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property, still hold to obtain fixed point results for generalized nonexpansive map-
pings. In Section 3 we include some comments about the development of this topic
in the last years.

Our goal in this paper is, on one hand, to extend some fixed point results on
Banach lattices which are known for nonexpansive mappings and some of its gener-
alizations as mappings satisfying condition (C) and condition (Cλ) to the setting of
the, so called, mappings of Suzuki type. On the other hand, we prove the existence
of fixed points for Suzuki type mappings under geometrical conditions which are
weaker than the previous used for nonexpansive mappings. In order to do that we
need two main lemmas which are proved in Section 4. In Section 5 we extend the
results in [4,5,7,10] about existence of fixed point for mappings satisfying condition
(C) or (Cλ) on OUNC Banach lattices to the case of Suzuki type mappings. In Sec-
tion 6 we prove the validity of the results in [12,13] about existence of fixed points
for nonexpansive mappings on N -weakly orthogonal abstract M -spaces to Suzuki
type mappings defined on an arbitrary N -weakly orthogonal Banach lattices as-
suming that the Riesz angle is appropriately bounded from above. This result is
new also for nonexpansive mappings, extends all previous results about existence of
fixed point and Riesz angle and, in particular, recovers the results in [8] for the case
N = 2. We finish this paper showing an easy example of a Banach lattice which is
not an abstract M -lattice but the Riesz angle is small enough to apply our result.

2. Preliminaries and notation

Along this paper we will assume that X is a Banach lattice and by BX we denote
the unit ball of X. For notation and terminology concerning Banach lattices we
refer the reader to [24, 26]. In the next lemma we collect some lattice inequalities
which will be used in the sequel.

Lemma 2.1. Let X be a Banach lattice. Then,

(i) for every vectors x1, . . . , xN ∈ X and w ∈ X

|w| ≤ |w − x1| ∨ · · · ∨ |w − xN |+ |x1| ∧ · · · ∧ |xN |,
(ii) for every z, x1, . . . , xN ∈ X and N ≥ 2, N ∈ N we have

|z| ≤
∧

i,j=1,...,N
i ̸=j

(|z − xi| ∨ |z − xj |) +
N∑

i,j=1
i̸=j

|xi| ∧ |xj |,

(iii) for all x, y ∈ X

|x| − |x| ∧ |y| ≤ |x− y| − |y|+ |x| ∧ |y|.

Proof. (i) By using the usual relations of the Banach lattices (see, for instance, [26,
Theorem 1.1.1]) we have that |w| ≤ |w − xi|+ |xi| for every i = 1, . . . , N . Thus

|w| ≤ |w − x1| ∨ · · · ∨ |w − xN |+ |xi|
for every i = 1, . . . , N . Taking infimum we obtain

|w| ≤
N∧
i=1

(|w − x1| ∨ · · · ∨ |w − xN |+ |xi|)
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= |w − x1| ∨ · · · ∨ |w − xN |+ |x1| ∧ · · · ∧ |xN |.
(ii) For i, j = 1, . . . , N, i ̸= j we have

|z| ≤ |z − xi|+ |xi| ≤ |z − xi| ∨ |z − xj |+ |xi|,
|z| ≤ |z − xj |+ |xj | ≤ |z − xi| ∨ |z − xj |+ |xj |,

hence |z| ≤ |z − xi| ∨ |z − xj |+ |xi| ∧ |xj | for all i, j = 1, . . . , N, i ̸= j. Thus, taking
the infimum we have

|z| ≤
∧

i,j=1,...,N
i ̸=j

(|z − xi| ∨ |z − xj |+ |xi| ∧ |xj |)

≤
∧

i,j=1,...,N
i ̸=j

(|z − xi| ∨ |z − xj |) +
N∑

i,j=1
i̸=j

|xi| ∧ |xj |.

(iii) It is clear just splitting into the cases |x| ∧ |y| = |x| and |x| ∧ |y| = |y|.
□

The Riesz angle for X is defined by

α(X) = sup{∥|x| ∨ |y|∥ : ∥x∥ ≤ 1, ∥y∥ ≤ 1}.
When α(X) = 1, the space X is said to be an abstract M -space. The most relevant
examples of abstract M -spaces are the spaces of continuous functions on a compact
set K with the maximum norm. In fact, every abstractM -space can be represented
isometrically and lattice isomorphically by a subspace of the space C(K) where
K is a certain compact Hausdorff space [20]. At the opposite extreme we can
find abstract L-lattices, i.e. lattices which satisfy ∥x + y∥ = ∥x∥ + ∥y∥ for every
nonnegative vectors x, y ∈ X. Typical representatives of abstract L-spaces are the
Lebesgue spaces L1(Ω) where Ω is any measure space.

The following definition is introduced in [5].

