
ISSN 2189-3764



362 J. M. BORWEIN AND S. B. LINDSTROM

Figure 1. The real branches of the Lambert W function.

1.1. The power of naming. In the current mathematical world, it matters less
what you know about a given function than whether your computer package of
choice (say Maple, Mathematica or SAGE ) or online source, say Wikipedia [26]
does. We illustrate this first with the Meijer G function (see, for example, [27])
before focusing in more detail on W. Our intent in so doing is not to wander far
afield of our principal focus on W but rather to illuminate the role of computer
assisted discovery in the modern research climate by highlighting its important
role in solving optimization problems with special functions in general. With this
motivation of emphasizing the computational role, we can then begin our serious
attack on W.

1.2. Meeting Meijer-G. The Meijer-G function is very useful, if a bit difficult for
a human to remember the exact definition for. Often one’s computer can help. In
2002, Nick Trefethen, as described in [3], published a list of ten numerical challenge
problems in SIAM Review. The ninth problem is in optimization.

Example 1.1 (Trefethen’s ninth problem [3]). The problem is posed as follows.

The integral

I(α) =

∫ 2

0
[2 + sin(10α)]xα sin

(
α

2− x

)
dx

depends on the parameter α. What is the value α ∈ [0, 5] at which
I(α) achieves its maximum?

Answer. I(α) is expressible in terms of a Meijer-G function: a special function
with a solid history that lets us solve the problem. While researchers who have
prior experience with these special functions may come to the same conclusions by
hand, Mathematica and Maple will figure it out as well. As in Figure 2, help files, a
web search, or Maple’s Function Advisor then inform the scientist. This is another



LAMBERT W IN OPTIMIZATION 363

Figure 2. What Maple knows about Meijer-G.

measure of the changing environment: naiveté need no longer impair to the same
extent when the computer may aid in the discovery. It is usually a good idea—and
not at all immoral—to data mine. The exact form of I(α) as given by Maple is in
Equation 1.3.

(1.3) I(α) = 4
√
π Γ(α)G3,0

2,4

(
α2

16

∣∣∣∣ α+2
2 , α+3

2
1
2 ,

1
2 , 1, 0

)
[sin(10α) + 2] .

If the Meijer-G function is well implemented, one can use any good numerical op-
timiser. The authors of [19] have written about the use of special functions for
integration and credit Michael Monagan and Greg Fee with the original implemen-
tation in Maple.



364 J. M. BORWEIN AND S. B. LINDSTROM

Figure 3. The complex moment function M4 as drawn from (1.5)
in the Calendar Complex Beauties 2016.

Example 1.2 (Moments of random walks [11]). The moment function of an n−step
random walk in the plane is:

Mn(s) =

∫
[0,1]n

∣∣∣∣ n∑
k=1

e2πxki

∣∣∣∣sd(x1, . . . , xn−1, xn).

The first breakthrough in our study of short random walks [11] is given in The-
orem 1.3.

Theorem 1.3 (Meijer-G form for M3). For s not an odd integer,

(1.4) M3(s) =
Γ(1 + s

2)√
π Γ(− s

2)
G21

33

(
1, 1, 1

1
2 ,−

s
2 ,−

s
2

∣∣∣∣14
)
.

Equation (1.4) was first found by Crandall via CAS and proven using residue calculus
methods.

Indeed, M3(s) is among the first non-trivial higher order Meijer-G functions to
be placed in closed form. We were then led to the results of Theorem 1.4.

Theorem 1.4 (Meijer form for M4). For ℜs > −2 and s not an odd integer

(1.5) M4(s) =
2s

π

Γ(1 + s
2)

Γ(− s
2)

G22
44

(
1, 1−s

2 , 1, 1
1
2 − s

2 ,−
s
2 ,−

s
2

∣∣∣∣1
)
.

Armed with these two results we were ready to mount our serious attack on the
moment functions and corresponding densities. This led to such useful results as a



LAMBERT W IN OPTIMIZATION 365

closed hypergeometric form for the radial density of a three-step walk:

p3(α) =
2
√
3α

π (3 + α2)
2F1

(
1
3 ,

2
3

1

∣∣∣∣α2
(
9− α2

)2
(3 + α2)3

)
.

The Meijer-G function has been instrumental in producing a new result on a
hundred-year-old topic.

Of course, many special functions are unknown to most of us. We list, for exam-
ple, the Painlevé transcendents [18], the Lerch transcendent, and the Heun equa-
tions. In each of these cases the CAS can enlighten us.

2. Knuth’s Series Problem: Experimental mathematics and W

We continue with an account of the solution in [5], to a problem posed by Donald
E. Knuth of Stanford in the November 2000 issues of the American Mathematical
Monthly. See [21] for the published solution. We initially follow the discussion in
[5] quite closely.

Problem 10832 Evaluate

S =

∞∑
k=1

(
kk

k!ek
− 1√

2πk

)
.

Solution: We first attempted to obtain a numerical value for S. Using Maple, we
produced the approximation

S ≈ −0.08406950872765599646.

Based on this numerical value, the Inverse Symbolic Calculator, available at the
URL http://isc.carma.newcastle.edu.au/, with the “Smart Lookup” feature,
yielded the result

S ≈ −2

3
− 1√

2π
ζ

(
1

2

)
.

Calculations to even higher precision (50 decimal digits) confirmed this approxima-
tion. Thus within a few minutes we “knew” the answer.

Why should such an identity hold? One clue was provided by the surprising
speed with which Maple was able to calculate a high-precision value of this slowly
convergent infinite sum. Evidently, the Maple software knew something that we
did not. Peering under the hood, we found that Maple was using the Lambert W
function, which, as we know, is the functional inverse of z → zez.

Another clue was the appearance of ζ(1/2) in the above experimental identity,
together with an obvious allusion to Stirling’s formula in the original problem. This
led us to conjecture the identity

∞∑
k=1

(
1√
2πk

− (1/2)k−1

(k − 1)!
√
2

)
=

1√
2π

ζ

(
1

2

)
,

where (x)n denotes x(x+1) · · · (x+n−1), we say “x to the n rising,”[20] and where
the binomial coefficients in the LHS of (2.1) are the same as those of the function
1/

√
2− 2x. Moreover, Maple successfully evaluated this summation, as shown on



366 J. M. BORWEIN AND S. B. LINDSTROM

the RHS and as is further discussed in Remark 2.1. We now needed to establish
that

∞∑
k=1

(
kk

k!ek
− (1/2)k−1

(k − 1)!
√
2

)
= −2

3
.

Guided by the presence of the Lambert W function, as in (1.1),

W(z) =
∞∑
k=1

(−k)k−1zk

k!
,

an appeal to Abel’s limit theorem suggested the conjectured identity

lim
z→1

(
dW(−z/e)

dz
+

1√
2− 2z

)
=

2

3
.(2.1)

Here again, Maple was able to evaluate this limit and establish the identity (2.1)

which relies on the following reversion [16]. Let p =
√

2(1 + ez) with z = WeW , so
that

p2

2
− 1 = W exp(1 +W) = −1 +

∑
k≥1

(
1

k!
− 1

(k − 1)!

)
(1 +W)k

and revert to

1 +W = p− p2

3
+

11

72
p3 + . . .

for |p| <
√
2. Now (1.2) lets us prove (2.1). □

As can be seen from this account, the above manipulation took considerable
human ingenuity, in addition to computer-based symbolic manipulation. We in-
clude this example to highlight a challenge for the next generation of mathematical
computing software—these tools need to more completely automate this class of op-
erations, so that similar derivations can be accomplished by a significantly broader
segment of the mathematical community.

Remark 2.1 (ζ(s) for 0 < s < ∞, s ̸= 1). More generally, for 0 < Re s < 1 in the
complex plane, we discovered empirically that

∞∑
k=1

(
1

ks
− Γ (k − s)

Γ (k)

)
= ζ (s) .

Now Maple’s summation tools can reduce this to

N∑
k=1

1

ks
− Γ (N + 1− s)

(1− s) Γ (N)
→ ζ(s).

