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430 MARIO MILMAN

with pairwise disjoint interiors}.

Let 1 < p < ∞. The John-Nirenberg spaces JNp(Q0) consist of all functions f ∈
L1(Q0) such that3 (cf. [10], [22])

(1.1) ∥f∥JNp(Q0)
= sup

{Qi}i∈N∈P (Q0)

{∑
i

|Qi|
(

1

|Qi|

∫
Qi

|f − fQi | dx
)p
}1/p

< ∞.

John-Nirenberg [10] go on to show that

(1.2) JNp(Q0) ⊂ L(p,∞)(Q0).

Thus, the JNp(Q0) condition implies the following “self-improvement”: For f ∈ L1,
control of its L1 oscillations, 1

|Q|
∫
Q |f − fQ| dx, as prescribed by (1.1), allows us to

conclude that f belongs to the better space L(p,∞) (cf. (1.2)). When p → ∞, then,
informally, we have JNp(Q0) → BMO(Q0), and the corresponding limiting self-
improvement is expressed by the well known John-Nirenberg Lemma [10]: Functions
inBMO are exponentially integrable. Again informally, this later result corresponds
to let p → ∞ in (1.2), and can be formulated4 as

(1.3) BMO(Q0) ⊂ L(∞,∞)(Q0).

Roughly speaking, the embeddings (1.2), (1.3), are the mechanism used by John-
Nirenberg to prove self improvement when we have control of the oscillations (cf.
[10], [22] and the more recent expansive survey given in [5], which contains references
to many important contributions to the topic treated in this note).

In the seventies, Garsia-Rodemich [8] introduced the closely related spaces
GaRop(Q0), 1 < p ≤ ∞, whose definition we now recall. We shall say that f ∈
GaRop(Q0), if and only if f ∈ L1(Q0), and ∃C > 0 such that for all {Qi}i∈N
∈ P (Q0) we have
(1.4)∑

i

1

|Qi|

∫
Qi

∫
Qi

|f(x)− f(y)| dxdy ≤ C

(∑
i

|Qi|

)1/p′

, where 1/p′ = 1− 1/p,

and we let

∥f∥GaRop(Q0)
= inf{C : such that (1.4) holds}.

It is readily seen that (cf. [18]),

(1.5) JNp(Q0) ⊂ GaRop(Q0).

3Here fQ = 1
|Q|

∫
Q
fdx.

4We use the somewhat unconventional notation L(∞,∞) (also often denoted by W ) to define
the weak-L∞ space (cf. [4])

L(∞,∞) = {f : sup
t
{f∗∗(t)− f∗(t)} < ∞}.

Here f∗ denotes the non-increasing rearrangement of f and f∗∗(t) = 1
t

∫ t

0
f∗(s)ds, (cf. [4]). As was

shown in [3], L(∞,∞) is the “rearrangement invariant hull” of BMO. For further generalizations
cf. [20].



POINCARÉ-SOBOLEV INEQUALITIES VIA GARSIA-RODEMICH SPACES 431

A remarkable result of Garsia-Rodemich shows that (cf. [8], and [18] for the
n−dimensional version of the result that we use here) as sets,

(1.6) GaRop(Q0) = L(p,∞)(Q0).

Therefore, the gist of the matter is that the weak type spaces L(p,∞) themselves can
be characterized by oscillation conditions! In other words, the underlying method
to prove (1.6) provides an effective method to compute the weak type norm of a
function if we have control of its oscillations, and avoids the (somewhat harder!)
intermediate step of showing the JNp(Q0) condition. As a bonus, we will also show
that, when applied to the self improvement of Poincaré-Sobolev inequalities, this
method leads to sharp results5.

In the last section of this note we included a brief discussion of related meth-
ods that can be used to study self-improving inequalities; e.g. methods based on
rearrangement inequalities (cf. [11]), methods based on K−functional inequalities
as they relate to reverse Hölder inequalities (cf. [19], [16], [13]), and K−functional
inequalities applied to Poincaré-Sobolev (cf. [14] and [17])).

Finally, we refer to [4] for background information on rearrangements and cover-
ing lemmas.

