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the equation (1.4) is not defined, but the theory of solvability of the problems (1.1-2)
and of regularity of the corresponding solutions can be based on direct methods.

Presentation of this theory is just the purpose of this paper. Earlier, in the case
of classical ellipticity such methods were developed in the papers of Sychev and
Mizel [14,16].

In multi-dimensional case the authors of [22] proved the existence of Lipschitz so-
lutions of anisotropic elliptic equations in convex domains of special form. However
C1-regularity of solutions is still an open problem, see [9].

We will consider the following assumptions on the integrand L:

(H) for each compact set K ⊂ R × R × R there exist c > 0, α > 0 such that if
(x, u, v), (y, w, v) ∈ K then

|L(x, u, v)− L(y, w, v)| ≤ c(|x− y|+ |u− w|)α,
and there also exist µ > 0, p > 1 such that if (x, u, v1),∈ K then for some l ∈
∂Lv(x, u, v1) we have for all (x, u, v2) ∈ K that

L(x, u, v2)− L(x, u, v1)− (l, v2 − v1) ≥ µ|v2 − v1|p.

The ellipticity condition stated in (H) will be called singular ellipticity everywhere
further in the paper.

The first theorem is the following theorem of existence and regularity “in small”.

Theorem 1.1. Let L satisfy the condition (H), G ⊂ R × R be a compact set.
For each M > 0 there exist ϵ0 > 0, δ0 > 0 such that for every ϵ ≤ ϵ0, δ ≤ δ0
the problem (1.1-2) in the class of functions u ∈ W 1,1[a, b] such that (a,A) ∈ K,
|B − A|/|b − a| ≤ M , |b − a| ≤ δ, |u(x) − A| ≤ ϵ for all x ∈ [a, b], is solvable.
Moreover, the solutions are bounded in the space C1,γ, where γ = γ(M) does not
depend on δ ≤ δ0, ϵ ≤ ϵ0, (a,A) ∈ G.

Remark 1.2. The exponent γ could be taken equal to α/p, where α > 0, p > 1
correspond to the compact set K ′ = G′ × [−M − 1,M + 1], G′ = {(y, w) : |y− a| ≤
δ0, |w −A| ≤ ϵ0, (a,A) ∈ G}.

Note that Clarke and Vinter proved C1-regularity of solutions for integrands L
strictly convex with respect to v, but they needed Lipschitz regularity with respect
to u, see [5]. As we see, singular ellipticity implies better regularity even if L is only
Holder continuous in (x, u). In fact Holder continuity is the optimal assumption
for C1-regularity since continuity of L is no longer sufficient, as follows from a
recentpaper by Gratwick and Preiss [12].

Note that the effect of regularity/nonregularity was known in the context of
parametric problems already in the 70th years of the past century, see Chapter 6 of
the book of Reshetnyak [15].

The next fundamental theorem is a corollary of Theorem 1.1.

Definition 1.3. Consider the class of functions Ξ = {ξ : [aξ, bξ] → R̄ = R ∪
{−∞,+∞}} such that each function ξ : [aξ, bξ] → R̄ is continuous. We say that
the family Ξ is conditionally equa-continuous if for every M > 0, ϵ > 0 there exists
δ = δ(M, ϵ) > 0 such that if |ξ(x0)| ≤ M then |ξ(x)− ξ(x0)| ≤ ϵ for |x− x0| ≤ δ.
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Theorem 1.4. Let L satisfy the condition (H) and let G ⊂ R×R be a compact set.
Consider the set U of those solutions of problems (1.1-2) with graphs lying inside G.
Then the derivatives of functions in U form a conditionally equa-continuous family.

Therefore Theorem 1.4 guarantees an a priori regularity of solutions of problems
(1.1-2). As for the existence, this follows from the following famous results of Tonelli
proved at the beginning of the 20th century.

Lemma 1.5. Let L satisfy the basic assumptions and uk ⇀ u in W 1,1[a, b] (“⇀”
means weak convergence). Then

lim inf
k→∞

J(uk) ≥ J(u).

For a proof see e.g. [21].
The next theorem is a corollary of this lemma and the criteria of the weak con-

vergence in W 1,1

Theorem 1.6 (Tonelli, [23]). Let L satisfy the basic assumptions and L(x, u, v)
have superlinear growth in v, i.e. L(x, u, v) ≥ θ(v) where θ is a convex function
such that θ(v)/|v| → ∞, |v| → ∞. Then each problem (1.1-2) admits a solution.

The examples of Davie from [8] allow us to assert that Theorem 1.4 is precise.
But in these examples the Lavrentiev phenomenon is present:

inf{J(u) : u(a) = A, u(b) = B, u ∈ W 1,1[a, b]}
< inf{J(u) : u(a) = A, u(b) = B, u ∈ C1[a, b]}.

It is well-known that the Lavrentiev phenomenon is connected with failure of the
standard growth of

L(x, u, v) with respect to v. Recall that L has the standard growth if there exists
a convex function θ : R → R such that θ(v)/|v| → ∞ as |v| → ∞, and

(1.5) θ(v) ≤ L(x, u, v) ≤ c(1 + θ(v)), c > 0.

In the case of the standard growth of L the Lavrentiev phenomenon is not present,
see e.g. [18]. At the same time for every two convex functions θ1, θ2 : R → R such
that θ1(v)/|v| → ∞, θ2(v)/|v| → ∞, and θ2(v)/θ1(v) → ∞ as |v| → ∞, there
exists an integrand L = θ1(v) + f(x, u)θ2(v) with f ≥ 0 for which the Lavrentiev
phenomenon is present in a certain problem (1.1-2), see again [18].

Gratwick proved that Theorem 1.4 is precise also in the case of validity of the
conditions of standard growth, which improves the results of the paper [10].

Theorem 1.7. Let θ : R → R be a strictly convex function of the class C∞ such
that θ(v)/|v| → ∞, as |v| → ∞. Let also E ⊂ [a, b] be a compact set of zero measure.
Then there exists a function L(x, u, v) ∈ C∞, strictly convex with respect to v, such
that

θ(v) ≤ L(x, u, v) ≤ c(1 + θ(v)), c > 0,

and a solution of a problem (1.1-2) with infinite derivative in E. The function L
can be taken of the form θ(v) + F (x, u, v) where F ≥ 0 is convex in v.
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In [19] Sychev constructed examples of integrands L(x, u, v) with quadratic growth
in v which are uniformly elliptic in v (0 < µ1 ≤ Lvv ≤ µ2 < ∞) and admit singular
solutions. In these examples the singular set is a singleton and it is not known how
large can the singular set in general. The conjecture is that an arbitrary compact
set of zero measure, like in Theorem 1.7. Previously even some experts thought
that in uniformly elliptic problems solutions are C1-regular, see e.g. [7].

Certainly, a fundamental question is when solutions of the problems (1.1-2) are
always regular. The next theorem gives an answer to this question.

Theorem 1.8. Let L satisfy the condition (H) and let L(x, u, v) have superlinear
growth in v.