For any given rational s ∈ (0,∞) Maple will evaluate the limit by the Euler-
Maclaurin method. Consulting the DLMF at http://dlmf.nist.gov/25.2#E8 we
discover

ζ(s) =

N∑
k=1

1

ks
+

N1−s

s− 1
− s

∫ ∞

N

x− ⌊x⌋
xs+1

dx.



LAMBERT W IN OPTIMIZATION 367

Figure 4. The function κ to the left and right of s = 1/2.

Since the integral tends to zero for s > 0 and

lim
N→∞

Γ (N + 1− s)

(1− s) Γ (N)
− N1−s

1− s
= 0,

we can also produce an explicit human proof.

We end this section with an open question:

Question 1. Can one find an extension of (2.1) for general s ̸= 1/2 in (0, 1)? Based

on (2.2) and the Stirling approximation for Γ(k + s) ≈
√
2π e−kkk+s−1/2 we obtain

∞∑
k=1

(
1√
2πks

− kk+1/2−s

k! ek

)
− ζ (s)√

2π
= κ (s) .

We have that κ(1/2) = 2/3, but it remains to evaluate κ(s) ∈ R more generally, as
drawn in Figure 4.

For s ̸= 1/2 we have not found an analogue to (2.1), and there is no reason to be
sure such an analog exists. Numerically to 25 places we record:

κ(1/3) = 0.5051265122136281644488407

κ(2/3) = 1.044357456635617976159955

κ(1/4) = 0.4742404657846664773555294

κ(3/4) = 1.435469800298317747887340

κ(1/6) = 0.4899050094518209209997454

κ(5/6) = 2.226651254233652670106746.

Thus our question is closely allied to that of asking whether

W(x; s) =

∞∑
k=1

kk+1/2−s

k!
xk

for s ̸= 1/2, can be analysed in terms of W.



368 J. M. BORWEIN AND S. B. LINDSTROM

3. The convex analysis of W (as a real function)

The Maple package Symbolic Convex Analysis Tools, or SCAT, which performs
convex analysis symbolically, and its partner CCAT (which performs convex anal-
ysis numerically) are described in [7] and are available together at http://carma.
newcastle.edu.au/ConvexFunctions/SCAT.ZIP. We refer to [8, 12, 14] for any
background convex analysis not discussed herein.

3.1. Basic properties.

(1) W is concave on (−1/e,∞) and positive on (0,∞).
(2) (log ◦W)(z) = log(z)−W(z) is concave, as W is log concave on (0,∞).
(3) (exp ◦W)(z) = z/W(z) is concave.

In order to prove these, we will make use of the following lemma, which is quite
convenient.

Lemma 3.1. An invertible real valued function f with domain X ⊂ R is concave if
its inverse function f−1 is convex and monotone increasing on its domain f−1(X).

Proof. Other variations of this result are readily available (see, for example, [24]),
and it is often left as an exercise in texts (see, for example, [15, Exercise 3.3]). Let
x, y ∈ X. By the bijectivity of the function f , there exist u, v such that f−1(u) = x
and f−1(v) = y. Thus we have that

f(λx+ (1− λ)y) = f(λf−1(u) + (1− λ)f−1(v)).

By the convexity of f−1, we have that

(3.1) λf−1(u) + (1− λ)f−1(v) ≤ f−1(λu++(1− λ)v)

Since f−1 is monotone increasing, f is monotone increasing. Using this fact together
with Equation 3.1 shows that

(3.2) f(λf−1(u) + (1− λ)f−1(v)) ≤ f(f−1(λu++(1− λ)v)) = λu+ (1− λ)v.

Finally, we have

λu+ (1− λ)v = λf(x) + (1− λ)f(y).

This result greatly simplifies the following propositions. □

Corollary 3.2. An invertible real valued function f with domain X ⊂ R is concave
if its inverse function f−1 is convex and monotone decreasing on its domain f−1(X).

Proof. The proof is the same as that of Lemma 3.1 with the exception that the
direction of the inequality is reversed in Equation (3.2) beause the inverse is now
decreasing instead of increasing. □

Proposition 3.3. W is concave on (−1/e,∞).

Proof. Notice that W−1((1e ,∞)) = (−1,∞). By Lemma 3.1, it suffices to show that
the inverse of W is convex and monotone increasing on (−1,∞). Since the inverse
of W is xex, we differentiate; the convexity and monotonicity are clear from the fact
that the first two derivatives are both positive on the entire domain. □



LAMBERT W IN OPTIMIZATION 369

Definition 3.4. A function f is called logarithmically concave if it is strictly greater
than zero on its domain and log ◦f is concave. Similarly f is called logarithmically
convex if it is strictly greater than zero on its domain and log ◦f is convex.[15]

Remark 3.5. The function (log ◦W)(z) = log(z) −W(z) is concave. This is true
since W is concave and its restriction to (0,∞) = dom(log ◦W) is strictly greater
than zero everywhere.

Proposition 3.6. The function given by (exp ◦W)(x) = x/W(x) is concave.

Proof. Consider the inverse of this function

log(x)elog(x) = x log(x).

Again, by Lemma 3.1, it suffices to show that this function is convex and monotone
increasing on its domain (1e ,∞). Differentiating, we again find that both the first
and second derivatives are strictly greater than zero, showing the result. □

Proposition 3.7. (exp ◦(−W))(x) = W(x)/x is convex.

Proof. By Corollary 3.2, it suffices to show that the inverse function

− log(x)e− log(x) = − log(x)/x

is convex and decreasing on its domain (0, e). Indeed, on this interval the first
derivative is always negative and the second always positive, showing both traits.

□

3.2. The convex conjugate. The convex conjugate — or Fenchel–Moreau–
Rockafellar conjugate or dual function — plays much the role in convex analysis
and optimization that the Fourier transform plays in harmonic analysis. For a
function f : X → [−∞,∞] we define

f∗ : X∗ → [−∞,∞] by(3.3)

f∗(y) = sup
x∈X

{⟨y, x⟩ − f(x)}.

The function f∗ is always convex (if possibly always infinite), and if f is lower
semicontinuous, convex and proper then f∗∗ = f. In particular if we show a function
g = f∗ then g is necessarily convex.

Directly from (3.3) we have the Fenchel-Young inequality, for all y, x

f∗(y) + f(x) ≥ ⟨y, x⟩.

Thus, for 1/p + 1/q = 1 with p, q > 0, we have that the dual to the function

f(x) = |x|p
p is f∗(y) = |y|q

q . We also have that the energy function defined by

(3.4) f(x) =
|x|2

2

is the only self-conjugate function.
We also have another dual pair which we will make use of several times. For

the function f(x) = exp(x), we have f∗(y) = y log(y)− y. We call y log(y)− y the
(negative) Boltzmann-Shannon entropy. Conversely, since exp is a convex function,



370 J. M. BORWEIN AND S. B. LINDSTROM

Figure 5. Here the construction of f∗ is shown for the function
f(x) = (1/4)x4 − (1/3)x3 − (1/2)x2. The real-valued inputs of f∗

may be thought of as the slopes of the lines through the origin in each
image. For each input, we can imagine obtaining the corresponding
output by taking a line parallel to the one through the origin and
sliding it down as far away from the original line as as it can go while
still touching the curve of the function f . The output is represented
by the vertical distance between the two lines. This and several other
graphical examples may be found in [22].

we also have that exp is the conjugate of the Boltzmann-Shannon entropy. We may,
for the sake of simplicity, express convex conjugacy in the following way:

(exp)∗(y) = y log(y)− y(3.5)

(x log(x)− x)∗(y) = exp(y).

Here the star indicates that the function under consideration is the convex conjugate
of that enclosed in the brackets. Another important example is the log barrier
f(x) = − log x for x > 0 with conjugate f∗(y) = −1− log y for x < 0. Notice that
this is essentially self dual on changing x to −x. These conjugates can be computed
directly from the definition, as illustrated below in Example 3.8, or in the SCAT
software package.

The convex conjugate produces a duality between compactness of lower level sets
and continuity, between strict convexity and differentiability, and also much else
[12, Ch. 4]. We illustrate this for the energy (3.4), negative entropy (3.5), and log
barrier in Figure 6.

