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When the underlying field is R, we call T a lattice homomorphism if it preserves
the meet, i.e. the infimum, operations, i.e.,

T (f ∧ g) = Tf ∧ Tg, ∀f, g ∈ C(X).

A bijective algebra (resp. lattice) homomorphism is called an algebra (resp. lattice)
isomorphism.

We see that T is a lattice homomorphism if and only if it preserves zero meets,
i.e.,

Tf ∧ Tg = 0 whenever f ∧ g = 0.

It also amounts to say that T is positive, i.e. Tf ≥ 0 whenever f ≥ 0, and T is
disjointness preserving, i.e.,

|Tf | ∧ |Tg| = 0 whenever |f | ∧ |g| = 0.

Being a linear map between continuous functions, T is disjointness preserving ex-
actly when T preserves zero products, i.e.,

Tf Tg = 0 whenever fg = 0.

From these points of view, the algebraic and the lattice structure do have a common
point. In other words, the zero products from the algebraic structure coincide with
the disjointness from the lattice structure of continuous functions. Indeed, the zero
product, or equivalently, the disjointness structure suffices to determine C(X).

There are many attentions put on disjointness preserving linear operators (also
called Lamperti operator in, e.g., [3], or separating map in, e.g., [9]), on Banach al-
gebras and Banach lattices (see, e.g., [1, 3–12, 14–19, 25]). A bounded disjointness
preserving linear operator is called an orthomorphism. Note that lattice homomor-
phisms are exactly positive orthomorphisms. Motivated by the notion of regular
operators which are differences of positive operators, and extending the projects in
[4, 6], we are interested in the question when a bounded linear operator of continuous
functions can be written as a finite sum of orthomorphisms.

If a bounded linear operator T = T1 + T2 is a sum of two orthomorphisms,
then T is a 2–orthomorphism, that is, Tf0Tf1Tf2 = 0 for every pairwise disjoint
functions f0, f1, f2 in C(X). However, the 2–disjointness preserving property does
not quarantee that T is a finite sum of orthomorphisms. In fact, Example 2.4
below provides us a 2–orthomorphism from C([0, 1]) into C([0, 1]), which cannot be
written as a finite sum of orthomorphisms.

However, we can always write an n–orthomorphism T of continuous functions as
a sum of at most n orthomorphisms in an approximative way. The approximation
here is defined through an approximate order identity {gλ}, i.e., an increasing net
of non-negative functions with supλ gλh = h for every nonnegative h. We call T
an approximate sum of n orthomorphisms if there is an approximate order identity
{gλ} such that gλT is a sum of at most n orthomorphisms for each λ.

In a little more general setting, we consider the C*-algebras and Banach lat-
tices, C0(X) and C0(Y ), of continuous functions defined respectively on locally
compact Hausdorff spaces X and Y vanishing at infinity. In Section 2, along with
some preliminary preparation, we provide a counter example to show that a 2–
orthomorphism of C[0, 1] need not be a sum of finitely many orthomorphisms. In
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Section 3, we discuss how to write an n–orthomorphism as a sum of n orthomor-
phisms approximately. In Theorem 3.1, we see that a bounded linear operator
T : C0(X) → C0(Y ) is an n–orthomorphism if and only if its canonical extension
from C0(X) into the second dual C0(Y )∗∗ of C0(Y ) is a sum of at most n ortho-
morphisms. In Theorem 3.3, without going through C0(Y )∗∗, among the equivalent
conditions, we show that T : C0(X) → C0(Y ) is an n–orthomorphism if and only if
it is an approximate sum of n orthomorphisms.

Some results of this paper are based on the PhD dissertation of Jung-Hui Liu
[20].

2. Preliminaries and a counter example

Proposition 2.1 ([3, 9, 15, 17]). Let X,Y be locally compact Hausdorff spaces. Let
T : C0(X) → C0(Y ) be a disjointness preserving linear map. Then we can partition
Y = Y0 ∪Yc ∪Yd into a closed subset Y0, an open subset Yd, and Yc = Y \ (Y0 ∪Yd),
satisfying the following properties.