For (a,A, b, B) ∈ R4 we let

S(a,A, b,B) = inf{J(u) : u(a) = A, u(b) = B, u ∈ W 1,1[a, b]}.
Then in the problem (1.1-2) with boundary conditions (a0, A0, b0, B0) all solutions

are bounded in certain neighbourhoods of the points a0 and b0 in C1-norm if and
only if S is Lipschitz at the point (a0, A0, b0, B0).

Due to the last theorem we may assert that the solutions of all the problems
(1.1-2) are Lipschitz (and even of the class C1,γ) if and only if the function S is
Lipschitz at each point. However, due to the results of Ball and Mizel [2] (see
also Davie [8] and theorem 1.7 of Gratwick) S could be non-Lipschitz. Ball and
Nadirashvili suggested clarifying how large could be the set V which consists of all
the points (x0, u0) for which there exist boundary conditions (1.2) such that the
corresponding solution has the properties u(x0) = u0, |u̇(x0)| = ∞ (this set was
called by them the universal singular set), see [2]. It turns out that this set can not
be large.

Theorem 1.9. Let L satisfy (H) and let L(x, u, v) have superlinear growth in v.
Then the corresponding universal singular set V is of first Baire category and has
zero 2-d Lebesgue measure.

Theorem 1.9 was proved in [17] for C1-regular integrands and in [6] for locally
Lipschitz ones. Recall that local Holder continuity is the optimal assumption for
partial regularity of minimizers as follows from results of the paper [12].

There is a possibility to characterize universal singular sets in terms of pure un-
rectifiability. The set S ⊂ R2 is called purely unrectifiable if for each Lipschitz curve
γ : R → R2 the intersection of γ and S takes place in a set of zero linear measure.
Note that a purely unrectifiable compact set could be of Hausdorff dimension 2.
In Theorem 6 of [6] the authors showed that the universal singular sets are always
“almost” purely unrectifiable, that also covers our situation considered in Theorem
1.9. Gratwick showed that theorem 1.10 is also valid.

Theorem 1.10. For each strictly convex function θ : R → R of C∞ class and with
superlinear growth and for each purely unrectifiable compact set S ⊂ R2 there exists
an integrand L(x, u, v) = θ(v) + F (x, u, v) with F ≥ 0 of C∞ class and convex in
v such that the universal singular set corresponding to L contains S. Moreover, L
has the standard growth

θ(v) ≤ L(x, u, v) ≤ c(1 + θ(v)), c > 0.
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The paper will be organized as follows. Theorems 1.1 and 1.4 will be proved in
§2. Theorem 1.8 in §3 and Theorem 1.9 in §4. As for proofs of Theorems 1.7 and
1.10 they will be presented in a forthcoming paper of Gratwick [11]. Results of this
paper were previously announced in the note [13].

2. Proofs of theorems 1.1, 1.4

Given a function u : [a, b] → R and given x1, x2 ∈ [a, b] with x2 > x1 we define
lx1,x2 : [x1, x2] → R as the affine function which fits the same boundary data at x1,
x2 as the function u, i.e. lx1,x2(x1) = u(x1), lx1,x2(x2) = u(x2). Then we have

l̇x1,x2 =
u(x2)− u(x1)

x2 − x1
, x ∈ [x1, x2].

In this section we use the notation

J(u; [x1, x2]) :=

∫ x2

x1

L(x, u(x), u̇(x))dx.

Lemma 2.1. Let K ⊂ R2 be a compact set and let M > 0. Assume u to be a
M -Lipschitz function with the graph staying in K. Assume also x1 ≤ x3 ≤ x4 ≤ x2
be such points of [a, b] that |x4 − x3|e ≥ |x2 − x1|, |x2 − x1| ≤ 1 (e is Napier’s
number) and the graphs of the functions lx1,x2, lx3,x4 stay in K.

Let L be Hölder continuous in (x, u) in the set K × [−M,M ], i.e.

(2.1) |L(x, u, v)− L(x̄, ū, v)| ≤ c(|x− x̄|+ |u− ū|)α, c, α > 0,

for (x, u), (x̄, ū) ∈ K, |v| ≤ M , and let L be singularly elliptic in v when restricting
to K × [−M,M ], i.e. there exists µ > 0, p > 1 such that

(2.2) L(x, u, v̄)− L(x, u, v)− l(v̄ − v) ≥ µ|v̄ − v|p,

where (x, u) ∈ K, |v|, |v̄| ≤ M and l is an element of the subgradient of the function
L(x, u, ·) at v.

Assume also that

(2.3) J(u; [x1, x2]) ≤ J(lx1,x2 ; [x1, x2]),

(2.4) J(u; [x3, x4]) ≤ J(lx3,x4 ; [x3, x4]).

Then

(2.5)
∣∣∣u(x2)− u(x1)

x2 − x1
− u(x4)− u(x3)

x4 − x3

∣∣∣ ≤ 2e
[2c(1 +M)α

µ

]1/p
|x2 − x1|α/p.

Proof. We first obtain an estimate of the excess of the derivative in [x1, x2] and in
[x3, x4], i.e. the estimates of the integrals∫ x2

x1

|u̇(x)− l̇x1,x2 |pdx,
∫ x4

x3

|u̇(x)− l̇x3,x4 |pdx.

Because of (2.1) we have

|L(x1, u(x1), u̇(x))− L(x, u(x), u̇(x))| ≤ c(|x1 − x|+M |x1 − x|)α,

|L(x1, u(x1), l̇x1,x2(x))− L(x, lx1,x2(x), l̇x1,x2(x)| ≤ c(|x1 − x|+M |x1 − x|)α.
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Therefore if we define L̃(·) := L(x1, u(x1), ·) then because of (2.1), (2.3) for the

integral functional J̃ with the integrand L̃ we have

(2.6)

J̃(u; [x1, x2]) ≤ J(u; [x1, x2]) + c(1 +M)α|x2 − x1|1+α

≤ J(lx1,x2 ; [x1, x2]) + c(1 +M)α|x2 − x1|1+α

≤ J̃(lx1,x2 ; [x1, x2]) + 2c(1 +M)α|x2 − x1|1+α.

Note that if l ∈ ∂L̃(l̇x1,x2) then in view of (2.2)

J̃(u; [x1, x2])− J̃(lx1,x2 ; [x1, x2]) =

∫ x2

x1

{L̃(u̇(x))− L̃(l̇x1,x2)− l(u̇− l̇x1,x2)}dx

≥ µ

∫ x2

x1

|u̇− l̇x1,x2 |pdx.

Therefore (2.6) implies

(2.7)

∫ x2

x1

|u̇(x)− l̇x1,x2 |pdx ≤ 2c(1 +M)α

µ
|x2 − x1|1+α.

Analogously

(2.8)

∫ x4

x3

|u̇(x)− l̇x3,x4 |pdx ≤ 2c(1 +M)α

µ
|x4 − x3|1+α.