Expressed in the same form as specified in Equation (3.5), an apparently new
dual pair is

(−W)∗(x) =

{
W
(
1−W(−e/x)
xW(−e/x)

)
+ 1

W(−e/x) − 1 if x < 0

∞ otherwise
.



LAMBERT W IN OPTIMIZATION 371

Figure 6. The energy, log barrier and negative entropy (L) and
duals (R).

.

Once a computationally effective closed form is available, all of classical convex
duality theory is accessible. This is illustrated for W in Section 4 and Section 5.

The convex conjugate also exchanges addition of functions with their infimal
convolution

(f □ g)(y) = inf
x∈X

{f(y − x) + g(x)}.

Indeed (f □ g)∗ = f∗ + g∗ always holds, and, under mild hypotheses,

(f + g)∗ = f∗□ g∗.

See [8, 12, 14] for details.

3.3. The convex conjugate for log convex functions. We next consider the
conjugate exponents of log convex functions. These functions appear frequently in
statistical settings. Recalling Definition 3.4, we may think of a log convex function
g as being equal to exp ◦f for some convex function f . Explicitly,

g(x) = ef(x)

The Gamma function is a nice example of such a function. Recalling Equation (3.3),
the convex conjugate g∗ is just

(3.6) g∗(y) = sup
x∈X

{yx− ef(x)}.

By differentiating the inner term yx − ef(x) and setting equal to zero to find the
point at which the function is maximized, we obtain

(3.7) y = f ′(x)ef(x).

If we can solve this equation for x = s(y), we will be able to write the conjugate
function more clearly as

g∗(y) = y · s(y)− g(s(y))

How nice the answer is depends on how well this expression simplifies.



372 J. M. BORWEIN AND S. B. LINDSTROM

Example 3.8. A first and lovely example is:

(exp ◦ exp)∗ (y) =


y (log y −W(y)− 1/W(y)) y > 0

−1 y = 0

∞ y < 0

We will deduce this in the way described above.

Starting from the definition,

g∗(y) = sup
x∈R

{yx− ee
x},

we take the derivative of the inner term on the right and set equal to zero to obtain

y = ex · eex .

Notice that what we have here is just ex = W(y) and so we may actually solve for
x explicitly as follows:

x = (log ◦W)(y).

Thus we can substitute back into the original equation and have our closed form
solution

(3.8) g∗(y) = y · (log ◦W)(y)− eW(y) = y(log(y)−W(y))− y/W (y).

Example 3.9. A second example is related to the normal distribution. We take:

g(x) = e
x2

2 for all x,

and we have that

g∗(y) = |y|

(√
W(y2)− 1√

W(y2)

)
for all y.

We derive this below.

We can compute this result in the same way. Starting with the definition

(3.9) g∗(y) = sup
x∈R

{yx− e

(
x2

2

)
}.

Differentiating and setting equal to zero, we obtain

(3.10) y = x · e
(

x2

2

)
Squaring both sides, we have y2 = x2 ·ex2

. We can now see a way to use the Lambert
W function: x2 = W(y2). Thus we arrive at an expression for x:

x = sign(y) ·
√

W(y2).

This we can work with. If we instead asked Maple to solve Equation (3.10) for x,
it gives us the solution

x = y · e−
1
2
W (y2).



LAMBERT W IN OPTIMIZATION 373

We can easily check to see this is an equivalent expression. Recall, as first noted in
Proposition 3.6, that (exp ◦W)(x) = x/W(x). Thus we may write

e−
1
2
W (y2) =

(
eW(y2)

)− 1
2
=

(
y2

W(y2)

)− 1
2

=

√
W(y2)

y2
=

√
W(y2)

|y|
.

Thus we have that

y · e−
1
2
W (y2) = y ·

√
W(y2)

|y|
= sign(y)

√
W(y2).

Since we have an expression for x in terms of y, we can substitute back into the
original formulation from Equation (3.9) to obtain our closed-form expression

(3.11) g∗(y) = |y|
√
W(y2)− exp

(
|W (y2)|

2

)
.

We can simplify this even further. W(y2) is always positive since y2 is always
positive, so we can lose the absolute value signs in the right most term and further
simplify it as follows:

exp

(
|W (y2)|

2

)
=
√

eW(y2) =

√
y2

W(y2)
= |y| 1√

W(y2)

Thus Equation (3.11) simplifies to

(3.12) g∗(y) = |y|

(√
W(y2)− 1√

W(y2)

)
.

We can check this answer using SCAT. We ask Maple to compute

n1:=convert(exp((x^2)/2),PWF);Conj(n1,y);

which yields the answer {
|y|W (y2)− 1√

W (y2)
all(y).

This matches our solution for g∗(y) from Equation (3.12).

3.4. Conjugate of exp ◦f , II. Let us now unpack Examples 3.8 and 3.9 in more
generality. Suppose we desire to find the convex conjugate of a function of the form
g(x) = (exp ◦f)(x) where f is either invertible (such as in Example 3.8) or locally
invertible (as in Example 3.9). Then, if we can first solve the equation

(3.13) f ′(x)α+1 = γf(x)

for any α and nonzero γ, we will be able to express g∗ in closed form by using the
W function. To see why this is so, recall from Equation (3.7) that, for a function of
the form g(x) = (exp ◦f)(x), we can obtain a closed-form of the convex conjugate

if we can solve for x in the equation y = f ′(x)ef(x). Now suppose that we can solve
Equation (3.13). Then we can raise both sides of Equation (3.7) to the power α+1
to obtain

yα+1 = f ′(x)α+1e(α+1)f(x) = γf(x)e(α+1)f(x).



374 J. M. BORWEIN AND S. B. LINDSTROM

We can then multiply both sides by α+1
γ to obtain

(α+ 1)
yα+1

γ
= (α+ 1)f(x)e(α+1)f(x).

Now we can see how to use the W function:

(α+ 1)f(x) = W
(
(α+ 1)

yα+1

γ

)
.

We thus arrive at the solution

f(x) =
W
(
(α+ 1)y

α+1

γ

)
α+ 1

x = b

W
(
(α+ 1)y

α+1

γ

)
α+ 1

, y


where b(z, y) = f−1(z) in the case where f is invertible and b(z, y) is the pre-image
choice f−1(z) such that z · y is maximized otherwise. In the case where f is convex,
there will be at most two such pre-image choices; we are excluding the case where f
is a constant function because, in that case, γ = 0 (note that the convex conjugate
is then trivial). We can substitute this back into Equation (3.6) to obtain:

g∗(y) = y · b(d(y), y)− (exp ◦d)(y) where(3.14)

d(y) =
W
(
(α+ 1)y

α+1

γ

)
α+ 1

In the case of Example 3.8, immediately b(z, y) = f−1(z) = log(z). In the case

of f(x) = |x|p
p (as in Example 3.9), we have

b(z, y) =

{
(p · z)

1
p if y ≥ 0

−(p · z)
1
p if y < 0

.

We can further simplify Equation (3.14) by again using the fact that (exp ◦W)(x) =
x/W(x):

(exp ◦d)(y) = exp

(
W
(
(α+ 1)

yα+1

γ

)) 1
α+1

=

 (α+ 1)y
α+1

γ

W
(
(α+ 1)y

α+1

γ

)
 1

α+1

.

Thus Equation (3.14) simplifies to

(3.15) g∗(y) = y · b

W
(
(α+ 1)y

α+1

γ

)
α+ 1

, y

−

 (α+ 1)y
α+1

γ

W
(
(α+ 1)y

α+1

γ

)
 1

α+1

.

Since this form is quite explicit, we may well ask for what kind of function f we can
solve Equation (3.13).



LAMBERT W IN OPTIMIZATION 375

Here Maple is again useful, though a pencil-and-paper separation of variables
computation will arrive at the same place. We use the built-in differential equation
solver dsolve, subject to appropriate conditions on the parameters f(0) = β,

dsolve({(diff(f(x), x))^(alpha+1) = gamma*f(x),f(0)=beta}, f(x))

and Maple provides the result

f (x) =

(
1

α+ 1

(
αxγ(α+1)−1

+ e
α ln(β)
α+1 α+ e

α ln(β)
α+1

))α+1
α

.