(1) A point y ∈ Y0 exactly when the linear functional f 7→ Tf(y) is zero on C0(X).
In other words, Y0 =

∩
f∈C0(X)(Tf)

−1(0), and thus,

Tf |Y0= 0.

(2) A point y ∈ Yd (resp. y ∈ Yc) exactly when the linear functional f 7→ Tf(y) is
nonzero and discontinuous (resp. continuous) on C0(X).

(3) There exist a continuous map φ : Yc → X and a non-vanishing bounded contin-
uous function h on Yc such that

Tf |Yc= h · f ◦ φ, ∀f ∈ C0(X).

(4) When T is bijective, we have Y = Yc, and thus T is automatically bounded in
this case.

(5) When T is bounded, especially when T is positive, Yd = ∅ and Yc = Y \ Y0 is
open.

For convenience, we usually write an orthomorphism, i.e., a disjointness pre-
serving bounded linear operator, as Tf = h · f ◦ φ by setting h = 0 on Y0.
Note that Yd = ∅ and φ : Y = Y0 ∪ Yc → X is continuous on the cozero set
coz(h) = {y ∈ Y : h(y) ̸= 0} = Yc of h in this case.

Definition 2.2. A bounded linear map T : C0(X) → C0(Y ) is called an n–
orthomorphism if it is n–disjointness preserving, i.e.,

Tf0 Tf1 · · ·Tfn = 0 whenever fi fj = 0, ∀i ̸= j.

A sum of n orthomorphisms is clearly an n–orthomorphism. However, an n–
orthomorphism is not necessarily a sum of n orthomorphisms. We are grateful to
the referee for sharing with us the following example.

Example 2.3. Let T = {eiθ : 0 ≤ θ ≤ 2π} be the unit circle in the complex plane.
Let T : C(T) → C(T) be defined by

Tf(eiθ) = f(eiθ/2) + f(−eiθ/2), ∀eiθ ∈ T.
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It is plain that T is a well-defined 2–orthomorphism. However, we cannot write
T = T1 + T2 as a sum of 2 orthomorphisms. Suppose we could, and

Tf(eiθ) = T1f(e
iθ) + T2(e

iθ)

= h1(e
iθ)f(φ1(e

iθ)) + h2(e
iθ)f(φ2(e

iθ)), ∀eiθ ∈ T.

Here, hj = Tj1 ∈ C(T) with 1 being the constant one function, and φj : T → T
is continuous at y whenever hj(y) ̸= 0 for j = 1, 2. Dealing with appropriate
continuous functions f from C(T), we see that

{φ1(e
iθ), φ2(e

iθ)} = {eiθ/2,−eiθ/2},
and

h1(e
iθ) = h2(e

iθ) = 1, ∀eiθ ∈ T.
Consequently, both φ1, φ2 are continuous maps from T into itself. It follows from
a connectedness argument that, with either j = 1 or j = 2, the map φj(e

iθ) = eiθ/2

for all θ in (0, 2π). However, this prevents φj from being continuous at 1. This
contradiction shows that T cannot be written as a sum of 2 orthomorphisms.

However, we can write T as a sum of 4 orthomorphisms. To this end, let 1 =
g1 + g2 be a continuous partition of T such that g1 = 0 in a neighborhood of 1, and
g2 = 0 in a neighborhood of −1. Then, both g1T and g2T can be written as sums
of 2 orthomorphisms. Thus T = g1T + g2T is a sum of 4 orthomorphisms. □

In [6, Example 1], there is a positive 2–orthomorphism which cannot be written
as a finite sum of lattice homomorphisms. Recall that a lattice homomorphism is a
positive orthomorphism. In the following we show that the 2–orthomorphism in [6,
Example 1] cannot be written as a finite sum of orthomorphisms, either.

Example 2.4. Assume φ1, φ2 : [0, 1] → [0, 1] are continuous maps such that
φ1(0) = φ2(0) and φ1(y) < φ2(y) for all 0 < y ≤ 1. Let T : C[0, 1] → C[0, 1]
be defined by

Tf(y) =


1 + sin(1/y)

2
f(φ1(y)) +

1− sin(1/y)

2
f(φ2(y)), if 0 < y ≤ 1;

f(φ1(0)), if y = 0.