Then by Hölder inequality and by (2.7), (2.8) we have∫ x4

x3

|l̇x1,x2 − l̇x3,x4 |dx ≤
∫ x4

x3

|l̇x3,x4 − u̇(x)|dx+

∫ x2

x1

|l̇x1,x2 − u̇(x)|dx

≤
(∫ x4

x3

|l̇x3,x4 − u̇(x)|pdx
)1/p

|x4 − x3|(p−1)/p

+
(∫ x2

x1

|l̇x1,x2 − u̇(x)|pdx
)1/p

|x2 − x1|(p−1)/p

≤
[2c(1 +M)α

µ

]1/p
{|x4 − x3|1+α/p + |x2 − x1|1+α/p}

≤
[2c(1 +M)α

µ

]1/p
2|x2 − x1|1+α/p

and, therefore,

|l̇x1,x2 − l̇x3,x4 | ≤
[2c(1 +M)α

µ

]1/p
2e|x2 − x1|α/p,

i.e. (2.5) is established. □
In the proof of Theorem 1.1 we will use Proposition 2.2 which relies on four

lemmas 2.3-6. The statement, proof, and application of the following result is
adapted from [5].

Proposition 2.2. Let S ⊆ R2 be compact, L : S × R → R be continuous, L =
L(x, u, v) be convex in v, and satisfy condition (H), and suppose that there exist
α > 0 and β ∈ R such that

L(x, u, v) ≥ α|v|+ β
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for all (x, u, v) ∈ S ×R. Let r0 > 0.
Then there exist real numbers r1, δ, α1, α2, and γ and satisfying r1 > r0, α2 >

α1 > 0, and δ > 0, such that for each k > r1 there exists Hk : S ×R → R such that
the following conditions hold:

(2.2a) Hk satisfies condition (H);
(2.2b) Hk(x, u, v) = L(x, u, v) whenever |v| ≤ r0;
(2.2c) Hk(x, u, v) ≤ L(x, u, v)− δ whenever r1 ≤ |v| ≤ k;
(2.2d) Hk(x, u, v) ≤ α2|v|+ γ;
(2.2e) Hk(x, u, v) ≥ α1|v|+ β; and
(2.2f) Hk(x, u, v) ≤ L(x, u, v) + k−1 whenever r0 ≤ |v| ≤ r1.

The proof of this result relies on a number of lemmas. Throughout we assume
that the conditions of the proposition hold. We begin by defining r1 := r0 + 1.

Lemma 2.3. There exists η > 0 such that for all (x, u) ∈ S, all v1 ∈ R satisfying
|v1| ≤ r0, there exists l ∈ ∂vL(x, u, v1) such that for all |v2| ≥ r1 we have that

L(x, u, v2)− L(x, u, v1) ≥ (l, v2 − v1) + η.

Proof. By the singular ellipticity condition there exist µ > 0 and p > 1 such that for
all (x, u) ∈ S and |v1| ≤ r0 there exists l ∈ ∂vL(x, u, v1) such that for all |v2| = r1,
we have that

L(x, u, v2)− L(x, u, v1)− (l, v2 − v1) ≥ µ|v2 − v1|p ≥ µ.

So setting η := µ we get the condition required for |v2| = r1. For |v2| > r1, we
choose s1 ≥ s2 > 0 such that, writing d = (v2 − v1)/|v2 − v1|,

v1 + s1d = v2, and

|v1 + s2d| = r1.

Then for some l ∈ ∂vL(x, u, v), we have by convexity of L in v that

L(x, u, v2)− L(x, u, v1) = L(x, u, v1 + s1d)− L(x, u, v1)

≥ s1
s2

(L(x, u, v1 + s2d)− L(x, u, v1))

=
s1
s2

((l, v1 + s2d− v1) + η)

= (l, v2 − v1) + s1η/s2

≥ (l, v2 − v1) + η,

as required. □
Lemma 2.4. There exist σ > 0, γ̃ ∈ R, and L0 : S ×R → R such that

(2.4a) L0 is Hölder in (x, u) locally uniformly in v, and L0 is convex in v;
(2.4b) L0(x, u, v) = σ|v|+ γ̃ for |v| ≥ r1;
(2.4c) L0(x, u, v) = L(x, u, v) whenever |v| ≤ r0; and
(2.4d) L0(x, u, v) ≥ α|v|+ β.

Proof. Define

t1 = min{L(x, u, v) : (x, u) ∈ S, |v| ≤ r0}
t2 = max{L(x, u, v) : (x, u) ∈ S, |v| = r1}.
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Choosing σ > max{α, (t2 − t1)/(r1 − r0)}, we see that

σr0 − t1 < σ|v| − L(x, u, v)

for all (x, u) ∈ S and |v| = r1, so by continuity of L we may choose γ̃ ∈ R and
r2 > r1 such that for all (x, u) ∈ S and r1 ≤ |v| ≤ r2,

σr0 − t1 < −γ̃ < σ|v| − L(x, u, v).

Define L0 : S ×R → R by

L0(x, u, v) =

{
max{σ|v|+ γ̃, L(x, u, v)} |v| ≤ r2,
σ|v|+ γ̃ |v| > r2.

For |v| ≤ r0,
L(x, u, v) ≥ t1 > σr0 + γ̃ ≥ σ|v|+ γ̃,

so L0(x, u, v) = L(x, u, v), and for r1 ≤ |v| ≤ r2,

L(x, u, v) < σ|v|+ γ̃,

so L0(x, u, v) = σ|v| + γ̃. Thus L0 satisfies conditions (2.4a-c). For (2.4d), since
L0(x, u, v) ≥ L(x, u, v) ≥ α|v| + β for |v| ≤ r1, we are just required to prove that
σ|v|+ γ̃ ≥ α|v|+β for |v| ≥ r1, and in fact it suffices to prove this for |v| = r1. But
in this case, we have for any (x, u) ∈ S that

σ|v|+ γ̃ = L0(x, u, v) ≥ L(x, u, v) ≥ α|v|+ β,

as required. □
We now define α1 := α/2, and η̃ := min{η/2, α1r1/2}.

Lemma 2.5. For each k > r1, there exists Fk : S × R → R ∪ {+∞} satisfying the
following conditions:

(2.5a) Fk(x, u, v) = L(x, u, v) for |v| ≤ r0;
(2.5b) Fk(x, u, v) = +∞ for |v| > k;
(2.5c) Fk is Hölder in (x, u) uniformly in v for |v| ≤ k, and Fk is convex

in v;
(2.5d) Fk(x, u, v) ≤ L(x, u, v) for |v| ≤ k, and Fk(x, u, v) ≤ L(x, u, v)− η̃ for

r1 ≤ |v| ≤ k; and
(2.5e) Fk(x, u, v) ≥ α1|v|+ β.

Proof. Define fk : S ×R → R ∪ {+∞} by

fk(x, u, v) =

 L(x, u, v) |v| < r1,
L(x, u, v)− η̃ r1 ≤ |v| ≤ 2k,
+∞ |v| > 2k,

and define f̃k : S ×R → R ∪ {+∞} by

f̃k(x, u, v) = inf

{
n∑

i=1

λifk(x, u, vi) :

n∑
i=1

λivi = v,

n∑
i=1

λi = 1, λi ≥ 0, n ∈ N

}
.