Definition 2.2. Let r ∈ (0, 1]. A Banach lattice X is said to be r-order uniformly
noncreasy (r−OUNC) if for every u, v ∈ (1/2)BX we have either ∥|u| ∨ |v|∥ ≤ r or
for every y ∈ X the conditions |y| ≤ |u− v|, ∥y∥ ≥ r imply that ∥|u− v| − |y|∥ ≤ r.
A Banach lattice X is order uniformly noncreasy (OUNC) if it is r − OUNC for
some r ∈ (0, 1).

In [7] a generalization of the Riesz angle was introduced in the following way:

Definition 2.3. Let X be a Banach lattice and N ∈ N, N ≥ 2. The N -dimensional
Riesz angle of X is defined as

αN (X) = sup


∥∥∥∥∥ ∧
i,j=1,...,N

i̸=j

(xi ∨ xj)

∥∥∥∥∥ : x1, . . . , xN ∈ BX , x1, . . . , xN ≥ 0

 .

Of course αN (X) ≥ 1. Moreover, α2(X) = α(X) and αN (X) ≤ αN−1(X) for
every N ≥ 3. Hence αN (X) ≤ α(X). It was shown in [7] that

αN (X) ≤ N

N − 1
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for every Banach lattice X and every natural N ≥ 2.

The following class of Banach lattices was also introduced in [7].

Definition 2.4. Let r ∈ (0, 1]. A Banach latticeX is said to be r-N -order uniformly
noncreasy (r-N -OUNC) if for all u1, . . . , uN ∈ N−1

N BX such that ∥ui − uj∥ ≤ 1 we
have either ∥∥∥∥∥ ∧

i,j=1,...,N
i̸=j

(|ui| ∨ |uj |)

∥∥∥∥∥ ≤ r

or there exist i ̸= j such that for every y ∈ X the conditions |y| ≤ |ui−uj |, ∥y∥ ≥ r
imply ∥|ui − uj | − |y|∥ ≤ r.

A Banach latticeX isN -order uniformly noncreasy (N -OUNC) if it is r-N -OUNC
for some r ∈ (0, 1).

Weak orthogonality will also play a fundamental role in this paper. The following
definition was introduced by Borwein and Sims in [8].

Definition 2.5. A Banach lattice X is said to be weakly orthogonal if

lim inf
n→∞

lim inf
m→∞

∥|xn| ∧ |xm|∥ = 0

whenever (xn) is a sequence in X which converges weakly to 0.

This notion is generalized in [12]:

Definition 2.6. Let X be a subspace of a Banach lattice. We say that X is N -
weakly orthogonal if for every weakly null sequence (xn) ⊂ X we have

lim inf
nN→∞

. . . lim inf
n1→∞

∥|xnN | ∧ · · · ∧ |xn1 |∥ = 0.

A very important notion in this paper will be the Banach-Mazur distance of two
isomorphic Banach spaces X and Y , which is defined by the formula

d(X,Y ) = inf ∥S∥∥S−1∥

where the infimum is taken over all linear isomorphisms S of X onto Y .

Remark 1. Assume that X is a Banach lattice with Riesz angle α(X) and Y is a
Banach space isomorphic to X such that d(X,Y ) < d. Let U : Y → X be an
isomorphism such that ∥U∥ = 1, ∥U−1∥ ≤ d. Then, Y can be also considered
a Banach lattice defining y1 < y2 if U(y1) < U(y2). It is easy to check that
U(y1 ∧ y2) = U(y1) ∧ U(y2), U(y1 ∨ y2) = U(y1) ∨ U(y2) and U(|y|) = |U(y)|.
Thus, Y can be understood as a Banach lattice with Riesz angle α(Y ) ≤ dα(X).
Furthermore, we have ∥Uv∥ ≤ ∥v∥ ≤ d∥Uv∥ for every v ∈ Y . Let r ∈ (0, 1] and
assume that X is an r-N -OUNC Banach lattice. Let u1, . . . , uN ∈ N−1

N BY such

that ∥ui − uj∥ ≤ 1. Then, Uu1, . . . , UuN ∈ N−1
N BX and ∥Uui − Uuj∥ ≤ 1. If∥∥∥∥∥ ∧

i,j=1,...,N
i̸=j

(|ui| ∨ |uj |)

∥∥∥∥∥ > rd
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then, ∥∥∥∥∥ ∧
i,j=1,...,N

i̸=j

(|Uui| ∨ |Uuj |)

∥∥∥∥∥ > r.

Thus, there exists i ̸= j such that for every y ∈ X the conditions |y| ≤ |Uui−Uuj |,
∥y∥ ≥ r imply ∥|Uui − Uuj | − |y|∥ ≤ r. Thus, the conditions |U−1y| ≤ |ui − uj |,
∥U−1y∥ ≥ rd imply ∥|ui−uj |−|U−1y|∥ ≤ rd, which shows that Y is an rd-N -OUNC
Banach lattice.