In the limit as α → 0, Maple returns f(x) = β(exp(γx)) which we recognize as the
familiar form of Example 3.8. Also, if we let

α = 1, and γ = 2

and ask Maple for the limit as β approaches 0, we recover our familiar function

f(x) = x2

2 from Example 3.9. Thus, we have obtained a large class of closed forms

from which f(x) = β · exp(γx) (as in Example 3.8) and f(x) = |x|p
p , (p > 1) (as in

Example 3.9) arise as special limiting cases. These are the two cases where the final
closed forms of g∗ turn out to be particularly clean and pleasant.

We consider first the explicit closed form of the convex conjugates for functions
of form β · exp(γx). Because g(γx) has convex conjugate g∗(xγ ) (see [8, Table 3.2]),

it suffices to simply show the form for the case γ = 1. In this case, α + 1 = 1, so
the form of the convex conjugate simplifies to

g∗(y) =


y
(
log (y)−W (y)− 1

W(y) − log(β)
)

if y > 0

−1 if y = 0

∞ if y < 0

.

This can be easily compared to Equation (3.8) from Example 3.9 in which case we
had γ = 1. Indeed, the conjugate of βf(γx), β > 0 is always easily computed from
that of f .

Turning our attention to functions of the general form f(x) = |x|p
p , (p > 1), we

have that α+ 1 = p
p−1 and γ = p, so Equation (3.15) becomes

(3.16) g∗(y) = |y|


(
(p− 1)W

(
|y|

p
p−1

p− 1

)) 1
p

−

 1

(p− 1)W
(

|y|
p

p−1

p−1

)


p−1
p

 .

Compare this more general form of the convex conjugate to that for the specific
case p = 2 which we saw in Equation (3.12) from Example 3.9. We can also rewrite
the convex conjugate using the conjugate exponent q. Where 1

q + 1
p = 1, we have

q = p
p−1 and p

q = p− 1, so Equation (3.16) becomes

(3.17) g∗(y) = |y|

((
p

q
W
(
q

p
|y|q
)) 1

p

−
(
p

q
W
(
q

p
|y|q
))− 1

q

)
.

These simpler forms make the conjugates much easier to analyse and to compute.



376 J. M. BORWEIN AND S. B. LINDSTROM

Figure 7. Here Example 3.12 is illustrated: f is non convex and f∗

is not smooth.

Remark 3.10. Suppose f is variable separable. That is to say that

f(x1, x2, . . . , xn) =

n∑
j=1

fj(xj)

where each fj is convex. Then f is convex and

f∗(y1, y2, . . . yn) =

n∑
j=1

f∗
j (yj).

From such building blocks and the Fenchel duality theorem [8, 12, 14] many other
convex conjugates engaging W are accessible.

The conjugate has many and diverse uses. For instance, one can establish the
convexity of a function through the smoothness of its conjugate. In Proposition 3.11
we explore one such situation which arises as a special case of [12, Cor 4.5.2].

Proposition 3.11. Suppose f : X → (−∞,+∞] is such that f∗∗ is proper. Suppose
f∗ is Fréchet differentiable and f is lower semicontinuous. Then f is convex.

Example 3.12. We illustrate Proposition 3.11 for

f(x) = 2 |x| log (2 |x|)− 2 |x|+ 1

which has convex conjugate

f∗(y) =

{
exp

(y
2

)
− 1 if y ≥ 0

exp
(
−y

2

)
− 1 if y < 0

.

More simply, f∗(y) = exp(|y|/2) − 1. This is drawn in Figure 7. The function f∗∗

is the convex hull of f . It is zero on the interval [−1/
√
2, 1/

√
2] and agrees with f

elsewhere.

For more connections between the Boltzmann-Shannon entropy and the Lambert
W function, see [10, p. 180].



LAMBERT W IN OPTIMIZATION 377

4. Occurrences in Composition, Homotopy, and Infimal Convolution

Rather than computing the conjugate ab initio we may use one of many convex
calculus rules. We choose one such rule from [8, 4.3 Exercise 12] which is especially
nice for log convex functions.

Theorem 4.1 (Conjugates of Compositions [8]). Consider the convex composition
h ◦ g of a nondecreasing convex function h : (−∞,∞] → (−∞,∞] with a convex
function f : X → (−∞,∞]. We interpret f(+∞) = +∞, and we assume there is a
point x̂ in X satisfying f(x̂) ∈ int dom(h). Then for ϕ in X∗,

(h ◦ f)∗(ϕ) = inf
t≥0

{
h∗(t) + tf∗

(ϕ
t

)}
,

where we interpret

0f∗
(ϕ
0

)
= ι∗domf (ϕ)

in terms of the convex indicator function ι∗domf which is zero on domf and is +∞
otherwise.

We may use Theorem 4.1 with

h(t) = exp(t)

h∗(t) = t log t− t (the Boltzmann-Shannon entropy)

to compute the conjugate for g(x) = (exp ◦f)(x) with various f . We will do so in
the following few examples.

Example 4.2 (Composition: Conjugate of exp ◦f III). Consider again the case of
the function

g(x) = exp

(
|x|p

p

)
for (p > 1)

as in Example 3.9. Keeping the same notation as Theorem 4.1, let

h(x) = exp(x)

f(x) =
|x|p

p
.

Then we have that

h∗(x) = x log x− x (the Boltzmann-Shannon entropy)

f∗(x) =
|x|q

q
where

1

p
+

1

q
= 1.

Since g = h ◦ f , we may solve for g∗ by solving (h ◦ f)∗. From Theorem 4.1 we have
that, for ϕ ̸= 0,

(h ◦ f)∗(ϕ) = inf
t≥0

{
h∗(t) + tf∗

(ϕ
t

)}
= inf

t≥0

{
t log t− t+ t

(
|ϕ|
t

)q

/q
}
.

Thus, if we can find a solution for t = s(p, ϕ) which minimizes

(4.1) t log t− t+ t

(
|ϕ|
t

)q

/q,



378 J. M. BORWEIN AND S. B. LINDSTROM

we will be able to substitute s(p, y) for t and obtain a closed form for g∗, namely:

g∗(y) = s(p, y) ·
(
log |s(p, y)| − 1 +

1

q

(
|ϕ|

s(p, y)

)q)
.

Differentiating Equation (4.1) with respect to t, setting the differentiated form equal
to zero, and solving for t, we arrive at the optimal

t = s(p, y) = exp

(
W ((q − 1)|y|q)

q

)
.

We may then substitute this value back into the objective function in Equation (4.1)
to obtain our closed form for g∗. The output from Maple appears quite com-
plicated, but this solution may be checked to be equivalent to that expressed in
Equation (3.17).

Any positively p-homogeneous convex function can be similarly treated.

Example 4.3 (Homotopy). Consider

ft(x) = (1− t)(x log x− x) + t
x2

2
(4.2)

for 0 ≤ t < 1 so that f0 is the Shannon entropy and f1 is the energy. We arrive at

f∗
t (y) =

(1− t)2

2t

W

 t

1− t
e

y

1− t

+ 2

W

 t

1− t
e

y

1− t

 .(4.3)

In the limit at t = 1 we recover the positive energy which is infinite for y < 0. In
the limit at t = 0 we reobtain x log(x)− x.

We will return to this function in Section 5.

Example 4.4 (Infimal Convolution). Consider the infimal convolutions

gµ = (x → x log(x)− x)□
(
x → µx2

2

)
for µ > 0. This family is also called the Moreau envelope of x log(x) − x. Then,
using the InfConv command in SCAT we arrive at

gµ(y) =
µ

2
y2 − 1

µ
W(µeµy)− 1

2µ
W(µeµy)2.

and gµ is fully explicit in terms of W.

In Figure 8 we show how the infimal convolution produces a regularisation of
everywhere finite approximations whose epigraphs converge back to that of x log x−
x as µ → +∞. This is a special case of theMoreau-Yosida regularisation or resolvent
[14].

Again each time W enters very naturally indeed.