By definition of fk, we can restrict to |vi| ≤ 2k in the definition of f̃k. Since L is

Hölder in (x, u) uniformly in v on S × [−2k, 2k], we see that f̃k is Hölder in (x, u)
uniformly in v on S × [−k, k].
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We now define Fk : S ×R → R ∪ {+∞} by

Fk(x, u, v) =

{
f̃k(x, u, v) |v| ≤ k,
+∞ |v| > k.

So condition (2.5b) holds by definition, and conditions (2.5c) and (2.5d) hold by
the corresponding properties of fk. To check condition (2.5a), we let (x, u) ∈ S and
|v| ≤ r0. It suffices to prove that for some l ∈ ∂vL(x, u, v), any convex combination∑n

i=1 λivi = v satisfies

fk(x, u, vi) ≥ L(x, u, v) + (l, vi − v).

Given this, it follows that

Fk(x, u, v) = f̃k(x, u, v) ≥ L(x, u, v),

which combined with (2.5d) gives the required equality.
So, to prove this claim, let l ∈ ∂vL(x, u, v) witness the conclusion of lemma 2.3,

and consider some convex combination
∑n

i=1 λivi = v. For |vi| ≥ r1, we apply
lemma 2.3 to see that, by the choice of η̃,

fk(x, u, vi) = L(x, u, vi)− η̃

≥ L(x, u, v) + (l, vi − v) + η − η̃

> L(x, u, v) + (l, vi − v).

For |vi| < r1, we see on the other hand by the usual subgradient inequality that

fk(x, u, vi) = L(x, u, vi) ≥ L(x, u, v) + (l, vi − v),

as required.
To show condition (2.5e) we are required to prove that fk(x, u, v) ≥ α1|v| + β,

since the condition then follows by the definition of Fk. We see that his follows
trivially for |v| > 2k, and by the assumption on L if |v| ≤ r1. So it in fact suffices
to prove that L(x, u, v) − η̃ ≥ α1|v| + β for |v| ≥ r1. By the assumption on L this
in turn amounts to proving that

α|v|+ β − η̃ ≥ α1|v|+ β

for |v| ≥ r1. But this was guaranteed by the choice of η̃ such that α1r1/2 ≥ η̃. □
The following lemma is quoted precisely from [5], where the (elementary) proof

may be found.

Lemma 2.6. Let f, g : R → R ∪ {+∞} be convex, and suppose they are equal and
finite on an open interval C, and let h : R → R∪{+∞} be the convex hull of f and
g.

Then h = f = g on C.

We are now in a position to prove proposition 2.2.

Proof of Proposition 2.2. Fix k > r1. Define Gk : S ×R → R ∪ {+∞} by

Gk(x, u, v) = inf{λL0(x, u, v1)+(1−λ)Fk(x, u, v2) : 0 ≤ λ ≤ 1, λv1+(1−λ)v2 = v},
where L0 is as given by lemma 2.4 and Fk is as given by lemma 2.5. By (2.4c), (2.5a)
and lemma 2.6 we have that Gk(x, u, v) = L(x, u, v) for |v| ≤ r0. Furthermore, Gk is
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convex in v by definition, and is easily seen to be Hölder in (x, u) locally uniformly
in v, by the corresponding properties of L0 and Fk, where the latter is finite.

Conditions (2.4d) and (2.5e) imply that Gk(x, u, v) ≥ α1|v|+β. Conditions (2.5d)
and (2.4b) imply that

Gk(x, u, v) ≤
{

L(x, u, v) |v| ≤ k,
σ|v|+ γ̃ |v| > k,

and moreover that Gk(x, u, v) ≤ L(x, u, v)− η̃ for r1 ≤ |v| ≤ k.
It just remains to construct an elliptic function to add to Gk and thereby define

Hk. For this purpose, we define m0 := 0 and mn :=
∑n

i=1 2
−k, and set τn :=

(mn+1−mn)/2 for n ≥ 0. Define ωn : [n, n+1] → R by ω0(v) = τ0v
2 and for n ≥ 1,

ωn(v) = ωn−1(n) +mn(v − n) + τn(v − n)2,

and finally define ω : [0,∞) → [0,∞) by

ω(v) = ωn(v) for v ∈ [n, n+ 1).

Then we see easily that ω is a continuous, differentiable, and convex function with
ω′(n) = mn for all n ≥ 0. Moreover an easy induction shows that

ω(n) = ωn−1(n) =

n−1∑
i=0

(mi + τi) =

n−1∑
i=0

(mi+1 +mi)/2 ≤
n−1∑
i=0

1 = n,

and hence that ω(v) ≤ v for all v ∈ [0,∞). Moreover, ω satisfies the local ellipticity
condition in (H) for p = 2.

We now define Ψk : R → [0,∞) by

Ψk(v) =

 0 v ∈ [−r0, r0],
min{η̃/2k, 1/k2, σ}ω(v − r0) v ∈ (r0,∞),
min{η̃/2k, 1/k2, σ}ω(−v − r0) v ∈ (−∞,−r0).

Then Ψk satisfies the local ellipticity condition on (−∞,−r0] and [r0,∞), and is
identically 0 on [−r0, r0]. For r0 ≤ v ≤ k, we see that

Ψk(v) ≤ min{η̃/2k, 1/k2}(v − r0) ≤ min{η̃/2, 1/k}v/k ≤ min{η̃/2, 1/k},

and similarly for −k ≤ v ≤ −r0. For all v ∈ [r0,∞), we see that Ψk(v) ≤ σω(v −
r0) ≤ σv, and similarly Ψk(v) ≤ σ|v| for v ∈ (−∞,−r0].

We may now define Hk : S × R → R by Hk(x, u, v) = Gk(x, u, v) + Ψk(v), and
δ := η̃/2, and α2 := 2σ.

Then Hk is Hölder in (x, u) locally uniformly in v, since Gk is, and satisfies the
local singular ellipticity condition since Hk = Gk = L for |v| ≤ r0, and otherwise
Hk = Gk +Ψk where Gk is convex in v and Ψk is locally elliptic on (−∞,−r0] and
[r0,∞). Hence condition (2.2a) holds.

Condition (2.2b) follows by the definition of Ψk and the corresponding property
of Gk observed above. For condition (2.2c), we see for r1 ≤ |v| ≤ k that

Hk(x, u, v) ≤ L(x, u, v)− η̃ +Ψk(v) ≤ L(x, u, v)− η̃/2 = L(x, u, v)− δ.

Condition (2.2d) follows since for |v| > k we have that

Hk(x, u, v) ≤ σ|v|+ γ̃ +Ψk(v) ≤ 2σ|v|+ γ̃ = α2|v|+ γ̃;
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setting γ = max{supS×[−k,k]Hk(x, u, v), γ̃} gives the required statement.