It is easy to see that T is a 2–orthomorphism. We shall show that T cannot be
written as a sum of finitely many orthomorphisms of C[0, 1].

Assume on contrary that

T = S1 + S2 + · · ·+ Sn,

where each Si is an orthomorphism, or more precisely,

Sif(y) = ri(y)f(ψi(y)), ∀y ∈ [0, 1], i = 1, 2, . . . , n.

Here, each ri = Si(1) ∈ C[0, 1] with 1 being the constant one function, and ψi :
[0, 1] → [0, 1] is continuous at y whenever ri(y) ̸= 0.

Let p1, p2, . . . , p2n be 2n distinct numbers in [0, 1]. For each i = 1, 2, . . . , 2n, let
{yij}j be a sequence in (0, 1] such that limj→∞ yij = 0 and

1 + sin(1/yij)

2
= pi, for j = 1, 2, . . . .
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Let

Aij = {k : ψk(yij) ̸= φ2(yij)} ⊆ {1, 2, . . . , n}.
Choose fij from C[0, 1] such that

fij(φ1(yij)) = fij(ψk(yij)) = 1, ∀k ∈ Aij ,

and

fij(φ2(yij)) = 0.

Consider the value of Tf(yij), we have∑
k∈Aij

rk(yij) =
1 + sin(1/yij)

2
= pi, for j = 1, 2, . . . .

Although the nonempty set Aij can be different for each j = 1, 2, . . ., there are
only 2n − 1 of such choices as Aij ⊆ {1, 2, . . . , n}. Therefore, we can assume there
is a nonempty subset Ai of {1, 2, . . . , n} such that∑

k∈Ai

rk(yij) = pi, for infinitely many j = 1, 2, . . . .

By continuity, we have ∑
k∈Ai

rk(0) = pi, for i = 1, 2, . . . , 2n.

Since there are exactly 2n − 1 distinct nonempty subsets of {1, 2, . . . , n}, we will
have some Ai1 = Ai2 with i1 ̸= i2. Then a contradiction arrives:

pi1 =
∑

k∈Ai1

rk(0) =
∑

k∈Ai2

rk(0) = pi2 .

□

Let Y be a locally compact Hausdorff space and C0(Y,C) be the C*-algebra
of all continuous complex-valued functions on Y vanishing at infinity. The dual
space of C0(Y,C) is the Banach space M(Y,C) of all complex-valued regular Borel
measures on Y with finite variation norm. By Zorn’s Lemma and the Radon-
Nikodym theorem, M(Y,C) can be described as an l1–direct sum

M(Y,C) = ⊕1{L1(µ,C) : µ ∈ C} ⊕1 l
1(Y,C),

where C is a maximal family of mutually singular continuous positive measures in
M(Y,C) of norm one. Accordingly, the double dual space of C0(Y,C) is given by
an ℓ∞–direct sum

C0(Y,C)∗∗ = ⊕∞{L∞(µ,C) : µ ∈ C} ⊕∞ l∞(Y,C).(2.1)

The canonical embedding J sends C0(Y,C) into C0(Y,C)∗∗. More precisely, in the
setting of (2.1), for any f in C0(X) we have

Jf = ⊕{fµ : µ ∈ C} ⊕ fa.

Here, the atomic part fa in l∞(Y,C) agrees with f pointwisely, and each of the
continuous part, fµ in L∞(µ,C), agrees µ–almost everywhere with f on Y .
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Being a commutative W*-algebra, C0(Y,C)∗∗ ∼= C(Ỹ ,C). The spectrum Ỹ of
C0(Y,C)∗∗ consists of pure states of C0(Y,C)∗∗, and Y can be considered as a

subset of Ỹ consisting of normal pure states, i.e., those being weak* continuous.
By restricting to the real forms of the algebras, we can also assume the above hold

when the underlying field is the real, R. In particular, we will use the identification

C0(Y )∗∗ ∼= C(Ỹ ) for both the real and complex cases. Moreover, the realization
C0(Y )∗∗ ∼= ⊕∞{L∞(µ) : µ ∈ C} ⊕∞ l∞(Y ) also helps us to visualize our arguments
more constructively.