In this paper we will consider some classes of generalized nonexpansive mappings,
which in general, are not continuous. However, we will always assume that these
mappings satisfy this weaker condition:

Definition 2.7. Let (M,d) be a metric space and let T : M → M be a mapping.
We will say that the graph of T is demiclosed at the diagonal if for every sequence
(xn) inM convergent to x ∈M such that limn d(xn, Txn) = 0 one has that x = Tx.

This notion is usually referred in the literature as strong demiclosedness of I −T
at 0. We prefer the above notation to avoid the use of the mapping I−T in a metric
space which is not necessarily a linear space.

Finally, we remind the following notions which are very useful in Fixed Point
Theory:

Definition 2.8. Let (M,d) be a metric space and T : M → M be a mapping. A
sequence (xn) in M is said to be an approximate fixed point sequence (afps) for T
if it satisfies

lim
n
d(xn, Txn) = 0.

Definition 2.9. A Banach space X is said to satisfy the weak fixed point property
(w-FPP) for a class of mappings F if for every convex weakly compact subset C of
X, every mapping T : C → C belonging to F has a fixed point.

3. Historical background

Due to Alspach’s example [2] it is known that Banach lattices do not, in gen-
eral, satisfy the w-FPP for nonexpansive mappings. In fact L1([0, 1]) is an abstract
L-lattice failing the w-FPP and so does the abstract M -lattice C([0, 1]) which iso-
metrically contains the previous space. The first results on Metric Fixed Point
Theory on Banach lattices were obtained by P. Soardi [29] precisely for the case
of abstract M -lattices and abstract L-lattices. However, we could say that Metric
Fixed Point Theory on Banach lattices was initiated by J. Borwein and B. Sims
in [8]. Their main result is the following:

Theorem 3.1. A Banach space X satisfies the w-FPP for nonexpansive mappings
if there exists a weakly orthogonal Banach lattice Y such that

d(X,Y )α(Y ) < 2.

In the case of abstract M -spaces, the existence of fixed points was studied in the
paper [13]. The most relevant result in this paper is the following:
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Theorem 3.2. Let Y be an abstractM -space which is p-weakly orthogonal. Assume
that X is Banach space which is isomorphic to Y and such that

d(X,Y ) <
p

p− 1
.

Then X has the w-FPP.

The results in [8] were extended in [5] to weakly orthogonal OUNC Banach
lattices:

Theorem 3.3. A Banach space X has the w-FPP for nonexpansive mappings if
there exists a weakly orthogonal r−OUNC Banach lattice Y such that d(X,Y )r < 1.
In particular, every weakly orthogonal OUNC Banach lattice X has the w-FPP for
nonexpansive mappings.

One of the most relevant generalization of nonexpansiveness, related to a converse
of the Banach Contraction Principle, has been given by T. Suzuki [30]:

Definition 3.4. Let (M,d) be a metric space. A mapping T : M → M is said to
satisfy condition (C) if

1

2
d(x, Tx) ≤ d(x, y) ⇒ d(Tx, Ty) ≤ d(x, y).

In the same paper, some results about existence of fixed point for this class of
mappings are proved (for instance, for Banach spaces satisfying the Opial condition).
S. Dhompongsa and A. Kaewcharoen in [10] extended Theorem 3.3 for continuous
mappings satisfying condition (C). Nominally, they proved:

Theorem 3.5. A Banach space X has the w-FPP for continuous mappings satis-
fying condition (C) if there exists a weakly orthogonal r − OUNC Banach lattice
Y such that d(X,Y )r < 1. In particular, every weakly orthogonal OUNC Banach
lattice X has the w-FPP for mappings satisfying condition (C).

Their result was generalized for the class of N -OUNC Banach lattices in [7]:

Theorem 3.6. A Banach space X has the w-FPP for continuous mappings satis-
fying condition (C) if there exists N ≥ 2 and a weakly orthogonal Banach lattice Y
such that d(X,Y )αN (Y ) < N

N−1 . In particular, every weakly orthogonal N−OUNC
Banach lattice X has the w-FPP for mappings satisfying condition (C).

A more general notion than condition (C) was defined in [17]:

Definition 3.7. Let (M,d) be a metric space and λ ∈ (0, 1). A mapping T :M →
M is said to satisfy condition (Cλ) if

λd(x, Tx) ≤ d(x, y) ⇒ d(Tx, Ty) ≤ d(x, y).

Some fixed point results for nonexpansive mappings were extended in [17] and
some other further papers ( [1, 6, 9, 15, 16, 19, 25]) to the setting of mappings satis-
fying condition (Cλ). In particular, Theorem 3.6 was extended to the class of all
continuous mappings satisfying condition (Cλ) in [4].