For condition (2.2e) we note that

Hk(x, u, v) ≥ Gk(x, u, v) ≥ α1|v|+ β,

and finally for condition (2.2f), we see that for r0 ≤ |v| ≤ r1,

Hk(x, u, v) ≤ L(x, u, v) + Ψk(v) ≤ L(x, u, v) + k−1,

as required. □

Proof of Theorem 1.1. We select ϵ0 > 0 in such a way that if (a,A) ∈ G, l ∈
∂vL(a,A, 0) then the integrand L̃(x, u, v) := L(x, u, v) − lv achieves its minima in
v for each (x, u) ∈ [a − ϵ0, a + ϵ0] × [A − ϵ0, A + ϵ0]. In this case we also have

L̃(x, u, v) ≥ α|v| + β, α > 0 for (x, u) under consideration. Note that minimizers

in the problems (1.1-2) with L and L̃ integrands are the same since the integral of
lu̇ is the same for all functions having the same boundary conditions (1.2). As for
δ0 > 0 it will be selected later and will satisfy the inequality δ0 ≤ ϵ0.

Take N ≥ M and consider a minimization problem (1.1-2) with (a,A) ∈ G,
|a− b| ≤ δ ≤ δ0, |B−A|/|b−a| ≤ M in the class of N -Lipschitz u with |u(·)−A| ≤
ϵ ≤ ϵ0 in [a, b]. By Lemma 1.5 solutions u of such a problem exist. Now we will
study regularity of such solutions u. For this we will use Lemma 2.1 since u satisfy
(2.3) in any interval [x1, x2] ⊂ [a, b].

Let [x3, x4] ⊂ [x1, x2]. Then there exists k ∈ N such that

|x2 − x1|
ek

≤ |x4 − x3| ≤
|x2 − x1|
ek−1

and we can select a collection of imbedded intervals [xi1, x
i
2], i ∈ {0, . . . , k− 1}, such

that x01 = x1, x
0
2 = x2, |xi2 − xi1| = |xi−1

2 − xi−1
1 |/e for all i under consideration and

[x3, x4] ⊂ [xk−1
1 , xk−1

2 ], where |x4 − x3| ≥ |xk−1
1 − xk−1

2 |/e. By (2.5) we then have

(2.10)

∣∣∣u(x2)− u(x1)

x2 − x1
− u(x4)− u(x3)

x4 − x3

∣∣∣
≤

k−1∑
i=1

∣∣∣u(xi2)− u(xi1)

xi2 − xi1
− u(xi−1

2 )− u(xi−1
1 )

xi−1
2 − xi−1

1

∣∣∣
+
∣∣∣u(xk−1

2 )− u(xk−1
1 )

xk−1
2 − xk−1

1

− u(x4)− u(x3)

x4 − x3

∣∣∣
≤

k∑
i=1

2e
[2c(N)(1 +N)α(N)

µ(N)

]1/p(N)∣∣∣x2 − x1
ei

∣∣∣α(N)/p(N)

≤
k∑

i=1

2e
[2c(N)(1 +N)α(N)

µ(N)

]1/p(N) 1

eiα(N)/p(N)
|x2 − x1|α(N)/p(N),

where c(N), α(N), p(N), µ(N) correspond in (H) to the compact set K̃ := G̃ ×
[−N,N ] with G̃ := {(x, u) : |x− a| ≤ ϵ0, |u−A| ≤ ϵ0, (a,A) ∈ G}.
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Finally we obtain that for [x3, x4] ⊂ [x1, x2] we have

(2.11)
∣∣∣u(x2)− u(x1)

x2 − x1
− u(x4)− u(x3)

x4 − x3

∣∣∣ ≤ c̃(N)|x2 − x1|γ(N),

where

(2.12) c̃(N) =
∞∑
i=1

2e
[2c(N)(1 +N)α(N)

µ(N)

]1/p(N) 1

eiα(N)/p(N)
, γ(N) = α(N)/p(N).

This allows us to state that u is differentiable everywhere. In fact if k is a derivative
number at x0 then by (2.11) we obtain u̇(x0) = k. Again by (2.11) we infer that

(2.13) |u̇(y)− u̇(x)| ≤ 2c̃(N)|y − x|γ(N),

i.e. that u ∈ C1,γ(N).
Note now that for δ0 > 0 sufficiently small we can show that ||u̇||C[a,b] ≤ M + 1.

Indeed, due to the inequality |B −A|/|b− a| ≤ M there exists x0 ∈ [a, b] such that
|u̇(x0)| ≤ M . Consider the maximal interval [x1, x2] ⊂ [a, b] for which x0 ∈ [x1, x2]
and |u̇(x)| ≤ M + 1 for x ∈ [x1, x2]. For y in this interval we have due to (2.13)

|u̇(y)− u̇(x0)| ≤ 2c̃(M + 1)|x2 − x1|γ(M+1),

i.e.
|u̇(y)| ≤ M + 2c̃(M + 1)|x2 − x1|γ(M+1).

Therefore |u̇(y)| ≤ M +1 if 2c̃(M +1)|x−y|γ(M+1) ≤ 1. This determines the choice
of δ0:

(2.14) δ0 ≤ (1/2c̃(M + 1))1/γ(M+1).

We proved that for δ ≤ δ0 with δ0 ≤ ϵ0 satisfying (2.14) all solutions of the
problems under consideration have derivatives bounded in C-norm by M+1 and all
solutions are bounded in C1,γ(M+1)-norm. This is independent ofN ≥ M . Therefore
solutions in the class of Lipschitz functions exist and for each such solution u we
have ||u̇||C ≤ M + 1. It remains to prove that solutions in the class of Lipschitz
functions are the only solutions in the wider class of W 1,1 functions.

We have proved that for a fixed compact G ⊆ R2 and M > 0, there exist ϵ0 > 0
and δ0 ∈ (0, ϵ0] such that for all 0 < δ ≤ δ0 and 0 < ϵ ≤ ϵ0, the following holds. For
any (a,A) ∈ G and (b,B) satisfying |a−b| ≤ δ, |B−A| ≤ ϵ, and |B−A|/|b−a| ≤ M ,
the minimizer u in the class of Lipschitz functions u : [a, b] → R satisfying u(a) = A,
u(b) = B, and |u(x)−A| ≤ ϵ for all x ∈ [a, b] of the functional J exists and satisfies
∥u̇∥C ≤ M + 1. It just remains to prove that the Lipschitz minimizers are the
only minimizers over W 1,1[a, b] for such a problem. Let u be such a minimizer over
Lipschitz functions.

Suppose for a contradiction that there exists an admissible ũ ∈ W 1,1[a, b] such
that J(ũ) ≤ J(u) and ∥u̇∥L∞ = ∞. We recall that we may assume that there exist
α > 0 and β ∈ R such that

L(x, u, v) ≥ α|v|+ β

for all (x, u) ∈ [a− δ0, a+ δ0]× [A− ϵ0, A+ ϵ0]. We apply proposition 2.2 with these
values of α, β, compact set S = [a− δ0, a+ δ0]× [A− ϵ0, A+ ϵ0], and r0 ≥ M + 1,
to get functions Hk : S ×R → R as in the lemma, for k > r1 > r0.