Convention. In the following, we will deal with the real case, and corresponding
statements for the complex case follow from the real case with simple modifications.
We also assume that Y consists of infinitely many points, for else the assertions being
trivial.

Remark that Ỹ is a compact and extremely disconnected space (see, e.g., [23]),

that is, the closure of any open set in Ỹ is again open in Ỹ . It follows that C(Ỹ ) is

Dedekind complete; namely, every nonempty set in C(Ỹ ) bounded form above has
a least upper bound ([22]).

3. Writing an n–orthomorphism as a sum of n orthomorphisms

In the following, we assume that X and Y are locally compact Hausdorff spaces,

and let J : C0(Y ) → C(Ỹ ) ∼= C0(Y )∗∗ be the canonical embedding.
It is plain that if T : C0(X) → C0(Y ) is an n–orthomorphism, then its canonical

extension JT : C0(X) → C(Ỹ ) is also an n–orthomorphism. In fact,

(JTf1)(JTf2) · · · (JTfn+1) = J(Tf1 · Tf2 · · ·Tfn+1) = J(0) = 0

if fifj = 0 for all i ̸= j.
Although Examples 2.3 and 2.4 tell us that we might not be able to write T as

a sum of at most n orthomorphisms, we can always do so for JT . The following
result is a consequence of [4, Theorems 5 and 6]. The original results in [4] deal with
n–orthomorphisms from a Reisz space into a Dedekind complete Riesz space. Note
that the reason of passing through to JT in the following results is to utilize the

Dedekind completeness of C(Y )∗∗ ∼= C(Ỹ ). If C0(Y ) is itself Dedekind complete,
all statements below are valid with T directly.

Theorem 3.1. Let X,Y be locally compact Hausdorff spaces, let J : C0(Y ) →
C(Ỹ ) (∼= C0(Y )∗∗) be the canonical embedding, and let T : C0(X) → C0(Y ) be an
n–orthomorphism. Then there are n orthomorphisms T1, T2, . . . , Tn from C0(X)

into C(Ỹ ) such that

JT = Σn
i=1Ti

Moreover, if T is positive then all Ti can be chosen to be positive.
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As a demonstration, consider the 2–orthomorphism T of C[0, 1] in Example 2.4,

we can set h̃i = ⊕µhi,µ ⊕ hi in C[0, 1]
∗∗ = ⊕∞{L∞(µ) : µ ∈ C} ⊕∞ ℓ∞([0, 1]) with

h1(y) =


1 + sin(1/y)

2
, y ∈ (0, 1];

1

2
, y = 0,

h2(y) =


1− sin(1/y)

2
, y ∈ (0, 1];

1

2
, y = 0,

and hi,µ agrees µ–almost everywhere with hi on [0, 1] for all µ in C and i = 1, 2.
Then

JTf = h̃1(Jf) ◦ φ1 + h̃2(Jf) ◦ φ2

= (⊕µ∈C h1,µfµ ◦ φ1)⊕ (h1fa ◦ φ1) + (⊕µ∈C h2,µfµ ◦ φ2)⊕ (h2fa ◦ φ2)

is a sum of 2 orthomorphisms.
We shall show that any n–orthomorphism can be written as a sum of (at most)

n orthomorphisms approximately. In Example 2.4, although the 2–orthomorphism
T cannot be written as a finite sum of orthomorphisms, T might be expressed as
such a finite sum if we avoid the point y = 0. More explicitly, if g ∈ C[0, 1] with
g(0) = 0, then the operator gT can be written as a sum of 2 orthomorphisms. This
suggests us the following definition.