2. GaRop = L(p,∞)

We consider a qualitative version of the Garsia-Rodemich [8] equality

GaRop = L(p,∞).

We start recalling the n dimensional version as given in [18].

Theorem 2.1. Let 1 < p < ∞, and let Q0 ⊂ Rn be a fixed cube. Then
(i) JNp(Q0) ⊂ GaRop(Q0). In fact,

∥f∥GaRop(Q0)
≤ 2JNp(f,Q0).

(ii) GaRop(Q0) = L(p,∞)(Q0). In fact, if we let

∥f∥∗L(p,∞) = sup
t

f∗(t)t1/p,

then we have,

∥f∥GaRop(Q0)
≤ 2p

p− 1
∥f∥∗L(p,∞) ,(2.1)

sup
t

t1/p (f∗∗(t)− f∗(t)) ≤ 2n/p
′+1 ∥f∥GaRop(Q0)

+

(
4

|Q0|

)1/p′

∥f∥L1 .(2.2)

The following form of Theorem 2.1 will be useful for the applications we develop
in this note.

Corollary 2.2. Let 1 < p < ∞. Then,

∥f − fQ0∥GaRop(Q0)
≤ 2p

p− 1
∥f − fQ0∥

∗
L(p,∞) ,

5Our results in this direction ought to be compared with those presented in the recent survey [5]
and the references therein (cf. e.g. Corollary 3.5 in [5]).
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(2.3) ∥f − fQ0∥
∗
L(p,∞) ≤ c(n, p) ∥f − fQ0∥GaRop(Q0)

.

Proof. The first inequality follows applying (2.1) to f − fQ0 . To prove (2.3), let
g = f − fQ0 . Then, since g ∈ L1(Q0), we see that g∗∗(t) → 0 as t → ∞. Therefore,
by the fundamental theorem of calculus, we can write6

g∗∗(t) =

∫ ∞

t
(g∗∗(s)− g∗(s))

ds

s
.

Combining with (2.2) we find

g∗∗(t) ≤ c ∥g∥GaRop(Q0)

∫ ∞

t
s−1/pds

s
+

(
4

|Q0|

)1/p′

∥g∥L1

∫ ∞

t
s−1/pds

s

= p

(
c ∥g∥GaRop(Q0)

+

(
4

|Q0|

)1/p′

∥g∥L1

)
t−1/p.

Thus,

(2.4) ∥g∥∗L(p,∞) ≤ sup
t

g∗∗(t)t1/p ≤ p

(
c ∥g∥GaRop(Q0)

+

(
4

|Q0|

)1/p′

∥g∥L1

)
.

Now, since
∫
Q0

g = 0, and {Q0} ∈ P (Q0),∫
Q0

|g(x)| dx =

∫
Q0

∣∣∣∣g(x)− 1

|Q0|

∫
Q0

g(y)dy

∣∣∣∣ dx
=

∫
Q0

1

|Q0|

∣∣∣∣∫
Q0

(g(x)− g(y))dy

∣∣∣∣ dx
≤ 1

|Q0|

∫
Q0

∫
Q0

|g(x)− g(y)| dydx

≤ |Q0|1/p
′
∥g∥GaRop(Q0)

.

Inserting this information in (2.4) we find,

∥g∥∗L(p,∞) ≤ p

(
c+

(
4

|Q0|

)1/p′

|Q0|1/p
′

)
∥g∥GaRop(Q0)

,

concluding the proof. □

For further use below let us also note the corresponding end point result for
p = ∞.

Lemma 2.3.

(2.5) GaRo∞(Q0) = BMO(Q0).

Proof. First let us note that, as is well known, and readily verified (cf. [8]),

(2.6) f ∈ BMO(Q0) ⇔ ∥f∥∗ = sup
Q⊂Q0

1

|Q|2

∫
Q

∫
Q
|f(x)− f(y)| dxdy < ∞,

6Recall that d
dt

(g∗∗(t)) =
(g∗(t)−g∗∗(t))

t
.
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where in the expression defining ∥f∥∗ above, the sup is taken over all subcubes
Q ⊂ Q0. This given, let us suppose first that f ∈ GaRo∞(Q0). Then, since for any
subcube Q ⊂ Q0 we have {Q} ∈ P (Q0), it follows that

1

|Q|

∫
Q

∫
Q
|f(x)− f(y)| dxdy ≤ |Q| ∥f∥GaRo∞(Q0)

.

