ·Xk−1[x; z]
n
τ (t) + ψz(t)Z[x; z]

n
τ (t)

−

[
n∑
k=1

ϕk(t) · x(k)(t) + ψz(t)L[x; z]
n
τ (t) +

zN (τ)

τ

]
T [x; z]nτ (t)

constant in t along the extremals of (3.2). The third step is to prove that

(3.21) (τ − t)ξτ −
zN (τ)

τ
T [x; z]nτ (t)

is constant in t. From the invariance condition (3.18), we know that(
zN (τ)

τ
+ ξτs+ o(s)

)
dT s

dt
[x; z]nτ (t) =

zN (τ)

τ
.

Integrating from 0 to t we conclude that(
zN (τ)

τ
+ ξτs+ o(s)

)
T s[x; z]nτ (t)

=
zN (τ)

τ
t+

(
zN (τ)

τ
+ ξτs+ o(s)

)
T s[x; z]nτ (0).

Differentiating this equality with respect to s, and then putting s = 0, we get

(3.22) ξτ t+
zN (τ)

τ
T [x; z]nτ (t) =

zN (τ)

τ
T [x; z]nτ (0).
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We conclude from (3.22) that expression (3.21) is the constant

τξτ −
zN (τ)

τ
T [x; z]nτ (0).

Hence,

n∑
k=1

ϕk(t) ·Xk−1[x; z]
n
τ (t) + ψz(t)Z[x; z]

n
τ (t)

−

[
n∑
k=1

ϕk(t) · x(k)(t) + ψz(t)L[x; z]
n
τ (t)

]
T [x; z]nτ (t)

is constant in t along the extremals of problem (3.2). Finally, observe that X0 =
∂X s

∂s

∣∣
s=0

and

Xk =
∂

∂s

dkX s

d(T s)k

∣∣∣∣
s=0

=
∂

∂s

 d
dt

(
dk−1X s

d(T s)k−1

)
dT s

dt

∣∣∣∣∣
s=0

=
d

dt

(
∂

∂s

dk−1X s

d(T s)k−1

∣∣∣∣
s=0

)
− x(k)

d

dt

(
∂T s

∂s

∣∣∣∣
s=0

)
=

d

dt
Xk−1 − x(k)

d

dt

(
∂T s

∂s

∣∣∣∣
s=0

)
,

k = 1, . . . , n− 1. This concludes the proof. □

Corollary 3.12 (cf. [17]). If the higher-order problem of Herglotz (3.13) is invariant
in the sense of Definition 3.10 (in [a, b]), then the quantity

n∑
k=1

ϕ̃k(t) ·Xk−1[x; z]
n
0 (t) + ψz(t)Z[x; z]

n
0 (t)

−

[
n∑
k=1

ϕ̃k(t) · x(k)(t) + ψz(t)L[x; z]
n
0 (t)

]
T [x; z]n0 (t)

is constant in t along any extremal of the problem, where

ϕ̃k(t) =

n−k∑
l=0

(−1)l+1 d
l

dtl

(
ψz(t)

∂L

∂x(l+k)
[x; z]n0 (t)

)
,

k = 1, . . . , n, and ψz is given by (3.11).

Proof. Consider Theorem 3.11 with τ = 0. □

Theorem 3.11 is a generalization of Noether’s theorem [15] for the first-order prob-
lem of Herglotz with time delay. Besides the improvement of dealing with piecewise
functions instead of continuous, the theorem presents a similar conserved quantity
but without the imposition of two additional hypotheses required in [15]. Moreover,
the current definition of invariance is more general than the one considered in [15].
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Corollary 3.13 (cf. [15]). If the first-order problem of Herglotz with time delay
(3.14) is invariant in the sense of Definition 3.10, then the quantity(

ψz(t)
∂L

∂ẋ
[x; z]1τ (t) + ψz(t+ τ)

∂L

∂ẋτ
[x; z]1τ (t+ τ)

)
X0[x; z]

1
τ (t)

+ ψz(t)Z[x; z]
1
τ (t) +

[
−
(
ψz(t)

∂L

∂ẋ
[x; z]1τ (t)

+ψz(t+ τ)
∂L

∂ẋτ
[x; z]1τ (t+ τ)

)
ẋ(t) + ψz(t)L[x; z]

1
τ (t)

]
T [x; z]1τ (t)

is constant in t ∈ [a, b] along any extremal of the problem.

Proof. Consider Theorem 3.11 with n = 1. □
Remark 3.14. If t ∈ [b− τ, b], then L[x; z]nτ (t+ τ) is, by definition, null (see (3.1))
and the constant of Corollary 3.13 reduces to(

ψz(t)
∂L

∂ẋ
[x; z]1τ (t)

)
X0[x; z]

1
τ (t) + ψz(t)Z[x; z]

1
τ (t)

+

[
−
(
ψz(t)

∂L

∂ẋ
[x; z]1τ (t)

)
ẋ(t) + ψz(t)L[x; z]

1
τ (t)

]
T [x; z]1τ (t)

for t ∈ [b− τ, b], which is the second constant quantity of [15].

4. Conclusion

Optimal control is a convenient tool to deal with delayed and non-delayed Her-
glotz type variational problems. In this work we have shown how some of the central
results from the classical calculus of variations can be proved for higher-order Her-
glotz variational problems with time delay from analogous and well-known optimal
control results. The techniques here developed can now be used to obtain other re-
sults. For example, our optimal control approach can be employed together with [20]
to derive an extension of the second Noether theorem to the delayed or non-delayed
Herglotz framework. This is under investigation and will be addressed elsewhere.
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