A further generalization of (Cλ)-condition was introduced in [11]:
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Definition 3.8. Let (X, d) be a metric space and K ⊂ X. We say that mapping
T : K → X is of Suzuki type if there exists a convex nondecreasing function
ψ : (0,∞) → (0,∞) such that

d(x, Tx)− ψ(d(x, Tx)) ≤ d(x, y) ⇒ d(Tx, Ty) ≤ d(x, y),

for all x, y ∈ K.

In [11] the authors extend some fixed point results for mappings satisfying condi-
tion (C) and condition (Cλ) to the setting of Suzuki type mappings. In particular,
they prove that spaces with normal structure satisfy the w-FPP for Suzuki type
mappings.

4. Some technical results

We will list in this section some previous fixed point results which will be neces-
sary tools in this paper.

Lemma 4.1 ([11, Lemma 2.4]). Let K be a closed, bounded and convex subset of a
linear normed space X and T : K → K a mapping of Suzuki type. Then,

inf{∥x− Tx∥ : x ∈ K} = 0,

i.e. there exists an apfs for T in K.

Theorem 4.2 ([11, Theorem 3.1]). Let K be a closed convex bounded subset of a
Banach space X. Assume that T : K → K is a mapping of Suzuki type such that the
graph is demiclosed at the diagonal. Then, at least one of the following statement
is true:

(1) T has a fixed point,
(2) For any afps {xn} for T in K and each x ∈ K we have

lim sup
n→∞

∥xn − Tx∥ ≤ lim sup
n→∞

∥xn − x∥.

The following condition, introduced in [25] lets obtain some consequences of the
previous theorem.

Definition 4.3. A mapping T : K → K satisfies condition (L) if the following two
conditions are fulfilled:

(1) If C ⊂ K is nonempty closed convex and T -invariant, then there exists an
afps for T in C.

(2) For any afps {xn} of T in K and each x ∈ K one has

lim sup
n→∞

∥xn − Txn∥ ≤ lim sup
n→∞

∥xn − x∥.

Thus, Lemma 4.1 and Theorem 4.2 give us the following:

Corollary 4.4. Let K be a closed convex bounded subset of a Banach space X. As-
sume that T : K → K is a mapping of Suzuki type such that the graph is demiclosed
at the diagonal. Then, at least one of the following statement is true:

(1) T has a fixed point,
(2) T satisfies condition (L).
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The following theorem can be understood as the counterpart of Goebel-Karlovitz
Lemma [18,21] for generalized nonexpansive mappings:

Theorem 4.5 ([25]). Let C be a nonempty weakly compact convex subset of a
Banach space X. Let T : C → C be a mapping satisfying condition (L). Let K be
a minimal invariant subset of C for T . Then there exists k ∈ R such that for any
afps {xn} for T in K and any x ∈ K,

lim sup
n→∞

∥xn − x∥ = k.

Hence, Corollary 4.4 and Theorem 4.5 let us conclude the following:

Corollary 4.6. Let C be a nonempty weakly compact convex subset of a Banach
space X. Let T : C → C be a mapping of Suzuki type such that the graph is
demiclosed at the diagonal and T is fixed point free. Let K be a minimal invariant
subset of C for T . Then there exists k > 0 such that for any afps {xn} for T in K
and any x ∈ K,

lim sup
n→∞

∥xn − x∥ = k.

5. Main lemmas

The following lemma can be seen as a counterpart of the Banach Contraction
Principle for mappings of Suzuki type.

Lemma 5.1. Let (M,d) be a complete metric space and let T : M → M be a
mapping satisfying

(I − ψ)(d(x, Tx)) ≤ d(x, y) ⇒ d(Tx, Ty) ≤ rd(x, y)

for all x, y ∈ M , where r ∈ (0, 1) and ψ : (0,+∞) → (0,+∞) is a nondecreasing
function. Assume that the graph of T is demiclosed at the diagonal. Then there
exists a (unique) fixed point of T .

Proof. Since for every x ∈M

(I − ψ)(d(Tx, x)) ≤ d(x, Tx),

then
d(T 2x, Tx) ≤ rd(Tx, x).

Fix u ∈ X and define a sequence (un) in M by un = Tnu. Then for all n ∈ N
d(un+1, un) ≤ rd(un, un−1)

and
d(un+1, un) ≤ rnd(Tu, u).

Hence limn→∞ d(un+1, un) = 0. Moreover, for m > n

d(um, un) ≤
m−1∑
i=n

d(ui, ui+1) ≤
m−1∑
i=n

rid(Tu, u),

which implies that (un) is a Cauchy sequence.
Since (M,d) is a complete metric space there exists z ∈M such that limn→∞ un =

z. Due to the demiclosedness of the graph we have z = Tz.
□
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The following lemma, inspired on Theorem 3.6 in [7] is the main tool in our paper.