Thus, by (2.6),

∥f∥∗ ≤ ∥f∥GaRo∞(Q0)
.

Conversely, for any {Qi}i∈N ∈ P (Q0), we can estimate∑
i

1

|Qi|

∫
Qi

∫
Qi

|f(x)− f(y)| dxdy =
∑
i

|Qi|
1

|Qi|2

∫
Qi

∫
Qi

|f(x)− f(y)| dxdy

≤

(∑
i

|Qi|

)
∥f∥∗ .

Whence,

∥f∥GaRo∞(Q0)
≤ ∥f∥∗ .

□

Summarizing, just like the JNp conditions, the GaRop conditions form a scale
joining the weak type Marcinkiewicz L(p,∞) spaces and BMO. Moreover, we have

JNp ⊂ GaRop = L(p,∞), for p ∈ (1,∞),

and

JN∞ = GaRo∞ = BMO.

3. Poincaré inequalities

Let p ∈ (1,∞). We consider Sp(Q0), the class of functions of functions f ∈
L1(Q0), such that there exists a constant c(f) > 0, and g ∈ Lp(Q0), such that for
all subcubes Q ⊂ Q0,

1

|Q|

∫
Q
|f − fQ| dx ≤ c(f)l(Q)

{
1

|Q|

∫
Q
|g|p dx

}1/p

,

where l(Q) = length of the sides of Q.
The function g is usually called an upper gradient of f (cf. [7], [9], [11] and the

references therein). As is well known, with a minor variant of this definition7 one can
study Poincaré inequalities in metric spaces. In particular, the classical Euclidean
(1, p) Poincaré inequalities, correspond to the choice |g| = |∇f | .

Theorem 3.1. (i) Let 1 < p < n. Suppose that f ∈ Sp(Q0) then, f ∈ L(p∗,∞)(Q0),
where 1

p∗ = 1
p − 1

n

(ii) If p = n, then f ∈ Sn(Q0) implies that f ∈ GaRo∞(Q0) = BMO(Q0).

7We need to replace *cubes* by *balls*. For more information on this point see Remark 4.1
below.
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Proof. (i) Let {Qi}i∈N ∈ P (Q0). Let 1 < p < n, and 1
p∗ = 1

p −
1
n ,

1
p′ = 1− 1

p ,
1

(p∗)′ =

1− 1
p∗ . Note that since p < n, then p∗ > p, and we have p∗/p > 1. Then8,∑

i

1

|Qi|

∫
Qi

∫
Qi

|f(x)− f(y)| dxdy

≤ 2
∑
i

∫
Qi

|f(x)− fQi | dx

= 2
∑
i

|Qi|
1

|Qi|

∫
Qi

|f(x)− fQi | dx

≤ 2c(f)
∑
i

|Qi| l(Qi)

{
1

|Qi|

∫
Qi

|g|p dx
}1/p

= 2c(f)cn
∑
i

|Qi|1−1/p+1/n

{∫
Qi

|g|p dx
}1/p

= 2c(f)cn
∑
i

|Qi|1−1/p∗
{∫

Qi

|g|p dx
}1/p

≤ 2c(f)cn

{∑
i

|Qi|
1

(p∗)′ (p
∗)′
}1/(p∗)′

{∑
i

{∫
Qi

|g|p dx
}p∗/p

}p/p∗
1/p

≤ 2c(f)cn

{∑
i

|Qi|

}1/(p∗)′ {∑
i

∫
Qi

|g|p dx

}1/p

≤ 2c(f)cn

{∑
i

|Qi|

}1/(p∗)′ {∫
∪Qi

|g|p dx
}1/p

≤ 2c(f)cn

{∑
i

|Qi|

}1/(p∗)′ {∫
Q0

|g|p dx
}1/p

.