ONE-DIMENSIONAL VARIATIONAL PROBLEMS WITH SINGULAR ELLIPTICITY 409

Mimicking the proof for L with the integrand Hk, we see that a minimizer uk
exists over the class of Lipschitz functions u : [a, b] → R satisfying u(a) = A, u(b) =

B, and |u(x)−A| ≤ ϵ of the functional
∫ b
a Hk(x, u, u̇), and satisfies ∥u̇k∥C ≤ M +1.

Using condition (2.2b) we see that∫ b

a
Hk(x, uk, u̇k) ≤

∫ b

a
Hk(x, u, u̇) =

∫ b

a
L(x, u, u̇)

≤
∫ b

a
L(x, uk, u̇k)

=

∫ b

a
Hk(x, uk, u̇k),

so
∫ b
a Hk(x, uk, u̇k) =

∫ b
a Hk(x, u, u̇) =

∫ b
a L(x, u, u̇), and u is a minimizer for the

integrand Hk over admissible Lipschitz functions. There exist admissible Lipschitz
functions vi ∈ W 1,∞[a, b] such that vi → ũ in W 1,1[a, b] and, owing to the linear
growth conditions

α1|v|+ β ≤ Hk(x, u, v) ≤ α2|v|+ γ,

we have as i → ∞ that ∫ b

a
Hk(x, vi, v̇i) →

∫ b

a
Hk(x, ũ, ˙̃u).

Now, by our assumption on the derivative of ũ, we know that the set {| ˙̃u| > r1} has
positive measure. Then by conditions (2.2f), (2.2b), (2.2c), and (2.2d), we see that∫ b

a
Hk(x, ũ, ˙̃u) ≤

∫
{| ˙̃u|≤r1}

(L(x, ũ, ˙̃u) + k−1) +

∫
{r1<| ˙̃u|≤k}

(L(x, ũ, ˙̃u)− δ)

+

∫
{| ˙̃u|>k}

(α2| ˙̃u|+ γ)

→
∫
{| ˙̃u|≤r1}

L(x, ũ, ˙̃u) +

∫
{| ˙̃u|>r1}

(L(x, ũ, ˙̃u)− δ) as k → ∞

=

∫ b

a
L(x, ũ, ˙̃u)− δmeas({| ˙̃u| > r1}).

But on the other hand,∫ b

a
L(x, u, u̇) =

∫ b

a
Hk(x, uk, u̇k) ≤

∫ b

a
Hk(x, vi, v̇i)

for each i and each k. So∫ b

a
L(x, u, u̇) ≤ lim

i→∞

∫ b

a
Hk(x, vi, v̇i)

=

∫ b

a
Hk(x, ũ, ˙̃u)

≤
∫ b

a
L(x, ũ, ˙̃u)− δmeas({| ˙̃u| > r1}),

which contradicts the choice of ũ as a minimizer for J over W 1,1[a, b].
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The proof of Theorem 1.1 is complete. □

Proof of Theorem 1.1 would be simplified if instead of Proposition 2.2 we would
use Lemma 2.7.

Lemma 2.7. Let L(x, u, v); [a, b]× [A,B]× R → R satisfy condition (H) and L ≥
α|v|+ β, α > 0. Let also N > 0.

Then there exists G(x, u, v) : [a, b]× [A,B]×R → R which also satisfy condition
(H), L = G for |v| ≤ N , G ≤ L everywhere when G < L for |v| sufficiently large.
Moreover G has linear growth at infinity:

c1|v|+ c2 ≤ G(x, u, v) ≤ c3|v|+ c4, c3 ≥ c1 > 0.

Unfortunatelly we were unable to prove this lemma. Note that another proof of
Theorem 1.1 could be taken from [14].

Proof of Theorem 1.4. Let u be a minimizer with graph in K. Let x0 ∈ [a, b] be
such that for xn1 → x0, x

n
2 → x0 with x0 ∈ [xn1 , x

n
2 ], n ∈ N , we have

(2.15) lim inf
n→∞

∣∣∣u(xn2 )− u(xn1 )

xn2 − xn1

∣∣∣ ≤ M < ∞.

Then by Theorem 1.1 u is C1-regular in a neighbourhood of x0. Therefore u is
C1-regular in an open set of full measure. At other points x0, where (2.15) does
not hold, we obviously have that u̇(x0) = ∞ or u̇(x0) = −∞. We show now that
u̇ : [a, b] → R̄ is continuous. For this it is enough to show that if u̇(x0) = ∞ then
u̇(x) → ∞ for x → x0 (the case of −∞ can be considered analogously). Assume
that xn → x0 and u̇(xn) ≤ M < ∞, n ∈ N . Since ((u(x0)− u(xn))/(x0 − xn) → ∞
we infer existence of yn ∈ [xn, x0] such that ((u(yn) − u(xn))/(yn − xn) = M + 2,
n ∈ N . Since |yn − xn| → 0 by Theorem 1.1 we have that the oscillations of the
derivative in the interval [xn, yn] do not exceed 1 for n ∈ N sufficiently large. Then
u̇(y) ≥ M + 1 for y ∈ [xn, yn] with such n ∈ N . But u̇(xn) ≤ M which gives
the contradiction. This way we proved that u̇(xn) → ∞ as xn → x0, i.e. that
u̇ : [a, b] → R̄ is a continuous function.

The last assertion we have to prove is that derivatives of the minimizers under
consideration belong to a certain conditionally equa-continuous family, i.e. that for
each M > 0 and ϵ > 0 there exists δ = δ(M, ϵ) > 0 such that for a minimizer u
we have |u̇(y)− u̇(x0)| ≤ ϵ provided |u̇(x0)| ≤ M and |y − x0| ≤ δ. Indeed, we can
consider the maximal interval I such that x0 ∈ I and |u̇(y)| ≤ M + 1 for y ∈ I. In
this interval the modulus of continuity of u̇ does not exceed w(ϵ) = cϵγ by Theorem
1.1. Then we have

|u̇(y)− u̇(x0)| ≤ c|y − x0|γ ,

which holds for all y with c|y − x0|γ ≤ 1, i.e. in the case when |I| ≤ (1/c)1/γ .
Therefore we can take

δ(M, ϵ) := min{(1/c)1/γ , (ϵ/c)1/γ}.

Proof of Theorem 1.4 is complete. □
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3. Theorem 1.8

We will use the following lemma about the properties of a conditionally equa-
continuous family, the proof of which can be found in [17].

Lemma 3.1. Let Ξ be a conditionally equa-continuous family and let δ(M, ϵ) be the
associated function (modulus of conditional equa-continuity). Then

1) if ξn is a sequence in the family which is bounded in L1 then there exists a
subsequence ξk that converges uniformly in any compact set of a certain open
set of full measure to a function ξ0. In this case Ξ∪{ξ0} is also conditional
equa-continuous family with the same modulus δ;

2) if a conditional equa-continuous family consists of functions which are weakly
compact in L1 then this family is also a strongly compact in L1;

3) if ξ ∈ Ξ is such that ξ(x) ≥ M > 0 (ξ(x) ≤ −M) then for y with |x− y| ≤
δ(M/2,M/2) we have ξ(y) ≥ M/2 (ξ(y) ≤ −M/2).