Recall that an increasing net {gλ} of non-negative functions in C0(Y ) is called
an approximate order identity if supλ gλh = h for every non-negative h in C0(Y ).
The supremum here is taken in the sense of the lattice order on C0(Y ), as opposed
to pointwise supremum. Indeed, such an increasing net {gλ} satisfies exactly the
conditions that 0 ≤ gλ ≤ 1 for all λ and supλ gλ(y) = 1 for all y in a dense subset
of Y .

Definition 3.2. A bounded linear operator T : C0(X) → C0(Y ) is called an ap-
proximate sum of n orthomorphisms if there exists an approximate order identity
{gλ} in C0(Y ) such that for all λ we have

gλT = Σn
i=1T

λ
i ,

where T λ
i (can be zero) is an orthomorphism for i = 1, 2, · · ·n.

In Example 2.4, for each n = 1, 2, . . ., let

gn(y) =


0, 0 ≤ y ≤ 1

2n ;

2ny − 1, 1
2n ≤ y ≤ 1

n ;

1, 1
n ≤ y ≤ 1.

Then {gn} is an approximate order identity of C[0, 1], and

gnTf = h1nf ◦ φ1 + h2nf ◦ φ2

is a sum of 2 orthomorphisms from C[0, 1] into C[0, 1]. Here, hin = gnhi in C[0, 1]
agrees with hi on [1/n, 1] for i = 1, 2 and n = 1, 2, . . ..

The following result extends and enriches [6, Theorem 2] to the case of (not nec-
essarily positive) linear operators between continuous functions on locally compact
spaces.
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Theorem 3.3. Let X,Y be locally compact Hausdorff spaces, let T : C0(X) →
C0(Y ) be a bounded linear operator, and let n be a fixed positive integer. The
following are equivalent.

(1) T is an approximate sum of n orthomorphisms.
(2) T is an n–orthomorphism.

(3) There are orthomorphisms Ti : C0(X) → C(Ỹ ), such that

JT = T1 + T2 + · · ·+ Tn.

Here, J : C0(Y ) → C0(Y )∗∗ (∼= C(Ỹ )) is the canonical embedding
(4) For each y in Y , there are scalars a1, a2, . . . an and points x1, x2, . . . , xn in

X satisfying

Tf(y) =
n∑

i=1

aif(xi), ∀f ∈ C0(X).

(5) There is a scalar valued function k on X × Y such that for each y in Y we
have k(x, y) = 0 except for at most n of x in X, and

Tf(y) =

∫
Y
k(x, y)f(x)dσ, ∀f ∈ C0(X).

Here, σ is the counting measure.
(6) There are (maybe empty) disjoint subsets Y0,H1, H2, . . . , Hn of Y such that

their union H is denes in Y . Each Hm (m = 1, 2, . . . , n) is open, and on
which there exist non-vanishing bounded scalar functions a1, a2 . . . am, and
continuous maps xi : Hm → X with xi(y) ̸= xj(y) for all y in Hm and i ̸= j,
satisfying that

Tf(y) =
m∑
i=1

ai(y)f(xi(y)), ∀f ∈ C0(X), ∀y ∈ Hm.

Moreover, Y0 is closed in Y , and

Tf(y) = 0, ∀f ∈ C0(X), ∀y ∈ Y0.

Proof. (1) implies (2): Assume that f0, f1, . . . , fn ∈ C0(X) and fifj ̸= 0 for i ̸= j.
Suppose that {gλ} is an approximate order identity of C0(Y ) such that gλ · T =∑n

i=1 T
λ
i , where each T λ

i is an orthomorphism. In particular, gλT is n–disjointness
preserving. Thus

gnλ(Tf0Tf1 · · ·Tfn) = 0, ∀λ.
As gλ(Tfm)± ↑ (Tfm)± for each m = 0, 1, 2, . . . , n, we see that

Tf0Tf1 · · ·Tfn = 0.

So T is an n–orthomorphism.
(2) implies (3): This is Theorem 3.1.