Thus,

(3.1) ∥f∥GaRop∗ (Q0)
≤ 2c(f)cn

{∫
Q0

|g|p dx
}1/p

.

Now, since

1

|Q|

∫
Q
|(f − fQ0)− (f − fQ0)Q| dx =

1

|Q|

∫
Q
|f − fQ| dx

≤ c(f)l(Q)

{
1

|Q|

∫
Q
|g|p dx

}1/p

,

8In the course of the proof we use the fact that

∥{xn}∥lp∗/p ≤ ∥{xn}∥l1 .
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we see that g is also an upper gradient of f − fQ0 . Consequently, (3.1) holds for
f − fQ0 and we find that

∥f − fQ0∥GaRop∗ (Q0)
≤ 2c(f)cn

{∫
Q0

|g|p dx
}1/p

.

Applying (2.3) we finally arrive at

∥f − fQ0∥
∗
L(p,∞) ≤ c(n, p)2c(f)cn

{∫
Q0

|g|p dx
}1/p

.

(ii) Suppose that p = n. We proceed as in the first part of the proof noticing that
when p = n, we have 1− 1/p∗ = 1. Consequently,∑

i

1

|Qi|

∫
Qi

∫
Qi

|f(x)− f(y)| dxdy ≤ 2c(f)cn
∑
i

|Qi|
{∫

Qi

|g|n dx
}1/n

≤ 2c(f)cn

{∫
Q0

|g|n dx
}1/n∑

i

|Qi| .

Therefore,

∥f − fQ0∥GaRo∞(Q0)
≤ 2c(f)cn

{∫
Q0

|g|n dx
}1/n

,

and we conclude by (2.5). □

Remark 3.2. The previous result shows that starting with a function in Sp(Q0), 1 <
p < n, we obtain the (weak type) improvement f ∈ L(p∗,∞)(Q0). Moreover, com-
bining this result with Maz’ya’s self-improvement principle for weak type inequali-
ties for the gradient9 (cf. [9]) we obtain (the strong type) improvement: if f ∈ Sp(Q0)

then f ∈ Lp∗(Q0) or even L(p∗, p)(Q0) (cf. [14]). Since we have nothing new to add
to the known methods used to show how to self improve from weak type to strong
type, we shall not consider this issue here and refer to [21], [9], [15], [14], and the
references therein.

4. Final comments and problems

We will show some connections with other approaches to the self improvement of
Sobolev-Poincaré inequalities.

4.1. Poincaré inequalities, maximal inequalities and rearrangements. There
is a close connection between Sobolev-Poincaré inequalities, rearrangement inequal-
ities for gradients, weak type inequalities and maximal operators. Consequently
all of the above can be expressed in terms of Garsia-Rodemich conditions. In this
section we shall briefly explore some of these interconnections.

Let Q0 be a fixed cube on Rn. Suppose that f ∈ S1(Q0). Therefore, there exists
a constant c(f) ≥ 0, and g ∈ L1(Q0), such that for all Q ⊂ Q0 subcubes of Q0, we

9To the effect that ‘weak type” implies “strong type”.
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have

(4.1)
1

|Q|

∫
Q
|f(x)− fQ| dx ≤ c(f)

|Q|1/n

|Q|

∫
Q
|g(x)| dx.

We now reproduce the argument in [11]. We first note that if (4.1) holds then,

f#
1/n(x) := sup

Q϶x

1

|Q|1+1/n

∫
Q
|f(x)− fQ| dx

≤ c(f) sup
Q϶x

1

|Q|

∫
Q
g(x)dx = c(fMg(x),

where M is the maximal operator of Hardy-Littlewood. Consequently, by a modi-
fication of an argument of [4], we find

f#∗
1/n(t) ≤ Cn (Mg)∗∗ (t)

= Cng
∗∗(t).

As a consequence (cf. [4], [17]) we obtain a version of a well known rearrangement
inequality for the gradient (cf. [12], [2], [11] and the references therein)

(4.2) f∗∗(t)− f∗(t) ≤ cnt
1/ng∗∗(t), for 0 < t < |Q0| /2.