LAMBERT W IN OPTIMIZATION 379

Figure 8. The convolution of entropy x log x−x and energy µx2/2
for µ = 1/10, 10, and 100.

5. Homotopy and entropy solution of inverse problems

In [14, §4.7] we reprise the entropy solution of inverse problems. Consider the
(negative) entropy functional1 defined as follows:

If : L1([0, 1], λ) → R by

If (x) =

∫ 1

0
f(x(s)) ds

where λ is Lebesgue measure and f is a proper, closed convex function.
Suppose we wish to minimize If subject to finitely many continuous linear con-

straints of the form

⟨ak, x⟩ =
∫ 1

0
ak(s)x(s) ds = bk

for 1 ≤ k ≤ n. We may write this as

A : L1([0, 1]) → Rn by

Ax =

(∫ 1

0
a1(s)x(s) ds, . . . ,

∫ 1

0
an(s)x(s) ds

)
= b.

Here necessarily ak ∈ L∞([0, 1], λ). When f∗ is smooth and everywhere finite on
the real line, our problem

(5.1) inf
x∈L1

{If (x)|Ax = b}

1We chose to solve convex minimization problems rather than maximizing the entropy.



380 J. M. BORWEIN AND S. B. LINDSTROM

reduces to solving a finite nonlinear equation∫ 1

0
(f∗)′

 n∑
j=1

λjaj(s)

 ak(s) ds = bk (1 ≤ k ≤ n).(5.2)

The details of why all this is true are given in Section 7, and more information
can be found in [9] including the matter of primal attainment and of constraint
qualification.2 See also [13], [14, §4.7], [21], and [12, Theorem 6.3.4].

Let us consider a function ft of the form from Equation (4.2). If t = 1, then
f(x) = x2/2 and (f∗)′(x) = x and we are actually solving the classical Gram
equations for a least square problem. If t = 0, then f is the Shannon Entropy and
(f∗)′ = exp. Thus we restrict to considering cases where 0 < t < 1. Note that
Equation (5.2) relies only on (ft

∗)′. Most satisfactorily

(f∗
t )

′ (y) =
(1− t)

t
W
(

t

1− t
exp

(
y

1− t

))
.(5.3)

This is especially simple when t = 1/2 [8, p. 58]. As t tends to 0, we recover

lim
t→0

(f∗
t )

′ (y) = exp(y)

as in the entropy case. Similarly, when t tends to 1, we obtain

lim
t→1

(f∗
t )

′ (y) = max{y, 0}

which is the conjugate of the positive energy.

5.1. A general implementation. We illustrate by solving Equation (5.2) and
Equation (5.3) for various values of t in the unit interval. We choose algebraic
moments with ak(s) = sk−1 for 1 ≤ k ≤ 10 – though our methods work much
more generally – and try to approximate x(s) = 6

10 + sin
(
3πs2

)
given the algebraic

moments

bk =

∫ 1

0
x(s)a(s)ds =

∫ 1

0

(
6

10
+ sin

(
3πs2

))
· sk−1ds.

We do so by solving for λ ∈ Rn in the dual problem from Equation (5.2). In other
words, we wish to find the values λ1 . . . λ10 for which the subgradient values

(5.4)

∫ 1

0
(f∗

t )
′

 n∑
j=1

λjaj(s)

 ak(s)ds− bk

for k = 1..10 all evaluate to zero. By Equation (5.3), our subgradient (dual problem)
is represented more explicitly by the set of equations

(5.5)

∫ 1

0

(1− t)

t
W

(
t

1− t
exp

(∑n
j=1 λjs

j−1

1− t

))
sk−1ds− bk = 0.

2When the moments are sufficiently analytic then feasibility assures the quasi-relative-interior
CQ.



LAMBERT W IN OPTIMIZATION 381

for k = 1 . . . 10. We can solve for λ using any standard numerical solver or, say, by
a Newton-type method. We decide, largely for the sake of simplicity, to first use a
classical Newton method. Indeed the Hessian computes nicely:

H(λ) = (hi,k)

hi,k =

∫ 1

0

(1− t)

t
W

(
t

1− t
exp

(∑n
j=1 λjaj(s)

1− t

))
ak(s)ai(s)ds

=

∫ 1

0

(1− t)

t
W

(
t

1− t
exp

(∑n
j=1 λjs

j−1

1− t

))
sk+i−2ds.

Our Hessian then turns out to be a Hankel matrix, greatly simplifying the com-
putation. For each iteration, we need only to compute the 19 cases k + i = 2 . . . 20
in order to fully populate our matrix. In fact, the gradient G(λ) may be obtained
by taking the first row (or column) of the Hessian and subtracting bk from the kth
entry. Thus, we need only to compute the Hessian and we obtain the gradient for
free. So in this case there is little extra work in using a second order method. In
the case of trigonometric moments we similarly arrive at a Toeplitz matrix.

5.2. Efficient computation of the dual. While there are reduced complexity
methods for solving for λ as in Equation (5.4) with a Hankel matrix, they are
less robust than more standard methods. In any event, it is advisable to solve
Equation (5.4) without explicitly taking the inverse because taking the inverse is
significantly more computationally expensive for higher order matrices.

The Newton direction is determined by solving

(5.6) H(λn)(µ− λn) +G(λn) = 0

for µ and then setting λn+1 = λn +αn(µ− λn) for an appropriate step size αn > 0,
which in the pure Newton method is αn = 1. See [1] and [2] for more general
options.

Since the actual computation of each of the 19 distinct Hessian terms requires
numerical integration of the function

hi,k = h(i+k=α) =

∫ 1

0

(1− t)

t
W

(
t

1− t
exp

(∑n
j=1 λjs

j−1

1− t

))
sαds,

where only the power α changes from one computation to the next, we can reduce
the expense of computation quite easily.

Suppose we adopt a quadrature rule with weights {al}ml=1 and abcissas {xl}ml=1.
Then, where

F (xl) =
(1− t)

t
W

(
t

1− t
exp

(∑n
j=1 λjx

j−1
l

1− t

))
,(5.7)

for a single iteration of Newton’s method we need only use numerical integration
on the W function m times rather than order m · n times.



382 J. M. BORWEIN AND S. B. LINDSTROM

To see more clearly why this is the case, notice that we can reuse the values
alF (xl), l = 1 . . .m as follows:

h1,1 =

m∑
l=0

alF (xl)

h(i+k=α) =
m∑
l=0

alF (xl)x
α−2
l .

Thus we need only compute each of them once for each iteration. We can also store
each values xα−2

l for l = 1 . . .m, α = 2 . . . 20 in a matrix at the beginning.

Our optimized process is then to take a fixed3 (Gaussian) quadrature rule and
to:

(1) Precompute the weights {al}ml=1, and the abscissas raised to various powers
xαl , l = 1 . . .m, α = 0 . . . 18, storing the weights in a vector and the powers
of the abscissas in a matrix.

(2) At each step compute the function values alF (xl), l = 1 . . .m, storing them
in a vector.

(3) Compute the necessary 19 Hessian values
∑m

l=0 alF (xl)x
α−2
l , α = 2 . . . 20.

If we properly create our matrix - of stored abscissa values raised to powers
- we will be able to compute the Hessian values by simply multiplying our
vector from Step (2) by this matrix.

(4) Use the resultant 19 values to build the Hessian and gradient and then solve
for the next iterate as in Equation (5.6).

The primal solution xt is then given in terms of the optimal multipliers in (5.5):

(5.8) xt(s) =
(1− t)

t
W

(
t

1− t
exp

(∑n
j=1 λjs

j−1

1− t

))
.

Note that this provides a functional form for the solution at all s in [0, 1], not only
for the quadrature points.

5.3. Some computed examples. The Maple code we used for computing the
following examples is given in Appendix 8. For the sake of consistency, all examples
in this subsection were computed with 24 digits of precision, 20 abscissas, and a
Newton step size of 1/2. This reduced step dramatically improved convergence for
t near 1. While this precision is higher than would be used in production code, it
allows us to see the optimal performance of the algorithm.

Example 5.1 (Visualization Accuracy). With t = 1
2 and 8 moments, we ask Maple

to compute until the error, as measured by the norm of the gradient, is less than
10−10. This error is needed for a reasonable visual fit given the small number of
moments used.