Proof of theorem 1.8. Let for boundary conditions (a0, A0, b0, B0) all minimizers
have bounded derivatives at a0 and b0. Then there exists M > 0 such that for
every minimizer u we have |u̇(a0)| ≤ M , |u̇(b0)| ≤ M . Otherwise we can find a
sequence of minimizers un : [a0, b0] → R such that |u̇n(a0)| → ∞ (the case of b0
can be considered analogously). Then the limit function u0 is also a minimizer by
lemma 1.5. By Lemma 3.1 we have u̇0(a0) = ∞ which is a contradiction. There-
fore we proved the existence of M > 0 such that |u̇(a0)| ≤ M , |u̇(b0)| ≤ M for all
minimizers u of the problem.

Then there exists η > 0 such that |u̇(x)| ≤ M + 1 for x ∈ [a0, a0 + η] and
x ∈ [b0− η, b0] and all minimizers u since their derivatives belong to a conditionally
equa-continuous family by Theorem 1.4.

Note that S is continuous at (a0, A0, b0, B0). In fact it is lower semicontinuous by
the lower semicontinuity lemma 1.5. If we have (an, An, bn, Bn) → (a0, A0, b0, B0)
then we can take un(x) = u(x) for x ∈ [a0 + ηn, b0 − ηn], un(an) = An, un(bn) =
Bn and un be affine in the intervals [an, a0 + ηn], [b0 − ηn, bn]. Then obviously
J(un; [an, bn]) → J(u; [a0, b0]) for appropriate ηn → 0, which implies continuity of
S at (a0, A0, b0, B0).

Now we can state that for all (an, An, bn, Bn) sufficiently close to (a0, A0, b0, B0)
and the minimizer un associated with the n-th conditions we have |u̇(an)| ≤ M +1,
|u̇(bn)| ≤ M + 1. Indeed, u̇n converges weakly to u̇0 where u0 is a minimizer in the
problem with the 0-th boundary datum because of continuity of S at (a0, A0, b0, B0).
By Lemma 3.1 then u̇n(an) → u̇0(a0), u̇n(b0) → u̇(b0). This implies the result.

Since all minimizers associated with the n-datum sufficiently close to 0-th datum
have derivatives in a certain conditionally equa-continuous family we obtain that for
appropriate η > 0 there holds |u̇n(x)| ≤ M + 2 for x ∈ [an, an + η], x ∈ [bn − η, bn],
n ∈ N .

Now it is easy to derive Lipschitz continuity of S at (a0, A0, b0, B0). Indeed if un is
a minimizer with n−th boundary conditions then un → u0, where u0 is a minimizer
with 0-boundary conditions. Now we can define ũn = u0 for x ∈ [an + ηn, bn − ηn],
ũn(an) = An, ũ(bn) = Bn and ũn be affine in the intervals [an, an+ηn], [bn−ηn, bn].
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We have that | ˙̃un(x)| ≤ 2M + 5 in those intervals if

2{|a0 − an|+ |b0 − bn|+ |A0 −An|+ |B0 −Bn|} = ηn.

Indeed, in the interval [an, an + ηn] the modulus of the derivative of ũn is equal to
|u0(an + ηn)−An|/ηn and we have

|u0(an + ηn)−An|
ηn

≤ |u0(an + ηn)−A0|
ηn

+
|A0 −An|

ηn
≤ 2(M + 2) + 1 = 2M + 5.

Analogously | ˙̃un(x)| ≤ 2M + 5 for x ∈ [bn − ηn, bn].
Therefore

S(an, An, bn, Bn)− S(a0, A0, b0, B0)

≤ J(ũn; [an, bn])− J(u0; [a0, b0])

≤
∣∣∣ ∫ an+ηn

an

L(x, ũn(x), ˙̃un(x))dx
∣∣∣

+
∣∣∣ ∫ bn

bn−ηn

L(x, ũn(x), ˙̃un(x))dx
∣∣∣

+
∣∣∣ ∫ an+ηn

a0

L(x, u0(x), u̇0(x))dx
∣∣∣

+
∣∣∣ ∫ b0

bn−ηn

L(x, u0(x), u̇0(x))dx
∣∣∣

≤ 6ηnmax{|L(x, u, v) : (x, u) ∈ K, |v| ≤ 2M + 5}
≤ const{|an − a0|+ |bn − b0|+ |An −A0|+ |Bn −B0|}.

Here K ⊂ R2 is a compact set such that it contains graphs of all functions under
consideration. Analogously

S(a0, A0, b0, B0)−S(an, An, bn, Bn) ≤ const{|an−a0|+|bn−b0|+|An−A0|+|Bn−B0|}.
Therefore Lipschitz continuity of S at (a0, A0, b0, B0) holds.

The last point to prove is that if S is Lipschitz continuous at (a0, A0, b0, B0) then
all associated minimizers are bounded in the neighborhoods of a0 and b0 in C1-norm.
Assume otherwise, i.e. we can assume without loss of generality that u̇(b0) = ∞.
Then we can consider (a0, A0, b0, Bn) boundary conditions with Bn < B0 and un
such that if u(xn) = Bn and u(x) ≥ Bn for x ∈ [xn, b0] then un(x) = Bn for
x ∈ [xn, b0], for x ∈ [a0, xn] we assume un(x) = u(x). We have

S(a0, A0, b0, B0)− S(a0, A0, b0, Bn) ≥
∫ b0

xn

L(x, u(x), u̇(x))dx

−
∫ b0

xn

L(x, un(x), u̇n(x))dx

≥
∫ b0

xn

θ(
u(b0)− u(xn)

|b0 − xn|
)dx− c(b0 − xn),

where θ : R → R is a convex function with superlinear growth.
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Then

{S(a0, A0, b0, B0)− S(a0, A0, b0, Bn)}/|B0 −Bn| → ∞, n → ∞.

This is a contradiction with the assumption that S is Lipschitz continuous at the
point (a0, A0, b0, B0).

The proof is completed. □

Remark 3.2. It follows from the proof that if S is Lipschitz at certain point
(a0, A0, b0, B0) then it is also uniformly Lipschitz in an appropriate neigborhood of
the point.

The advantage of Theorem 1.8 is that it is possible to prove Lipschitz continuity
of S for some classes of integrands: when L(x, u, v) is independent on x or u, or
when it is jointly convex in (u, v), see [14, §5], as well as in some other cases. Note
also that Lipschitz continuity of minimizers was proved by A.Cellina in [4] in the
case of autonomous L = L(u, v) under more general growth conditions.

4. Theorem 1.9

Proof of Theorem 1.9. The proof will rely severely on Theorem 1.4, i.e. that deriva-
tives of minimizers with graphs lying in a certain compact set K ⊂ R2 belong to a
conditionally equa-continuous family.