Lemma 5.2. Let X be a Banach space and let K be a convex weakly compact subset
of X which is minimal invariant for a mapping T : K → K which is of Suzuki type
and such that the graph is demiclosed at the diagonal. Let {xn(1)}, . . . , {xn(N)} be
approximate fixed point sequences for T in K such that

lim
n→∞

∥xn(i)− xn(j)∥ = 1

for every i, j ∈ {1, . . . , N}, i ̸= j and

lim
n→∞

∥xn(i)− x∥ = 1

for every i ∈ {1, . . . , N} and every x ∈ K. Let λ1, . . . , λN be non-negative numbers

such that
∑N

k=1 λk = 1. Then, there exist an increasing sequence {nk} of positive
integers and an approximate fixed point sequence {zk} for T in K such that

lim
n→∞

∥xnk
(i)− zk∥ = 1− λi

for every i ∈ {1, . . . , N}.

Proof. For each n ∈ N, let
δn = max{∥xn(i)− Txn(i)∥ : i = 1, . . . , N}
dn = max{∥xn(i)− xn(j)∥ : i, j = 1, . . . , N, i ̸= j}.

Choose (εn) such that εn ∈ (0, 1) and limn→∞ εn = limn→∞
δn
εn

= 0. Let ηn =
1−εn
εn

δn. For n ∈ N, we put

Kn = {z ∈ K : ∥xn(i)− z∥ ≤ (1− λi)dn + ηn for all i = 1, . . . , N} .

All sets Kn are closed convex and nonempty because
∑N

k=1 λkxn(k) belongs to Kn.
Define a mapping Tn : Kn → K by

Tnz = (1− εn)Tz + εn

N∑
j=1

λjxn(j).

We will show that Tn maps Kn into Kn for large n. Let z ∈ Kn. Fix ε ∈ (0, 12).
There exists n0 ∈ N such that for all n ≥ n0

(I − ψ)(∥Txn(i)− xn(i)∥) ≤ ∥Txn(i)− xn(i)∥ ≤ ε

and
∥xn(i)− z∥ ≥ 1− ε.

Hence
(I − ψ)(∥Txn(i)− xn(i)∥) ≤ ε < 1− ε ≤ ∥xn(i)− z∥,

so for all n ≥ n0
∥Txn(i)− Tz∥ ≤ ∥xn(i)− z∥.

Using the equality (1− εn)δn = εnηn, we obtain

∥xn(i)− Tnz∥ =

∥∥∥∥∥∥(1− εn)(xn(i)− Tz) + εn

(
xn(i)−

N∑
j=1

λjxn(j)
)∥∥∥∥∥∥
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≤ (1− εn)(∥xn(i)− Txn(i)∥+ ∥Txn(i)− Tz∥)
+ εn

∑
j ̸=i

λj∥xn(i)− xn(j)∥

≤ (1− εn) (δn + (1− λi)dn + ηn) + εn(1− λi)dn

= (1− λi)dn + ηn.

This means that Tn(Kn) ⊂ Kn for every n ≥ n0.
Let

αn = inf
x∈Kn

∥x− Tnx∥.

We will show that lim infn→∞ αn = 0. Assuming the contrary, we can find α0 > 0
such that αn > α0 for every n larger than some n1 ≥ n0. Since limn→∞ εn = 0, there
exists n2 ≥ n1 such that for every n ≥ n2 we have εn diam(K) < min{α0

2 ,
1
8ψ(

α0
2 )}

and εnψ(diam(K)) < 1
2ψ(

α0
2 ).

Let n ≥ n2 and let x, y ∈ Kn be such that (I − 1
2ψ)(∥x − Tnx∥) ≤ ∥x − y∥. We

will show that ∥Tnx− Tny∥ ≤ (1− εn)∥x− y∥. First, note that

α0 ≤ ∥Tnx− x∥ ≤ (1− εn)∥Tx− x∥+ εn

∥∥∥∥∥
N∑
i=1

λixn(i)− x

∥∥∥∥∥
≤ ∥Tx− x∥+ εn diam(K)

≤ ∥Tx− x∥+ α0

2

and hence

∥Tx− x∥ ≥ α0

2
.

We have

∥x− y∥ ≥ (I − 1

2
ψ)(∥Tnx− x∥) = ∥Tnx− x∥ − 1

2
ψ(∥Tnx− x∥)

≥ ∥Tx− x∥ − 2εn diam(K)− 1

2
ψ((1− εn)∥Tx− x∥+ εn diam(K))

≥ ∥Tx− x∥ − 2εn diam(K)− (1− εn)
1

2
ψ(∥Tx− x∥)− εn

1

2
ψ(diam(K))

≥ (I − ψ)(∥Tx− x∥) + 1

2
ψ(∥Tx− x∥)− 2εn diam(K)− εn

1

2
ψ(diam(K))