Note that (4.2) yields a weak type form of the Gagliardo-Nirenberg inequality.
Indeed, we can rewrite (4.2) as

(f∗∗(t)− f∗(t)) ≤ cnt
1/n 1

t

∫ t

0
g∗(s)ds, 0 < t < |Q0| /2,

which readily implies (cf. [18])

sup
t>0

(f∗∗(t)− f∗(t)) t1/n
′ ≤ cn ∥g∥L1(Q0)

+

(
|Q0|
2

) 1
n′−1

∥f∥L1(Q0)
.

It follows that (cf. the proof of Corollary 2.2 above)

∥f − fQ0∥
∗
L(n′,∞) ≤ c(n, |Q0|)

[
c(f) ∥g∥L1(Q0)

+

(
|Q0|
2

) 1
n′−1

∥f − fQ0∥L1(Q0)

]
and since by (4.1)

∥f − fQ0∥L1(Q0)
≤ c(f) |Q0|1/n

∫
Q0

|g(x)| dx

= c(f) |Q0|1/n ∥g∥L1(Q0)
,

we finally arrive at

∥f − fQ0∥
∗
L(n′,∞) ≤ c(n) ∥g∥L1(Q0)

.

Of course this weak type version of the Gagliardo-Nirenberg inequality can be now
rewritten using Garsia-Rodemich conditions via (2.3).
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The analysis for (q, p) Poincaré inequalities follows the same pattern (cf. [11]).
For example, suppose that f ∈ Sp(Q0). Then there exists c(f) > 0, and g upper
gradient of f , such that for all subcubes Q ⊂ Q0,(

1

|Q|

∫
Q
|f(x)− fQ|qdx

)1/q

≤ c(f) |Q|1/n
(

1

|Q|

∫
Q
gp(x)dx

)1/p

.

Then

t−
1
n

(
1

t

∫ t

0
[f∗(s)− f∗(s)]q ds

)1/q

≤ Cc(f)[(gp)∗∗(t)]1/p, for 0 < t < |Q0| /2.

Which again can be rewritten as a Sobolev-Poincaré weak type inequality.

Remark 4.1. As was shown in [11] the analysis above holds in the general setting of
metric spaces provided with a doubling measure. In particular, on a doubling metric
measure space (X,µ) there exists s = doubling order, or homogeneous dimension,
such that for each ball B ⊂ X

µ(B) ≥ cr(B)s, where r(B) is the radius of B.

The corresponding rearrangement inequality associated with the Poincaré inequality

1

µ(B)

∫
B
|f(x)− fB| dµ(x) ≤ c

µ(B)1/s

µ(B)

∫
B
|g(x)| dµ(x),

takes the form (cf. [11])

f∗∗(t)− f∗(t) ≤ cnt
1/sg∗∗(t), for 0 < t < µ(X)/2.

Remark 4.2. It could be of interest to investigate the connection of the homogenous
dimension of X and measures of the form wdµ, with w in a Muckenhoupt class of
weights. Given the connection between BMO and the Ap classes (cf. [6]) it would
be interesting to study the connection with BMO and isoperimetry. Recently, an
interesting connection between isoperimetry and BMO was uncovered in [1].

4.2. K-functional connection. Due to its connection to maximal operators, the
K−functional of interpolation theory (cf. [4]) is a good tool to study self-improving
inequalities involving averages. For example, the well known equivalence of Herz-
Stein to the effect that the maximal operator of Hardy Littlewood, M, can be
estimated by

(Mf)∗ (t) ≈ f∗∗(t),

can be effectively used to prove self improving inequalities connected with reverse
Hölder inequalities (cf. [19], [16], [13], and the references therein). Moreover, this
is immediately connected with the computation of the K−functional for the pair
(L1, L∞) :

K(t, f ;L1, L∞) = tf∗∗(t).

In this context Gehring’s self-improving inequalities can be formulated as differential
inequalities connected with the reiteration formulae of Holmstedt (cf. [19]).

Likewise, we believe that suitable reformulations of the K−functional for the pair
(L1, BMO) (cf. [4], [17]) can be used to reformulate some of the results considered
in this note in terms of differential inequalities, via reiteration (cf. [19]).
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