Let U be the universal singular set associated with L. We will consider subsets
of U : Lϵ

ρ,+, L
ϵ
ρ,−, R

ϵ
ρ,+, R

ϵ
ρ,−, where ρ > 0, ϵ > 0. Lϵ

ρ,+ (Lϵ
ρ,−) is a subset of U

such that if (x0, u0) ∈ Lϵ
ρ,+ (Lϵ

ρ,−) then for each δ < ρ there exists boundary datum
a = x0 − δ, b = x0, B = u0 such that the corresponding minimizer u has the
properties J(u; [a, b]) ≤ 1/ϵ, u̇(b) = ∞ (u̇(b) = −∞). Analogously Rϵ

ρ,+ (Rϵ
ρ,−) is

the set of (x0, u0) ∈ U such that for each δ < ρ there exists a problem (1.1-2) with
a = x0, A = u0, b = x0+ δ with J(u; [a, b]) ≤ 1/ϵ and with u̇(a) = ∞ (u̇(a) = −∞).

We will prove that given a closed ball B̄(r) centred at the origin and with radius
r > 0 the sets Lϵ

ρ,+ ∩ B̄(r), Lϵ
ρ,− ∩ B̄(r), Rϵ

ρ,+ ∩ B̄(r), Rϵ
ρ,− ∩ B̄(r) are closed and

of zero 2-d Lebesgue measure. Then they are also nowhere dense. This result is
sufficient to claim that U is of first Baire category and of zero 2-d Lebesgue measure.

We prove only that Lϵ
ρ,+ ∩ B̄(r) is closed and of zero 2-d Lebesgue measure. For

the other sets the proof is analogous.
Let (xn, un) ∈ Lϵ

ρ,+ ∩ B̄(r) and (xn, un) → (x0, u0), n → ∞. We have to show

that (x0, u0) ∈ Lϵ
ρ,+ ∩ B̄(r). For sufficiently small ν > 0 we consider minimizers

un : [xn−ρ+ν, xn] → R associated with (xn, un). Then J(un; [xn−ρ+ν;xn]) ≤ 1/ϵ.
Switching if necessary to a subsequence we can assume that un converge uniformly
to a function u0 : [x0 − ρ + ν, x0] → R. By the properties of conditionally equa-
continuous families, see Lemma 3.1, we have u̇0(x0) = ∞ and there also exists
x̄ ∈ [x0 − ρ+ ν, x0 − ρ+ 2ν] such that u̇n(x̄) → u̇0(x̄), where |u̇0(x̄)| < ∞. It turns
out that there is a minimizer ū in the problem (1.1-2) with the boundary conditions
(a,A, b, B) = (x̄, ū0(x̄), x0, u0) such that ˙̄u(b) = ∞. This result is sufficient to state
that Lϵ

ρ,+ ∩ B̄(r) is closed.
We prove this fact by contradiction. If there are no such a minimizer then all

minimizers of the (a,A, b, B)-problem has bounded derivative at b and if ū is a
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minimizer then J(ū) < J(u0). In particular

(4.1) lim inf
n→∞

J(un; [x̄, xn]) ≥ J(u0; [x̄, x0]) > J(ū; [x̄, x0]).

But we will show existence of functions wn : [x̄− ηn, xn] → R such that J(wn; [x̄−
ηn, xn]) → J(ū; [x̄, x0]) with ηn → +0 and wn having the same boundary conditions
as un at x̄− ηn and xn. This will be a contradiction with (4.1) which will allow us
to state that (x0, u0) ∈ Lϵ

ρ,+ ∩ B̄(r).
Let η > 0 be sufficiently small. Define wn : [x̄ − η;xn] → R be equal to ū in

[x̄, xn − η] and affine in each interval [x̄ − η, x̄], [xn − η, xn], where wn(x̄ − η) =
un(x̄ − η), wn(xn) = un(xn). Then for all n ∈ N sufficiently large and an η > 0
sufficiently small the derivative of wn in the intervals [x̄−η, x̄], [xn−η, xn] are equa-
bounded in modulus. Here we use the fact that the derivatives of un in the intervals
[x̄ − η, x̄], n ∈ N , are equa-bounded since they belong to a conditionally equa-
continuous family. Finally we can take ηn → 0 instead of η keeping the derivatives
in the intervals of affinity equa-bounded in modulus. Therefore J(wn; [x̄−ηn, xn]) →
J(ū; [x̄, x0]) which gives the desired contradiction with (4.1).

We have established the fact that Lϵ
ρ,+ ∩ B̄(r) is a closed set. Now we have to

prove that this set has zero 2-d Lebesgue measure. It is enough to show that if x is
fixed then the set G := {u ∈ [−r, r] : (x, u) ∈ (Lϵ

ρ,+ ∩ B̄(r))} has zero 1-d Lebesgue
measure. Let u0 be such a point. Consider the set [u0 − δ, u0 + δ]. We can find
ρ > 0 sufficiently small and A such that A < u(x− ρ) for all minimizers associated
with [u0 − δ, u0 + δ]∩G. We can take ρ > 0 so small that if u is a minimizer in the
problem (1.1-2) with a = x− ρ, A, b = x, B ∈ [u0− δ, u0+ δ] then u̇(·) ≥ M , where

(4.2) min{L(x, u, v) : (x, u) ∈ B(r), |v| ≥ M} > max{|L(x, u, 0)| : (x, u) ∈ B(r)}.

For boundary conditions (a,A, b, B) under consideration we can consider a function
I(B) = inf{J(u; [a, b]) : u ∈ W 1,1[a, b], u(a) = A, u(b) = B}, B ∈ [u0 − δ, u0 + δ].
This function is monotone increasing. In fact if B1, B2 ∈ [u0−δ, u0+δ] and B2 > B1

and if u2 is a minimizer associated with B2 then there exists x2 ∈ [a, b] such that
u2(x2) = B1, u2(x) > B1 for x ∈ [x2, b]. We can assume w = u2 in [a, x2], w(x) = B1

in [x2, b]. Then because of (4.2) we have I(B2) > J(w) ≥ I(B1), i.e. I in indeed an
increasing function. At the points B2 ∈ [u0− δ, u0+ δ]∩G we have I ′(B2−0) = ∞.
Indeed

(4.3)

I(B2)− I(B1) ≥
∫ b

x2

L(x, u2(x), u̇2(x))dx−
∫ b

x2

L(x,w(x), 0)dx

≥
∫ b

x2

θ(
B2 −B1

b− x2
)dx− const(b− x2),

where θ : R → R is a convex function with superlinear growth. Because of super-
linear growth of θ and the equality u̇2(b) = ∞ we have in (4.3)

(I(B2)− I(B1))/(B2 −B1) → ∞, B1 → B2 − 0.

However monotone functions can have infinite derivative only is a set of values of
zero measure. Therefore u0 is not a Lebesque point of G. This proves that the
set G has zero 1-d Lebesgue measure. Therefore the set Lϵ

ρ,+ ∩ B̄(r) has zero 2-d
Lebesgue measure.
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Proof is completed. □
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