(3) implies (4): Since each Ti : C0(X) → C(Ỹ ) is an orthomorphism, by Propo-

sition 2.1 there exist continuous functions hi : Ỹ → R and maps φi : Ỹ → X such
that Tif = hi · f ◦ φi. Consequently,

JTf(y) =

n∑
i=1

hi(y)f(φi(y)), ∀f ∈ C0(X), ∀y ∈ Ỹ .
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For each y in Y , setting ai = hi(y) and xi = φi(y) we have

Tf(y) =

n∑
i=1

aif(xi), ∀f ∈ C0(X).

(4) ⇔ (5): Let Tf(y) =
∑n

i=1 aif(xi), where ai and xi depend on y. Define

k(x, y) =

{
ai, x = xi for i = 1, 2, . . . , n;
0, otherwise.

We thus have (4) =⇒ (5). It is also plain for the reverse implication.
(4) implies (6): Clearly, the set Y0 =

∩
f∈C0(X)(Tf)

−1(0) is closed in Y , and on

which every Tf vanishes. Let Yn be the subset of the open set Y \ Y0 consisting of
all points y0 in Y such that there are n distinct points x1(y0), x2(y0), . . . , xn(y0)
in X and n non-zero real numbers a1(y0), a2(y0), . . . , an(y0) satisfying

Tf(y0) =
n∑

i=1

ai(y0)f(xi(y0)), ∀f ∈ C0(X).

Assume y0 ∈ Yn. Let Ui be an open neighborhood of xi(y0) in X such that Ui ∩
Uj = ∅ for i ̸= j. Choose by Uryshon’s Lemma g1, g2, . . . , gn from C0(X) such
that 0 ≤ gi ≤ 1, gi(xi(y0)) = 1, and gi = 0 outside Ui, for i = 1, 2, . . . , n. As
Tgi(y0) = ai(y0) ̸= 0, and the continuity of Tgi, we have

Tg1(y)Tg2(y) · · ·Tgn(y) ̸= 0

for all y in an open neighborhood V of y0 in Y . By (4), for all y in V there are
(maybe not all distinct) points x1(y), x2(y), . . . , xn(y) in X and (maybe zero) real
numbers a1(y), a2(y), . . . , an(y) such that

Tf(y) =

n∑
i=1

ai(y)f(xi(y)), ∀f ∈ C0(X).(3.1)

However, if there are less than n distinct points in {x1(y), x2(y), . . . , xn(y)}, or
any one of a1(y), a2(y), . . . , an(y) is zero, then there will be some Tgi(y) = 0, as
g1, g2, . . . , gn are pairwise disjoint. This forces V ⊆ Yn, and thus Yn is an open
subset of Y \ Y0. Moreover, we can arrange xi(y)’s so that each xi(y) belongs to
exactly Ui for all y in V for i = 1, 2, . . . , n. It is then routine to see that all ai are
continuous on V and all xi are continuous from V into X.

Let V ′ be another open subset of Yn such that on V ′ a similar sum as in (3.1)
can be obtained. If V ′ is disjoint from V , then in a trivial manner we can extend
the continuous functions ai and xi from V to V ∪ V ′, for i = 1, 2, . . . , n.

Denote by the tuple ({ai, xi}ni=1, V ) a nonempty open subset V of the open set
Yn, on which

Tf(y) =
n∑

i=1

ai(y)f(xi(y)), ∀f ∈ C0(X).

Here, all ai are continuous and nonvanishing scalar functions on V and all xi are
continuous from V into X with distinct values everywhere. Order the non-emtpy
family of tuples ({ai, xi}ni=1, V ) by extension. In other words, ({ai, xi}ni=1, V ) ≤
({a′i, x′i}ni=1, V

′) whenever V ⊆ V ′ and all a′i agree with ai and x
′
i agree with xi on
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V . Using Zorn’s Lemma, we have a maximal element ({a′′i , x′′i }ni=1,Hn). It follows
from the above arguments that Hn is an open dense subset of Yn, and (3.1) holds
on Hn.