At 46 iterations we obtain the following values for λ:

[− 0.7079161355, 10.64405426,−126.5979784, 656.6020449,

− 1458.868219, 1329.347874,−299.1180785,−112.3114246]

3We do not wish to allow automated decisions for adaptive methods without our control.



LAMBERT W IN OPTIMIZATION 383

where the error is about 6.84330e− 11. The associated primal solutions (functions)
for iterates 6, 12, and 46 are shown in Figure 9.

Figure 9. Example 5.1 illustrated for various iterates.

Example 5.2 (Variation of t). Next we consider five different possible values for t:
0, .25, .5, .75, 1. We run Newton’s Method for each case until meeting the require-
ment that the norm of the gradient is less than or equal to 10−10. This yields the
following solutions.

t 0 .25 .5 .75 1
λ1 -.707916 -.404828 -.101065 .204002 .512307
λ2 10.6440 9.46383 8.23003 6.90162 5.36009
λ3 -126.597 -114.651 -101.923 -87.8556 -70.8919
λ4 656.602 605.686 550.755 488.934 412.561
λ5 -1458.86 -1368.32 -1269.02 -1154.26 -1007.13
λ6 1329.34 1282.68 1227.95 1157.70 1054.85
λ7 -299.118 -329.937 -358.596 -381.447 -391.764
λ8 -112.311 -85.1887 -57.6202 -30.1516 -3.12491
Error 6.84330e-11 9.81661e-11 8.26865e-11 9.6666e-11 7.05698e-11
Iterates 46 46 47 47 47



384 J. M. BORWEIN AND S. B. LINDSTROM

The associated primal solutions (functions) are shown in Figure 10. Notice that as
t increases the visual fit increases substantially. One cannot determine this from
looking at the numerical error alone.

Figure 10. Example 5.2 is illustrated. Shown are the primal solu-
tions corresponding to various choices of t.

Example 5.3 (Variation in number of moments). In this example, which is illus-
trated in Figure 11, we consider how the choice for the number of moments affects
our results. Specifically, we consider the choices of 4, 8, 12, and 20 moments. We
again use t = 1

2 and run Newton’s Method for each case until meeting the require-

ment that the norm of the gradient is less than or equal to 10−10. It bears noting
that, while we used 26 digits of precision for all of these examples in order to be
consistent, this was the only case wherein we used 20 moments and so necessitated
the employment of such high precision.

Example 5.4 (Reconstructing a pulse). We conclude by computing with a more
challenging function, the pulse

x(s) = χ[0, 1
2
](s).

The pulse is a more computationally challenging example because of its jump dis-
continuity – which results in a form of the Gibbs Phenomenon – and constancy on an



LAMBERT W IN OPTIMIZATION 385

Figure 11. Example 5.3 is illustrated. Shown are the primal solu-
tions corresponding to various choices for the number of moments.

open interval which forces some multipliers to infinity. This slowed the convergence
of the gradient when we used more moments, especially for values of t nearer to 1
which more successfully reduce the phenomenon. The desired properties can still
be seen visually. We use only 8 moments, and we instruct Maple to stop comput-
ing once the norm of the gradient is less than 10−10 or after reaching 200 iterates,
whichever happens first.

t 0 .25 .5 .75 1
Error 6.87225e-11 7.45516e-11 9.69259e-11 1.9136e-11 .21252e-5
Iterates 70 62 55 48 200

In the case of t = 1, we reached 200 iterates before the norm of the gradient was
less than 10−10, but the primal solution we obtained is still a good proxy for the
pulse. This can be seen in Figure 12, where the Gibbs Phenomenon may also be
clearly observed for the the other values of t.

For t = 0, we see the Gibbs Phenomenon more clearly presented while the primal
solution for t = 1 further overshoots the pulse on the right side. The other values
of t afforded us by the Lambert W function provide other useful choices for ap-
proximating the pulse. Whether one wishes to accentuate the overshooting at the
discontinuity or not depends on the application.



386 J. M. BORWEIN AND S. B. LINDSTROM

Figure 12. Example 5.4 is illustrated. Shown are the primal solu-
tions corresponding to various choices for t.

Figure 13. The function (x/e)x (L) and its conjugate (R).
.

6. Conclusion

We hope that we have made a good advertisement for the value of W in opti-
mization and elsewhere. We note that, even when one is not able to produce a



LAMBERT W IN OPTIMIZATION 387

closed form for a conjugate, SCAT and its numerical partner CCAT may still be
very helpful. We illustrate with two such examples.

Example 6.1 (Without a simple closed form). Consider the function

f := (0,∞) → R by f(x) =
(x
e

)x
.

To examine its conjugate, we again make use of SCAT with the following code.

restart:alias(W=LambertW):

read("scat.mpl"):read("ccat.mpl"):

with(SCAT):with(CCAT):

xx:=PWF([infinity, 0, 1, (y/exp(1))^y], [y], {y::real});

Plot(xx,y=-1..2);

yy:=Conj(xx,x);

Plot(yy,x=-2..2);

This produces the two plots in Figure 13, even though it returns the conjugate in
the unevaluated form

x 7→ xR(x)− exp(−R(x))R(x)R(x)

where R(x) = RootOf(x− exp(−z)zz log(z)).

Thus SCAT allows us to visualize the conjugate even in the case where a closed
form is not immediately forthcoming.

Figure 14. The function log Γ (L) and its conjugate (R).
.

Example 6.2 (log Γ on (0,∞) and its conjugate). Likewise, for the conjugate of
log Γ, SCAT returns

RootOf (−Ψ( Z ) + x)x− log (Γ (RootOf (−Ψ( Z ) + x))) .



388 J. M. BORWEIN AND S. B. LINDSTROM

Its plot is shown in Figure 14. Here Ψ is the Psi function. The ‘noise’ on the right
is a region in which Maple’s built in root finder struggles. This can be obviated be
a good Newton solver for a solution x > 0 of Ψ(x) = y. Set

x0 =

{
exp(y) + 1/2 if y ≥ −2.2

−1/(y −Ψ(1)) otherwise

xn+1 = xn − Ψ(xn)− y

Ψ′(xn)
.

Here Ψ and Ψ′ are also known as the digamma and trigamma functions. Maple and
Mathematica both have good built-in polygamma routines. The function and its
conjugate are shown in Figure 14.

Finally, we note that the notion of a closed form for a given function is an always-
changing issue [6]. Moreover, while x expx is elementaryW(x) is not, since arbitrary
inversion is not permitted in the definition of elementary.

Acknowledgements.

The authors thank Paul Vrbik for his computational assistance.

References

[1] J. Barzilai and J.M. Borwein, Two point step-size methods, IMA Journal on Numerical Anal-
ysis 8 (1988), 141–148.

[2] D. Bersetkas, Projected newton methods for optimization problems with simple constraints,
SIAM. J. Control and Optimization 20 (1988), 221–246.

[3] J.M. Borwein, The SIAM 100 digits challenge, Extended review for the Mathematical Intelli-
gencer 27 (2005), 40–48.

[4] J. M. Borwein and D. H. Bailey, Mathematics by Experiment: Plausible Reasoning in the 21st
Century A.K. Peters Ltd, 2004. Combined Interactive CD version 2006. Expanded Second
Edition, 2008.

[5] J. M. Borwein, D. H. Bailey and R. Girgensohn, Experimentation in Mathematics: Computa-
tional Paths to Discovery, A.K. Peters Ltd, 2004.Combined Interactive CD version 2006.

[6] J.M. Borwein and R.E. Crandall, Closed forms: what they are and why we care, Notices Amer.
Math. Soc. 60 (2013), 50–65.

[7] J. M. Borwein and C. Hamilton, Symbolic convex analysis: algorithms and examples, Mathe-
matical Programming 116 (2009), 17–35.

[8] J. M. Borwein and A. S. Lewis, Convex Analysis and Nonlinear Optimization: Theory and
Examples, Springer, 2000, (2nd Edition, 2006).