≥ (I − ψ)(∥Tx− x∥) + 1

2
ψ
(α0

2

)
− 1

4
ψ
(α0

2

)
− 1

4
ψ
(α0

2

)
= (I − ψ)(∥Tx− x∥)

and thus

∥Tx− Ty∥ ≤ ∥x− y∥
so

∥Tnx− Tny∥ = (1− εn)∥Tx− Ty∥ ≤ (1− εn)∥x− y∥.
From Lemma 5.1 Tn has a fixed point xn in Kn, which contradicts our assumption
that αn > α0 > 0.
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We therefore see that lim infn→∞ αn = 0 and hence there exists subsequence {nk}
for which limk→∞ αnk

= 0. Choose zk ∈ Knk
so that ∥zk − Tnk

zk∥ ≤ αnk
+ 1

k . Thus

∥zk − Tzk∥ ≤ ∥zk − Tnk
zk∥+ ∥Tnk

zk − Tzk∥

≤ αnk
+

1

k
+ εnk

∥∥∥∥∥
N∑
i=1

λixnk
(i)− Tzk

∥∥∥∥∥
≤ αnk

+
1

k
+ εnk

diam(K).

This implies that limk→∞ ∥zk−Tzk∥ = 0. Taking again a subsequence, if necessary,
we have that there exists

lim
k→∞

∥xnk
(i)− zk∥ ≤ 1− λi

for all i = 1, . . . , N . □

6. Fixed points for Suzuki type mappings on r-OUNC Banach lattices

Now we extend the result from [4] for mappings of Suzuki type.

Theorem 6.1. Let C be a convex weakly compact subset of a Banach space X and
let T : C → C be a mapping of Suzuki type such that the graph is demiclosed at
the diagonal. If there exists a weakly orthogonal r′-N-OUNC Banach lattice Y such
that r′d(X,Y ) < 1, then T has a fixed point.

Proof. By Remark 1 we can assume that X is an r-N -OUNC Banach lattice where
r = r′d(X,Y ) < 1. Assume that the theorem is false. Then there exist a nonempty
weakly compact convex subset K of X and a mapping of Suzuki type T : K → K
which has no fixed point and such that the graph is demiclosed at the diagonal. We
can assume that K is minimal and T -invariant. By Lemma 4.1 there exists an afps
{xn} for T in K. By Corollary 4.6 we have ρ = limn→∞ ∥xn − x∥ for every x ∈ K.
There is no loss of generality in assuming that ρ = 1 and {xn} converges weakly to
0. In particular 0 ∈ K.

Choose ε > 0 such that r < 1−ε
1+ε . Similarly as in [7] we find subsequences

{xn(1)}, . . . , {xn(N)} of {xn} satisfying for all i, j = 1, . . . , N , i ̸= j

lim
n→∞

∥|xn(i)| ∧ |xn(j)|∥ = 0

and
lim
n→∞

∥xn(i)− xn(j)∥ = lim
n→∞

∥xn(i)− x∥ = 1

for i, j = 1, . . . , N , i ̸= j and x ∈ K. From Lemma 5.2 there exist subsequences
of {xn(1)}, . . . , {xn(N)}, denoted again {xn(1)}, . . . , {xn(N)}, and a sequence {zn}
such that for i = 1, . . . , N we have

lim
n→∞

∥zn − xn(i)∥ ≤ N − 1

N
and lim

n→∞
∥zn∥ = 1.

Thus, there exists n0 ∈ N such that for all natural n ≥ n0 and i, j = 1, . . . , N, i ̸= j
we have

∥xn(i)− xn(j)∥ ≤ 1 + ε, ∥xn(i)∥ > 1− ε/2,

∥xn(i)− zn∥ ≤ N − 1

N
(1 + ε),
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∥zn∥ > 1− ε/2,

∥|xn(i)| ∧ |xn(j)|∥ ≤ ε/(2N(N − 1)) < ε/2.

Fix n ≥ n0 and put un(i) = (zn − xn(i))/(1 + ε) and yn(i, j) = (|xn(i)| − |xn(i)| ∧
|xn(j)|)/(1 + ε) for i, j = 1, . . . , N, i < j. Then for all i, j = 1, . . . , N, i < j we have

∥un(i)∥ ≤ N − 1

N
and ∥un(i)− un(j)∥ ≤ 1.

Furthermore, since 1− ε/2 ≤ ∥xn(i)∥ we have

∥yn(i, j)∥ ≥(∥xn(i)∥ − ∥|xn(i)| ∧ |xn(j)|∥)/(1 + ε)

≥(1− ε/2− ε/2)/(1 + ε)

=(1− ε)/(1 + ε) > r.