If Hn is dense in Y \ Y0, then the assertion is obtained by setting Hn−1 = · · · =
H1 = ∅. If it is not, consider the nonempty open subset Y ′ = Y \ Hn of Y . The
induced operator T ′ : C0(X) → C0(Y

′) defined by restriction clearly satisfies (4),
but with n replaced with n−1. Let Yn−1 be the open set of points y0 in Y

′ such that
there are n− 1 distinct points x1(y0), x2(y0), . . . , xn−1(y0) in X and n− 1 non-zero
real numbers a1(y0), a2(y0), . . . , an−1(y0) satisfying

Tf(y0) =

n−1∑
i=1

ai(y0)f(xi(y0)), ∀f ∈ C0(X).(3.2)

In a similar manner, we obtain an open dense subset Hn−1 of Yn−1, which is open in
Y ′, and thus also in Y , such that (3.2) holds onHn−1. IfHn∪Hn−1 is dense in Y \Y0,
the assertion is obtained; otherwise, we continue to find Hn−2 from Y \Hn ∪Hn−1,
Eventually, we will have n disjoint open sets, Hn, Hn−1, . . . , H1, some of them can
be empty, such that the union H1 ∪ · · · ∪Hn is an open dense subset of Y \ Y0, and
on each Hi the asserted sum representation as in (3.1) is established.

(6) implies (1): Set up the index α = (K,K ′), in which K,K ′ are two nonempty
compact subsets of H1 ∪ · · · ∪ Hn such that K is contained in the interior of K ′.
Choose hα from C0(Y ) such that 0 ≤ hα ≤ 1, hα |K= 1 and hα |Y \K′= 0. Order
α1 = (K1,K

′
1) ≤ α2 = (K2,K

′
2) if K ′

1 ⊆ K2. Then supα hαf = f whenever f is
a nonnegative function in C0(Y ) vanishing outside the open set H1 ∪ · · · ∪Hn. In
a similar manner, let {kβ} be an increasing net of nonnegative functions in C0(Y )
such that supβ kβf = f whenever f is a nonnegative function in C0(Y ) vanishing

outside the open set Y \H1 ∪ · · · ∪Hn, which is contained in Y0. Order the indices
λ = (α, β) ≤ λ′ = (α′, β′) whenever α ≤ α′ and β ≤ β′. Let gλ = hα + kβ for each
λ = (α, β). Clearly, {gλ} is an approximate order identity of C0(Y ), and gλT = hαT
is a sum of at most n orthomorphisms. □

As indicated by the referee, we remark that in proving the implication “(4) ⇒
(6)”, one might not be able to choose the set Hn to be the whole of Yn. As in
Example 2.3, Y2 = T while any choice of H2 misses at least one point from T.

The equivalence “(2) ⇔ (6)” in Theorem 3.3 can be rephrased in the following
result.

Corollary 3.4. A bounded linear operator T : C0(X) → C0(Y ) is an
n–orthomorphism if and only if restricting the range to some dense subset H of
Y , we can write T as a sum of at most n orthomorphisms. In this case, there are
bounded continuous scalar functions h1, . . . , hn on H and maps φ1, . . . , φn : H → X
such that

Tf |H =

n∑
i=1

hif ◦ φi, ∀f ∈ C0(X).

Moreover, the symbol map φi is continuous wherever the weight function hi is non-
vanishing for i = 1, 2, . . . , n.
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In Example 2.4, on the dense subset H = H2 = (0, 1] of [0, 1], we can write T as
a sum of two orthomorphisms.

Finally, let us repeat that all results in this paper are valid in both the real and
the complex cases. For example, f1+if2, g1+ig2 in C0(X,C) are disjoint if and only
if their real parts and imaginary parts are disjoint, namely, fjgk = 0 for j, k = 1, 2.
It follows that a complex linear operator TC : C0(X,C) → C0(Y,C) is n–disjointness
preserving if and only if its real form TR : C0(X,R) → C0(Y,R) is n–disjointness
preserving. Here, TC(f1+if2) = TRf1+iTRf2 for f1, f2 in C0(X,R). The same is true
for TC and TR being (or approximately being) finite sums of weighted composition
operators, or satisfying other equivalent properties stated in Theorem 3.3.

We end this paper with our appreciation to the referee for many helpful sugges-
tions and comments.
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