[9] J. M. Borwein and A. S. Lewis, Duality relationships for entropy–like minimization problems,
SIAM Control and Optim. 29 (1991), 325–338.

[10] J. M. Borwein, S. Reich; and S. Sabach, A characterization of Bregman firmly nonexpansive
operators using a new monotonicity concept, J. Nonlinear Convex Anal. 12 (2011), 161–184.

[11] J. M. Borwein, A. Straub, J. Wan and W. Zudilin, with an Appendix by D. Zagier, Densities
of short uniform random walks, Canadian. J. Math. 64 (2012), 961–990.

[12] J. M. Borwein and J. D. Vanderwerff, Convex Functions : Constructions, Characterizations
and Counterexamples. Cambridge University Press, 2010.

[13] J. M. Borwein and L. Yao, Legendre-type integrands and convex integral functions, Journal of
Convex Analysis, 21 (2014), 264–288.

[14] J.M. Borwein and Q. Zhu, Techniques of Variational Analysis, CMS/Springer-Verlag, 2005.
Paperback, 2010.

[15] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.



LAMBERT W IN OPTIMIZATION 389

[16] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey and D. E. Knuth, On the Lambert
W function, Advances in Computational Mathematics 5 (1996), 329–359.

[17] T. P. Dence, A brief look into the Lambert W function, Applied Mathematics 4 (2013), 887-892.
[18] B. Fornberg and J. A. C. Weideman, A numerical methodology for the Painlevé equations,

Journal of Computational Physics, 230 (2011), 5957-5973.
[19] K. O. Geddes, M. L. Glasser, R. A. Moore and T. C. Scott. Evaluation of classes of definite

integrals involving elementary functions via differentiation of special functions, Applicable
Algebra in Engineering, Communication and Computing 1 (1990), 149–165.

[20] R. L. Graham, D. E. Knuth, O. Patashnik, Concrete Mathematics: A Foundation for Computer
Science (2nd Edition), Addison-Wesley Professional, 1994.

[21] D. E. Knuth and C. C. Rousseau, A Stirling series: 10832, American Mathematical Monthly
108 (2001), 877–878.

[22] S. B. Lindstrom, Understanding the quasi relative interior, Project report on permanent re-
serve at Portland State University Mathematics Department Libary, 2015. http://docserver.
carma.newcastle.edu.au/1682/.

[23] B. S. Mordukhovich and N. M. Nam, An Easy Path to Convex Analysis, Morgan & Claypool,
2014. ISBN: 9781627052375.

[24] M. Mrs̆ević, Convexity of the inverse function, The Teaching of Mathematics XI (2008), 21–24.
[25] S. M. Stigler, Stigler’s Law of Eponymy, Transactions of the New York Academy of Sciences

39, 1980, pp. 147–158.
[26] Wikipedia contributors, Lambert W function, Wikipedia, The Free Encyclopedia, https://

en.wikipedia.org/w/index.php?title=Lambert_W_function&oldid=716099641

[27] Wikipedia contributors, Meijer G-function, Wikipedia, The Free Encyclopedia, https://en.
wikipedia.org/w/index.php?title=Meijer_G-function&oldid=707287736



390 J. M. BORWEIN AND S. B. LINDSTROM

7. Appendix on Conjugate duality

To see why solving Equation (5.1) reduces to solving Equation (5.2), we recall
several results. We first recall from [14, Theorem 4.7.1] that:

Proposition 7.1. Suppose X is a Banach space, F : X → R ∪ {+∞} is a
lower semicontinuous convex function, A : X → Y is a linear operator, and
b ∈ core(A domF ). Then

inf
x∈X

{F (x)|Ax = b} = max
φ∈RN

{
⟨φ, b⟩ − (F )∗(ATφ)

}
where AT denotes the adjoint map which satisfies

(7.1) ⟨Au,φ⟩Rn = ⟨u,ATφ⟩L1 .

This allows us to reformulate many primal problems as dual problems, making
their solutions simpler to compute. In particular, the problem from Equation (5.1)
can be reformulated as

(7.2) inf
x∈L1

{If (x)|Ax = b} = max
φ∈RN

{
⟨φ, b⟩ − (If )

∗(ATφ)
}
.

To the end of simplifying this further, we introduce another useful result. We recall
from [12, Theorem 6.3.4] that:

Proposition 7.2. If If is defined as above and f : R → (−∞,∞] is closed, proper,
and convex, we have

(If )
∗ = If∗ .

This allows us to express the dual problem more explicitly. In particular, since
we have (If )

∗ = If∗ , Equation (7.2) simplifies to

(7.3) max
φ∈RN

{
⟨φ, b⟩ − If∗(ATφ)

}
= max

φ∈RN

{
⟨φ, b⟩ −

∫ 1

0
f∗(ATφ)

}
ds.

Now in Equation (7.1), the inner product on the left is on Rn while the inner product
on the right is the inner product on L1([0, 1]). Thus Equation (7.1) expands to

n∑
k=1

(
φk

∫ 1

0
ak(s)u(s) ds

)
=

∫ 1

0
(ATφ)u(s) ds.

This expansion should make it clear why we may simplify ATφ further by writing

ATφ =

n∑
k=1

φkak(s).

Thus solving Equation (7.3) amounts to finding φ ∈ Rn which maximizes

(7.4)
n∑

k=1

φkbk −
∫ 1

0
f∗

(
n∑

k=1

φkak(s)

)
ds.

This is an equation which we can subdifferentiate. We maximize it by finding the
values of φk for which the subdifferential with respect to φ is zero. We first recall
an equivalent characterisation for the convex subgradient. Recall that y ∈ ∂F (x) if

⟨y, z − x⟩ ≤ F (z)− F (x) for all z ∈ X.



LAMBERT W IN OPTIMIZATION 391

For more preliminaries on subgradients, see, for Example, [23].

Lemma 7.3. For a convex function F , y is a subgradient of F at x if and only if

0 = F (x) + F ∗(y)− ⟨y, x⟩.

Proof. Taking the negative of both sides, we simply have

0 = −F (x) + ⟨y, x⟩ − sup
x∈X

{⟨y, x⟩ − F (x)}.

Thus we have that

F (x)− ⟨y, x⟩ = − sup
x∈X

{⟨y, x⟩ − F (x)} = inf
x∈X

{F (x)− ⟨y, x⟩}

which is equivalent to

⟨y, x− x⟩ ≤ F (x)− F (x) for all x ∈ X.

This is the definition of the subgradient. □

This makes it much easier for us to compute the subdifferential. In our context,
since (If )

∗ = If∗ , we have from that Lemma 7.3 that y is a subgradient of If at x
if and only if

0 = If (x) + If∗(y)− ⟨y, x⟩ =
∫

f(x(s)) + f∗(y(s))− x(s)y(s) ds.

Now the integrand on the right is nonnegative by Fenchel-Young and so must be
zero almost everywhere. However, Lemma 7.3 gives us that

f(x(s)) + f∗(y(s))− x(s)y(s) = 0 almost everywhere

if and only if y(s) is a subgradient of f at x(s) for almost all s. Thus we can
subdifferentiate with respect to each φk in Equation (7.4) and set equal to zero,
obtaining n equations of the form

0 = bk −
∫ 1

0
(f∗)′

 n∑
j=1

φjaj(s)

 ak(s) ds.

Thus we have reduced the problem to that of solving Equation (5.2).

8. Appendix on Computation

8.1. Construction. We present the basic construction of the code in enough detail
to reproduce Example 5.1 and using the corresponding Initialization values. It is
straightforward to adapt the basic code to reproduce the other examples. We elect,
for many reasons, to use a Gaussian non-adaptive Quadrature rule. We first build
an initialization list wherein the user can specify the parameters of the example
they wish to construct. We specified the entries as follows.



392 J. M. BORWEIN AND S. B. LINDSTROM

List Entry Significance
[1] Number of moments
[2] Choice of t
[3] Number of abscissas and weights
[4] Digits of precision
[5] Digits to display
[6] Stop computing more iterates when the norm of the gradient

is less than or equal to 10 to the negative of this value
[7] Save the value of λ at this iterate in order to print an exam-

ple.
[8] Save the value of λ at this iterate in order to print an exam-

ple.
[9] Stop computing more iterates if the number of iterates com-

puted reaches this number.
[10] Newton step size

We show the code with the user entries from Example 5.1.