By Lemma 2.1(iii) |yn(i, j)| ≤ |un(i) − un(j)| for i, j = 1, . . . , N, i < j. Moreover,
using again Lemma 2.1(iii), we have

∥|un(i)− un(j)| − |yn(i, j)|∥ =∥|xn(i)− xn(j)| − |xn(i)|+ |xn(i)| ∧ |xn(j)|∥/(1 + ε)

≥∥|xn(j)| − |xn(i)| ∧ |xn(j)|∥/(1 + ε)

≥(∥xn(j)∥ − ∥|xn(i)| ∧ |xn(j)|∥)/(1 + ε) > r

and

1− ε/2 < ∥zn∥

≤

∥∥∥∥∥∥∥
∧

i,j=1,...
i ̸=j

(|zn − xn(i)| ∨ |zn − xn(j)|)

∥∥∥∥∥∥∥
+

N∑
i,j=1
i ̸=j

∥|xn(i)| ∧ |xn(j)|∥

≤ (1 + ε)

∥∥∥∥∥∥∥∥
∧

i,j=1,...,N

i̸=j

(|un(i)| ∨ |un(j)|)

∥∥∥∥∥∥∥∥+ ε/2.

Thus ∥∥∥∥∥∥∥∥
∧

i,j=1,...,N

i ̸=j

(|un(i)| ∨ |un(j)|)

∥∥∥∥∥∥∥∥ > (1− ε)/(1 + ε) > r

which implies that X is not r −N −OUNC. □

Corollary 6.2. A Banach space X has the w-FPP for mappings of the Suzuki type
such that the graph is demiclosed at the diagonal if there exists N ≥ 2 and weakly
orthogonal Banach lattice Y such that d(X,Y )αN (Y ) < N

N−1 .

Corollary 6.3. Every weakly orthogonal N -OUNC Banach lattice has the w-FPP
for mappings of Suzuki type such that the graph is demiclosed at the diagonal.
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7. Fixed point for Suzuki type mappings on N-weakly orthogonal
Banach lattices

In this section we will extend the main result (Theorem 3.2) in [13] in two ways:
Firstly, Theorem 3.2 in [13] only applies for abstract M -lattices. We will prove its
validity for any arbitrary Banach lattice such that the Riesz angle has an appropriate
upper bound. Secondly, while (Theorem 3.2) in [13] is also proved for nonexpan-
sive mappings we will show that our more general version holds for Suzuki type
mappings.

Theorem 7.1. Let X be a Banach lattice which is N -weakly orthogonal, with Riesz
angle α. Let ϵk, . . . , ϵ0 be the binary expression of N , i.e.

N =

k∑
j=0

ϵj2
j

where ϵj ∈ {0, 1}. Denote

M =M(N,α) =

k∑
j=0

ϵj2
jα−j ≤ N

and choose ℓ = ℓ(N,α) such that

2ℓ−1 <
k∑

j=0

ϵj ≤ 2ℓ.

Assume that αℓ < M/(N − 1). Then, X satisfies the w-FPP for Suzuki type map-
pings such that the graph is demiclosed at the diagonal.

Proof. Denote

aj = 1− N − 1

Mαj

and note that

(7.1)

k∑
j=0

2jϵjaj =

k∑
j=0

2jϵj −
N − 1

M

k∑
j=0

(
2

α

)j

ϵj = N − N − 1

M
M = 1.

Furthermore

1 ≤ αl <
M

N − 1
≤ Mαj

N − 1
which implies aj > 0.

Denote
J = {j ∈ {0, 1, . . . , k} : ϵj = 1}.

Since N =
∑

j∈J 2
j , we can express the set {1, . . . , N} as

{a(i, j) : i = 1, . . . , 2j ; j ∈ J}.
Choose scalars λ(i, j) = aj for every i = 1, . . . , 2j and j ∈ J . By (7.1) we have that∑

j∈J

2j∑
i=1

λ(i, j) =
∑
j∈J

2jaj = 1.
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Choose δ > 0 small enough such that δ+αl N−1
M < 1 and assume, by contradiction,

that T fails to have a fixed point. By weak compactness, and using Zorn’s Lemma,
we can find a subset K of C which is convex weakly compact T -invariant and
minimal with these properties. By Lemma 4.1 there exists an approximate fixed
point sequence inK. By Lemma 4.6 there exists a number r such limn→∞ ∥un−x∥ =
r for every afps {un} of T in K and every x ∈ K. By multiplication we can assume
r = 1. Furthermore, by weak compactness and translation we can assume that {un}
is weakly null. Since X is N -weakly orthogonal we have

lim inf
nN→∞

. . . lim inf
n1→∞

∥|unN | ∧ · · · ∧ |un1 |∥ = 0.

Assume that {δn} is a null sequence of positive numbers. We can find xn1(1),
xn1(2), . . . , xn1(N) ∈ {un : n ∈ N} with ∥|xn1(1)|∧· · ·∧|xn1(N)|∥ ≤ δ1 and |∥xn1(i)−
xn1(j)∥−1| < δ1 for every i, j ∈ {1, . . . , N}, i ̸= j. Thus, by an induction argument,
we can construct subsequences {xns(1)}s∈N, {xns(2)}s∈N, . . . , {xns(N)}s∈N of {un},
which satisfy

∥|xns(1)| ∧ · · · ∧ |xns(N)|∥ ≤ δs
and |∥xns(i)− xns(j)∥ − 1| < δs for every i, j ∈ {1, . . . , N}, i ̸= j. Thus, we have

lim
s→∞

∥|xns(1)| ∧ · · · ∧ |xns(N)|∥ = 0

and lims→∞ ∥xns(i)− xns(j)∥ = 1 for every i, j ∈ {1, . . . , N}, i ̸= j.
Applying Lemma 5.2 we can take a subsequence of {ns}, again denoted {ns}, for

which there exists a sequence {zs} such that

lim sup
s→∞

∥zs − xns(a(i, j))∥ ≤ 1− λ(i, j)

for every j ∈ J and i = 1, . . . , 2j . Thus

lim sup
s→∞

∥zs − xns(a(i, j))∥ ≤ N − 1

Mαj

for every j ∈ J and i = 1, . . . , 2j .
Choose s large enough such that∥∥∥∥∥∥

∧
j∈J,i=1,...,2j

|xns(a(i, j))|

∥∥∥∥∥∥ ≤ δ.

By Lemma 2.1 we have

|zs| ≤
∨

j∈J,i=1,...,2j

|zs − xns(a(i, j))|+
∧

j∈J,i=1,...,2j

|xns(a(i, j))|

and so

∥zs∥ ≤

∥∥∥∥∥∥
∨

j∈J,i=1,...,2j

|zs − xns(a(i, j))|

∥∥∥∥∥∥+

∥∥∥∥∥∥
∧

j∈J,i=1,...,2j

|xns(a(i, j))|

∥∥∥∥∥∥
≤

∥∥∥∥∥∥
∨

j∈J,i=1,...,2j

|zs − xns(a(i, j))|

∥∥∥∥∥∥+ δ.
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Note that for every j ∈ J we have∥∥∥∥∥∥
2j∨
i=1

|zs − xns(a(i, j))|

∥∥∥∥∥∥ ≤ αj

 2j∨
i=1

∥zs − xns(a(i, j))∥


which implies that∥∥∥∥∥∥

∨
j∈J

2j∨
i=1

|zs − xns(a(i, j))

∥∥∥∥∥∥ ≤ αj+ℓ

∨
j∈J

2j∨
i=1

∥zs − xns(a(i, j))∥


because

∑
j∈J ϵj ≤ 2ℓ. Thus, taking limits, we obtain the contradiction

1 = lim
s→∞

∥zs∥ ≤ αj+ℓN − 1

Mαj
+ δ < 1.

□
Having in mind Remark 1, we easily obtain:

Corollary 7.2. Let X be a Banach lattice with Riesz angle α which is N -weakly
orthogonal and Y a Banach space isomorphic to X such that d(X,Y ) < r. Denote
M , ℓ as in Theorem 7.1 and assume that (rα)ℓ < M/(N − 1). Then Y satisfies
the w-FPP for mappings of Suzuki type such that the graph is demiclosed at the
diagonal.

Remark 2. Note that for N = 2, Corollary 7.2 recovers Corollary 6.2 and so, it
extends the results in [8] for nonexpansive mappings to the case of Suzuki type
mappings. Furthermore, for M -abstract spaces, i.e. Banach lattices such that
α(X) = 1, Theorem 7.1 and Corollary 7.2 recover and extend the results in [12,13]
for nonexpansive mappings to Suzuki type mappings.

Remark 3. Assume that X is 3-weakly orthogonal and denote α the Riesz angle of
X. Since M(3) = (2/α) + 1 and l(3) = 1, Theorem 7.1 implies that every mapping
of Suzuki type defined on a weakly compact convex subset of X has a fixed point if
2α < (2/α) + 1, or equivalently if

α <
1 +

√
17

4
.

Assume that X = C(ω2 + 1)⊕∞ ℓp where

p >
ln 2

ln(1 +
√
17)− 2 ln 2

.

It is easy to check that X is 3-weakly orthogonal and α = 21/p which implies

α <
1 +

√
17

4
due to the choice of p. It should be noted that the existence of fixed points for
this space, even in the case of nonexpansive mappings, cannot be deduced from
previous results in the literature on fixed point for nonexpansive mappings. Indeed,
the space X is not weakly orthogonal because it contains C(ω2+1) and it is known
(see [12, Theorem 3.4]) that the space C(K) is 2-weakly orthogonal if and only if
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the 2-derived set K(2) is empty (and note that (ω2 + 1)(2) is a singleton), and X is
not an abstract M -lattice because it contains ℓp and the Riesz angle α(ℓp) of any
ℓp-space is greater than 1.
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