Initialization:=[8,1/2,20,26,10,10,6,12,50,1/2]:

Digits:=Initialization[4]:

interface(displayprecision=Initialization[5]):

Computing the abscissas and their corresponding weights is easy using Maple’s
built-in Legendre polynomials in the orthopoly package.

with(orthopoly): abscissas:= fsolve(P(Initialization[3],x)=0,x):

weights:=NULL:

for i from 1 to Initialization[3] do

expr := (x-abscissas[j])/(abscissas[i]-abscissas[j]);

expr := (product(expr, j = 1 .. i-1))*(product(expr, j = i+1 ..

Initialization[3]));

f[i] := unapply(expr, x);

c[i] := int(f[i](x), x = -1 .. 1);

weights := weights, c[i]

od:

Now because our integral is over [0, 1] and we must use the interval [−1, 1] for our
Gaussian quadrature, we apply the these weights and abscissas to a translation of
the abscissa values raised to powers and a translation and scaling of the function
from Equation (5.7):

1

2
F

(
1

2
(xl + 1)

)
(
1

2
(xl + 1)

)α−2

.

We define the function we wish to approximate, store a list of the moments, and
compute the matrix of abscissa values raised to powers as follows.

Objective:=y -> .6+.5*sin(3.1415926*3*y^2):

b:=convert(Vector(Initialization[1], i-> add((1/2)*weights[j]*

Objective((1/2)*abscissas[j]+1/2)*((1/2)*abscissas[j]+1/2)^(i-1),



LAMBERT W IN OPTIMIZATION 393

j = 1..Initialization[3])), list):

M := Matrix(2*Initialization[1]-1, Initialization[3], (i,j) ->

((1/2)*abscissas[j]+1/2)^(i-1) ):

We construct a function WeightedF which takes in a list λ and a t value and com-
putes the values alF (xl), l = 1 . . .m returning them as a row vector.

F := proc (c, t, s)

local N, output;

N := nops(c);

if t = 0 then

output := (1/2)*exp(add(c[j]*((1/2)*s+1/2)^(j-1), j = 1 .. N));

elif t = 1 then

output := (1/2)*max(add(c[j]*((1/2)*s+1/2)^(j-1), j = 1 .. N), 0);

else

output := (1/2)*(1-t)*LambertW(t*exp(add(c[j]*((1/2)*s+1/2)^(j-1),

j = 1 .. N)/(1-t))/(1-t))/t;

fi;

output;

end:

WeightedF := proc (c, t)

local j, output, weight;

output := Vector[row](Initialization[3]);

for j to Initialization[3] do

weight := weights[j];

output[j] := weight*F(c, t, abscissas[j]);

od;

output;

end:

We can now easily obtain the 19 values we need to populate our Hessian matrix
and gradient at λ by asking Maple for the value

M.WeightedF(lambda,Initialization[2])^(%T)

where we recall that Initialization[2] is our chosen value for t. We create a function
which constructs our Hessian matrix procedurally.

HessianBuilder:=proc(c,t)

local A,H;

A:=M.WeightedF(c,t)^(%T);

H:=Matrix(Initialization[1],Initialization[1],(i,j)->A[i+j-1]);

end;

Recalling that our gradient is just the first row of our Hessian with bk subtracted
from the kth entry for k = 1 . . .m, we can build our gradient from the Hessian
in the Newton procedure. We construct the Newton procedure with the following
code. Instead of a list, it receives a vector as its input and passes a converted list
to the previous functions. This nuance allows for the indexing to be much simpler
in all of the prior scripting.



394 J. M. BORWEIN AND S. B. LINDSTROM

with(LinearAlgebra):

NextIteration := proc (c, t)

local H, G, RHS, output, mu, L;

L := convert(c, list);

H := HessianBuilder(L, t);

G := Vector(Initialization[1], j-> H[1, j]-b[j];

RHS := H.c-G;

mu := LinearSolve(H, RHS);

output := c+Initialization[10]*(mu-c);

output, G;

end:

Notice that this function returns a list, the first element of which is the next iterate
and the second element of which is the value of the gradient at the current iterate,
both in vector form. The reason we have built the function to return this pair is
that the gradient values for each iterate are, in fact, the L2 norms of that iterate’s
distance from each of the respective moments. This provides a useful gauge for
checking our convergence, although it is far from conclusive (recall Example 5.2).
We use it in the construction of the complete Newton procedure.

Newtons := proc (c, t, userlimit)

local pair, iterate, err, counter, grad;

iterate := c;

counter := 0;

err := 1;

to userlimit while is(10^(-Initialization[6]) <= err) do

pair := NextIteration(iterate, t);

iterate := pair[1];

grad := pair[2];

err := Norm(pair[2]);

counter := counter+1

od;

iterate, grad, err, counter;

end:

We have built our Newton’s Method procedure to return a list which consists of
our approximation, the gradient value at the previous iterate, the norm of said
gradient, and the number of iterations it calculated before terminating. We can
now, for instance, recreate the numbers from Example 5.1 with the following code.

start:=Vector(Initialization[1],j->1):

Newtons(start, Initialization[2], Initialization[9])

Maple returns our solution, our gradient at the second to last step, its corresponding
norm, and the number of steps it ran for. Recalling that where Newton’s method
returns λ - in this case as the first entry of our list - our primal solution xt is given
by Equation (5.8). We may write a procedure which takes our return from Newton’s
Method and creates a primal solution.

Primal := proc (c, t, s)

local sumterm, L, output;



LAMBERT W IN OPTIMIZATION 395

L := convert(c, list);

sumterm := add(L[j]*s^(j-1), j = 1 .. Initialization[1]);

if t = 0 then

output := exp(sumterm);

elif t = 1 then

output := max(sumterm, 0);

else

output := (1-t)*LambertW(t*exp(sumterm/(1-t))/(1-t))/t

fi;

output;

end:

This procedure - which we have appropriately named ”Primal” - takes in a list and
returns a function in one variable, s, when given our solution from the Newton
procedure as the first item and our choice of t as the second item.

start:=Vector(Initialization[1],j->1):

solution:=Newtons(start, Initialization[2], Initialization[9])[1];

PRIM:=Primal(solution,Initialization[2],s);

In the above code, PRIM is a function in a single variable s. We can use the
procedures Primal and Newtons to recreate Figure 9. The construction is straight-
forward.

GenerateExample := proc (c, t, userlimit)

local PRIM1, PRIM2, PRIM3, finish, N3, IMG;

PRIM1 := Newtons(c, t, Initialization[7]);

PRIM1 := PRIM1[1];

PRIM2 := Newtons(c, t, Initialization[8]);

PRIM2 := PRIM2[1];

PRIM3 := Newtons(c, t, userlimit);

N3 := PRIM3[4];

PRIM3 := PRIM3[1];

plot([Primal(PRIM1, t, s), Primal(PRIM2, t, s), Primal(PRIM3, t, s),

Objective(s)],

s = 0 .. 1, 0 .. 1.5,

color = [orange, red, blue, green],

linestyle = [dashdot, longdash, solid, solid],

legend = [typeset(Initialization[7], " Iterates"),

typeset(Initialization[8], " Iterates"),

typeset(N3, " Iterates"), typeset("x(s)")],

legendstyle = [location = top]);

end:

Reconstructing Figure 9 is then as easy as asking for

A similar procedure can be written to recreate Example 5.2. Some re-designing is
necessary in order to accommodate the creation of examples with varying moments



396 J. M. BORWEIN AND S. B. LINDSTROM

(such as Example 5.3), but the fundamental aspects of optimizing the performance
remain the same.

Manuscript received February 6 2016

revised June 13 2016

J. M. Borwein
CARMA, University of Newcastle, Callaghan, Australia, 2308

E-mail address: Jonathan.borwein@newcastle.edu.au

S. B. Lindstrom
CARMA, University of Newcastle, Callaghan, Australia, 2308

E-mail address: Scott.lindstrom@uon.edu.au


